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Abstract 
When administering large-scale assessments, item-position effects are of particular importance be-

cause the applied test designs very often contain several test booklets with the same items presented at 
different test positions. Establishing such position effects would be most critical; it would mean that the 
estimated item parameters do not depend exclusively on the items’ difficulties due to content but also 
on their presentation positions. As a consequence, item calibration would be biased. By means of the 
linear logistic test model (LLTM), item-position effects can be tested. In this paper, the results of a 
simulation study demonstrating how LLTM is indeed able to detect certain position effects in the 
framework of a large-scale assessment are presented first. Second, empirical item-position effects of a 
specific large-scale competence assessment in mathematics (4th grade students) are analyzed using the 
LLTM. The results indicate that a small fatigue effect seems to take place. The most important conse-
quence of the given paper is that it is advisable to try pertinent simulation studies before an analysis of 
empirical data takes place; the reason is, that for the given example, the suggested Likelihood-Ratio test 
neither holds the nominal type-I-risk, nor qualifies as “robust”, and furthermore occasionally shows 
very low power. 
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1. Introduction 
 
Of course, every test author has to be aware that there may be some item-position effects. 

There are two possible kinds of item-position effects. First, examinees generally become 
familiar with the test material and the task, respectively, or even detect problem solving 
strategies for the items in question. In other words, practice or learning effects could take 
place, so that an item at the beginning of a test is more difficult than the same item adminis-
tered at the end of the test. Second, some fatigue effects could occur, so that an item at the 
beginning of a test is less difficult than the same item administered at the end of the test. 
Now, while such position effects do not raise any problems if they happen in general, that is 
with no notable individual differences, there are two cases of test application within psycho-
logical assessment where they cause considerable troubles. 

Administration of a test in a conventional way, where every examinee is administered 
every item in the same sequence, means that any item-position effect as described above is 
absorbed into the item difficulty parameter. For instance, in terms of the Rasch model (1-PL 
model) item parameter, the calibrated σi represents not only item i’s difficulty, say σ*

i, but 
also some position effect λ, so that σi = σ*

i + λ. This circumstance is hardly of any conse-
quence, and the Rasch model might actually hold (nevertheless, for a review of unintended 
item-position effects on test scores, see Leary & Dorans, 1985; Zwick, 1991). However, if 
there are different sequences of item presentation, then the composition σ*

i + λ is of great 
importance, since it means that test performances of different examinees presented with 
different sequences of items are most likely not compared in a fair manner. This is due to the 
fact that one examinee might have an advantage working on a certain item at a certain posi-
tion, while the other might be handicapped. Such different sequences of item presentation 
occur systematically within large-scale assessments where various test booklets with partly 
different item subsets are used. Of course, they also occur within adaptive testing, where 
(roughly speaking) every examinee is administered different items in different item se-
quences, because at any step of test administration an item is needed and sought whose diffi-
culty best matches the current estimated ability parameter of the examinee in question. How-
ever, this paper focuses on item-position effects in the context of large-scale assessment. 

Superficially there is no need for evaluation of the bias of test scores due to item-position 
effects in large-scale assessments, as these assessments regularly aim only for ability pa-
rameter estimations averaged within the given sample of the interesting population, not indi-
vidually valid ability parameter estimations (cf. for instance the well-known PISA study, 
OECD, 2005). And then, of course, any item position can be balanced over all the test book-
lets, as a consequence of which the averaged ability parameter estimation becomes unbiased. 
However, some large-scale assessments provide additional feedback to every individual 
examinee, as well as sometimes to the individual class or school; in this case, when several 
test booklets have been used for instance to limit cheating, any item-position effect would 
invalidate the individuals’ test results.  

The Rasch model-based linear logistic test model (LLTM; see Fischer, 1972) is a proper 
means for analysing item-position effects (cf. Kubinger, 2008) and will therefore be applied 
in this study. The LLTM is particularly well suited, as several concurrent hypotheses of 
occurring item-position effects can be hypothesized and modeled, respectively; as a conse-
quence of the results of hypotheses testing, the effect becomes specified and its size most 
accurately quantified.  



Examining item-position effects in large-scale assessment using the  
Linear Logistic Test Model 

393 

While the Rasch model hypothesizes the probability of an item solution, given examinee 
v with ability parameter ξv and item i with item difficulty parameter σi, as:  
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ξ σξ σ
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the LLTM applies the linear combination: 

 

 σi = 
p

ij j
j

q η∑  ; p < k, k the number of items.  (2) 

 
That is, the item difficulty parameter σi is assumed to be a linear combination of the ba-

sic parameters ηj and some fixed weights qij. For parameter estimation, conditional maximum 
likelihood method (CML) may be used, which implicates advantageous mathematical prop-
erties in comparison to other parameter estimation methods (cf. Fischer, 1974). 

The present paper now demonstrates how to apply the LLTM for testing item-position 
effects in the particular context of large-scale assessments (see, for instance, Gittler & Wild, 
1989, as well as Hahne, 2008, for LLTM analyses of item-position effects of specific psy-
chological tests). In order to do this, we first test in a simulation study whether at all the 
LLTM detects certain relevant item-position effects. Next, real data from a large-scale as-
sessment are used in order to illustrate the indicated LLTM approach.  

 
 

2. Method 
 
In order to test item-position effects, a researcher must have access to a data structure en-

compassing different sequences of item presentation. Then, according to our considerations 
above, we must distinguish between items as content-specific tasks and items as some com-
bination of content-specific tasks and concrete item-position (cf. Kubinger, 2008). Let us call 
the latter “virtual items”. Then the difficulty of any virtual item is postulated as a linear 
combination of the given content-specific task h and the effect of the given position of that 
task within the test. That is, σ*

h represents the difficulty of the content specific task h, which 
we call the “item root”. Thus, if item root h is administered in different test booklets, for 
instance at l different presentation positions, then for the LLTM, l different virtual items 
result. As a consequence, the number of virtual items k amounts in sum to the number of 
item roots r multiplied with the number of different positions l at which the item roots are 

administered. Therefore, σi = 
p

ij j
j

q η∑  → σi = *
( 1)

r

ih h i r
h

q qσ λ++∑ . However, qi(r+1)λ, repre-

senting the item-position effect, can now be modeled in various ways. For example, a linear 
effect can be assumed, that is qi(r+1) is something like ti ∈ 1, 2, … m, according to virtual 
item’s i position within the test – m the number of different item-positions. Alternatively, a 
non-linear effect can be assumed, for example qi(r+1) = 0 or qi(r+1) = 1, depending on whether 
the virtual item i is administered at item-position ti ≤ t* or at item-position ti > t*.  
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Application of the LLTM entails testing whether the model holds at all. For this, first the 
Rasch model has to hold for the entire virtual item pool (pertinent model checks are given, 
for instance, by Kubinger, 2005; see also Glas & Verhelst, 1995). If the Rasch model (RM) 
holds, it acts somehow like a saturated model. Then the question is whether the virtual items’ 

σi are explainable by the LLTM’s hypothesized linear combination *
( 1)

r

ij h i r
j

q qσ λ++∑ . This 

question can be tested using a Likelihood-Ratio test suggested by Fischer (1974):  
 

 2 2ln LLTM

RM

L
L

χ  = −  
 

 asymptotically 2χ -distributed with df = k – (r+1) (3) 

 
– one degree of freedom will be gained if no item-position effect is hypothesized. Further-
more, it is possible to specifically test the hypothesis λ = 0 again according to Fischer (1974) 
using another Likelihood-Ratio test:  
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( 0)
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L
L

λ

λ
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≠

 = −  
 

 asymptotically 2χ -distributed with df = 1 (4) 

 
 

3. Results of the simulation study 
 
The data were simulated and analysed using the R-package eRm (Mair & Hatzinger, 

2007a, b; see also Poinstingl, Hatzinger & Mair, 2007). Data simulation according to the 
Rasch model was done by analogy to some given empirical data, which actually should be 
analysed in the sequence.  

The empirical data stem from a large-scale assessment using several test booklets, each 
of which consisted of 35 items (item roots); however, they belonged to four different sub-
tests assessing four different mathematical competencies, so that from each subtest only 
about 9 items (item roots) were administered to an examinee. Bear in mind that the subtests’ 
items were mixed in each test booklet; any given subtest’s items were not administered suc-
cessively but each item was followed by an item from another subtest. The subtest under 
consideration consists of 9 items (item roots), all of them administered in three different test 
booklets. 2 of these 9 operated as linking items. This means that they were presented at the 
very same position within all three test booklets and therefore allow a conjoint (virtual) item 
parameter calibration – in all the three test booklets they were presented at positions 34 and 
35. The remaining 7 item roots were, however, presented as follows: Compared to Booklet 1, 
they were fully reversed in Booklet 2, and in Booklet 3 they were arranged randomly (cf. 
Fig. 1) – as a matter of fact, this resulted, by chance, in item root 6 being placed at the same 
position, 16, as in the Booklet 1 and 2 (nevertheless, only item roots 1 and 2 were treated as 
linking items). 
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item position

test booklet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 3 4 5 6 7 8 9 1 2
2 9 8 7 6 5 4 3 1 2
3 8 3 9 6 5 7 4 1 2  

 
Figure 1:  

Test design for the simulated data: There are three different test booklets, each containing 35 
items (item roots), 9 of which are of interest and numbered from 1 to 9. Apart from item roots 1 

and 2, the item roots were arranged in three different sequences.  
 
 
Data was simulated for three different scenarios: (a) there is a linear learning effect, (b) 

there is a non-linear fatigue effect, (c) there is no position effect of item presentation.  
The matrices Q = ((qij)) were defined according to these hypotheses. Table 1 outlines the 

scheme of Q for the hypothesis of a linear learning effect. That is, item root number 3 is used 
to create three virtual items; hence the difficulty of item root number 3 is added in Booklet 2 
to the linear learning effect qi(r+1) = 31 times λ.  

For each hypotheses (a) and (b), the size of the simulated effect λ was varied. Further-
more, two different sample sizes, both seeming realistic for a large-scale assessment, were 
used. In the one case, an examinee sample size of n = 300 was suggested for each test book-
let and in the other case, n = 500, so that for the planned number of three test booklets, a 
total sample size of n = 900 and n = 1500 resulted. Data were simulated 1000 times for each 
given condition. Table 2 gives an overview of the design of the simulation study.  

 
 

Table 1:  
A scheme of the matrix Q of LLTM analysis for the hypothesis of a linear learning effect; 

missing entries means qij = 0.  
 

test  
booklet 

Item root 
number 

σ*
1 σ*

2 σ*
3 λ 

1 3 1   1 
1 4  1  6 
1 5   1 11 
2 3 1   31 
2 4  1  26 
2 5   1 21 
3 3 1   6 
3 4  1  31 
3 5   1 21 
… … … … … … 
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Table 2:  
Design of the simulation study: There are three hypotheses, two different sample sizes of 

simulated examinees, and two effect sizes 
 

 linear learning effect hypothesis non-linear fatigue effect hypothesis null-hypothesis 
 λ= -0.01 

qi(r+1) = 1, 2, …, 
35 according to 
the position of 

item presentation 

λ= -0.1 
qi(r+1) = 1, 2, …, 
35 according to 
the position of 

item presentation

λ= 0.2 
qi(r+1) = 0 for ti ≤ 
24 and qi(r+1) = 1 

for ti > 24.  

λ= 0.5 
qi(r+1) = 0 for ti ≤ 
24 and qi(r+1) = 1 

for ti > 24. 

λ= 0 

n = 1500 1000 simulations 1000 simulations 1000 simulations 1000 simulations 1000 simulations 
n = 900 1000 simulations 1000 simulations 1000 simulations 1000 simulations 1000 simulations 

 
 
Table 3 presents the results of the power analyses of the given Likelihood-Ratio tests 

(LRT) for several hypotheses (i.e. the relative frequency of significant results discovered at 
the 1000 simulations each). Remember that data simulation for the virtual items was applied 
according to the given hypotheses; this means that, except for a type-I-error, the virtual item 
pool fits the Rasch model. The question of interest is, however, whether or not the Rasch 
model-based virtual item pool fits the hypothesized linear combination of LLTM-parameters 
as well: In the case of testing just that hypothesis according to which the data were simu-
lated, the relative frequency of significant results indicates to what extent the nominal type-I-
error actually holds. In the case of testing the hypothesis λ = 0 given that the data have been 
simulated according to λ ≠ 0, the relative frequency of significant results indicates the power 
of the statistical test (i.e. 1 minus the type-II-risk).  

First, Table 3 (Column II) discloses that the LRT does not at all hold the nominal type-I-
risk. That is, given an item-position effect, parameterizing this within the LLTM (see rows A 
to D with λ ≠ 0, but also row E with λ = 0) and comparing the LLTM and the Rasch model 
for all the virtual item parameters, the LRT must not be significant apart from a relative 
frequency corresponding to the used significance level of α = .01 due to chance effects 
(type-I-risk). However, instead of .01, the respective relative frequency is as high as .031. In 
no case but one does this frequency achieve 20-percent robustness (.008 ≤ actual estimated α 
≤ .012), which for instance Rasch and Guiard (2004) have established to be acceptable for 
statistical tests. Of course, using 1000 simulations is not a state-of-the-art method within 
mathematical statistics (there, rather, 100 000 has proven to be proper). However, in the case 
of the given 1000 simulations, the analyses still lasted almost 7 hours. Table 4 also shows the 
accuracy of item parameter estimation for the case of the smaller fatigue effect for n = 900, 
where the means of the estimated item parameters are compared to the item parameters the 
simulation was based on: the initial item parameters were re-estimated most accurately with 
a quite low standard deviation. For the moment, we must conclude that the suggested asymp-
totic distribution of the LRT in Formula (3) does not apply for the given conditions. Perhaps 
it would be enough if the degrees of freedom were smaller, that is, if the number of virtual 
item parameters were not restrained by such a small number of LLTM parameters. Further 
research is needed. 
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Table 3:  
Power analysis of the Likelihood-Ratio tests (LRT) for several hypotheses by simulation study. 
Columns II, III and IV give the relative frequency of significant results. Within every cell, the 

upper value represents the result for n = 1500 simulated examinees, the value below for n = 900. 
All analyses are based on the significance level of α = .01. Comparisons with the Rasch model 

mean that all the virtual item parameters have their own and specific item parameter, whereas for 
the LLTM analyses the number of parameters is restricted according to the hypothesized linear 

combination. Column I gives the parameter estimations λ̂  of λ.  
 

I II III IV  
 

Simulation 
scenario 

(1000 data sets each) 

Estimation of λ̂  by 
LLTM 

 

LRT 
LLTM (λ≠0) 

vs. Rasch 
model 

 
df = 12 

(cf. formula (3))

LRT 
LLTM (λ=0)

vs. Rasch 
model 

 
df = 13 

(cf. formula (3))

LRT 
LLTM (λ=0) 

vs. 
LLTM(λ≠0) 

 
df = 1 

(cf. formula (4)) 
   Mean of λ̂

 
Standard 
deviation 

of λ̂  

Relative  
frequency 
χ2 > χ2

.01 

Relative 
frequency 
χ2 > χ2

.01 

Relative 
frequency 
χ2 > χ2

.01 

A learning 
effect: 

λ= -0.1 
qi(r+1)=1,2,

….35) 

-0.100 
-0.100 

0.005 
0.006 

.024 

.022 
1.000 
1.000 

1.000 
1.000 

B learning 
effect: 

λ = -0.01 
qi(r+1)=1,2,

….35) 

-0.010 
-0.010 

0.004 
0.005 

.016 

.017 
.156 
.088 

.489 

.281 

C fatigue: 
effect 

λ= 0.5 
qi(r+1) = 0 
for ti ≤ 24 
and qi(r+1) 
= 1 for ti  

> 24  

0.497 
0.494 

0.082 
0.105 

.013 

.011 
.966 
.722 

1.000 
.980 

D fatigue: 
effect 

λ= 0.2 
qi(r+1) = 0 
for ti ≤ 24 
and qi(r+1) 
= 1 for ti  

> 24  

0.199 
0.199 

0.084 
0.112 

.016 

.031 
.128 
.087 

.417 

.235 

E none 
position 
effect: 

λ =0.0 0.000 
0.000 

0.004 
0.005 

.020 

.013 
.018 
.014 

.009 

.003 
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Second, Table 3 (column III) discloses a very high power of the LRT if the item-position 
effect is large (row A): In this case, when the respective effect reaches 31 × -0.1 = -3.1 
(which comes close to the typical difficulty of a very easy item), the power equals 1 – this 
applies even for the stronger fatigue effect (row C) if the sample size is large enough. Beside 
the former case, however, a smaller sample size of simulated examinees diminishes the 
power, even though the (fatigue) effect seems to be large (row C). Furthermore, in all cases 
of only moderate effects, the power of the LRT is very disappointing. As a matter of fact, all 
these conclusions hold for the LRT of formula (4) as well (cf. column IV) – though type-I-
risk (row E) and power (rows B to D) come closer to the ideal.  

As a consequence, we must be aware that we will not discover small item-position ef-
fects and that a slightly increased type-I-risk is given; for both handicaps of the desired sta-
tistical test, we finally have to apply rather Formula (4) as the basis of our interpretation. 

 
Table 4:  

Re-estimation of the item parameters. The simulation was based on a small fatigue effect (λ = 
0.2) and sample size n = 900: means and standard deviations 

 
number 

item root 
initial 
item 

parameter 

Rasch model: 
 item parameter 

estimation 
 

LLTM 
(λ = 0.2): 

item paramater 
estimation  

LLTM 
(λ = 0): 

item paramater 
estimation  

  mean standard 
deviation 

mean standard 
deviation 

mean standard 
deviation 

1 0.70 0.70 0.08 0.70 0.08 0.70 0.08 
2 -0.80 -0.81 0.09 -0.81 0.09 -0.81 0.09 
3 2.95 2.98 0.25 2.96 0.13 3.02 0.13 
3 3.15 3.19 0.27 3.16 0.15 3.02 0.13 
3 2.95 2.97 0.25 2.96 0.13 3.02 0.13 
4 2.20 2.22 0.21 2.21 0.12 2.33 0.10 
4 2.40 2.41 0.21 2.40 0.11 2.33 0.10 
4 2.40 2.42 0.21 2.40 0.11 2.33 0.10 
5 1.45 1.46 0.17 1.45 0.09 1.45 0.09 
5 1.45 1.45 0.17 1.45 0.09 1.45 0.09 
5 1.45 1.45 0.17 1.45 0.09 1.45 0.09 
6 -0.05 -0.05 0.15 -0.05 0.07 -0.05 0.07 
6 -0.05 -0.05 0.15 -0.05 0.07 -0.05 0.07 
6 -0.05 -0.05 0.15 -0.05 0.07 -0.05 0.07 
7 -1.55 -1.57 0.18 -1.56 0.10 -1.49 0.09 
7 -1.55 -1.57 0.18 -1.56 0.10 -1.49 0.09 
7 -1.35 -1.36 0.17 -1.36 0.12 -1.49 0.09 
8 -2.10 -2.12 0.20 -2.11 0.13 -2.24 0.10 
8 -2.30 -2.31 0.21 -2.31 0.11 -2.24 0.10 
8 -2.30 -2.31 0.21 -2.31 0.11 -2.24 0.10 
9 -2.85 -2.88 0.24 -2.86 0.14 -2.99 0.12 
9 -3.05 -3.07 0.26 -3.06 0.13 -2.99 0.12 
9 -3.05 -3.08 0.26 -3.06 0.13 -2.99 0.12 
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4. Results for empirical large-scale assessment data 
 
The mathematics competence test for 4th grade students of the Austrian educational stan-

dards project (cf. Kubinger et al., 2006; Kubinger et al., 2007) was designed to be used for 
large-scale assessment. In order to test many items for building a large item pool, 18 differ-
ent test booklets with linked items were used. The test consists of four subtests testing four 
different abilities. In the following, we refer only to the first subtest “Modelling,” which 
includes 48 items (item roots).  

The test was administered to 1792 students in all federal states of Austria. Each test 
booklet contained 35 items (item roots), including about 9 items from each of the four sub-
tests. Test design used an item-wise allocation of items to test booklets. The sequence of 
item presentation of the subtest in question was chosen to vary arbitrarily, which is more or 
less randomly. Of course, the test being additionally restricted to a very limited number of 
test booklets made a completely balanced design of all the items over all positions impossi-
ble. Nearly every student completed the test within the given time limit of one class period.  

Both a linear item-position effect and, alternatively, a non-linear item-position effect (in 
each case a learning/practice effect or a fatigue effect) were hypothesized – both effects were 
considered as applying to all items of a test booklet: Though there are four different subtests, 
the measured abilities are very likely to correlate; this means that both general learning ef-
fects and general fatigue effects could occur. That is, no subtest-specific effects were hy-
pothesized. From a psychological point of view a linear increasing practice or fatigue effect 
is plausible and also a non-linear effect of the type, that working on the first items could 
produce a practice effect or – in contrast – solving the last items could be made more diffi-
cult through a fatigue effect.  

Rasch model and LLTM analyses were again conducted using eRm. First, the data were 
analysed according to the Rasch model using state-of-the-art model checks, specifically 
Andersen’s Likelihood-Ratio test and an additional graphical model check (cf. Kubinger, 
2005). Item-fit-statistics were also calculated. Four partition criteria were chosen (nominal 
type-I-risk α = .01): low vs. high score, male vs. female students, German mother tongue vs. 
mother tongue other than German, and Western vs. Eastern geographical region in Austria.  

Before starting analyses, the overall sample was randomly split using a 70:30 ratio into a 
calibration sample and a validation sample (nc = 1187, nv = 605). Items with poor model fit in 
the calibration sample were deleted from the item pool. The result was an a-posteriori model-
fitting item pool. In order to test whether that a-posteriori model fit was not just artificial, 
some kind of cross validation was necessary. Thus, the model fit of the reduced item pool 
was tested in the validation sample. In the calibration sample, only 2 of 48 items needed to 
be deleted. The remaining 46 items indicated good model fit in the validation sample (see the 
results in Table 5).  

For further analyses, only the calibration sample was used. Because of the random allo-
cation used, each item root was split into several virtual items according to its presentation 
position within the given test booklets as follows: Only when the item-position of the same 
item root differed between two test booklets at least by the number 5 then that item root was 
split into two different virtual items. If this had not been done, the test design would not 
offer the linking (virtual) items which are necessary for an analysis according to the Rasch 
model. The data matrix resulted in 103 virtual items. Testing whether the Rasch model holds 
for the virtual items also resulted in a proper model fit (see the results in Table 6). 
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Table 5:  
Results of Andersen’s Likelihood-Ratio tests with respect to the calibration and validation 

sample. The results refer to the analysis after the deletion of 2 non-fitting items. 
 

 calibration sample after deletion 
of 2 items 

validation sample 

sample’s partition χ2 (LRT) df χ2(α = .01) χ2 (LRT) df χ2(α = .01) 
Score 64.544 44 68.710 62.786 45 69.957 
Gender 62.916 45 69.957 36.117 45 69.957 
Mother tongue 62.771 45 69.957 70.535 45 69.957 
Geographical 
Region 

54.675 45 69.957 44.288 45 69.957 

 
 

Table 6:  
Results of Andersen’s Likelihood-Ratio tests for all the k = 103 virtual items  

 
sample’ partition χ2 (LRT) df χ2(α = .01) 
Score 120.51 96 131.14 
Gender 113.89 102 138.13 
Mother tongue 112.10 97 132.31 
Geographical Region 116.48 102 138.13 

 
 
First, the hypothesis of a linear item-position effect was tested. Matrix Q was defined in a 

way analogous to the matrix in the simulation study, thus resulting in 46 item root difficulty 
parameters and the learning parameter λ. The weights qi47 were fixed to be equal to the item 
presentation number. LRT (Formula (3)) proved that if λ is set to zero, the LLTM does not fit 
(χ2

LRT = 102.43, df = 57, χ2
.01 = 84.73). However, using LRT (Formula (3)) to test the given 

matrix with a learning parameter λ ≠ 0 also results in significance (χ2
LRT = 91.72, df = 56, χ2

.01 = 
83.51). Nevertheless, the LRT of Formula (4) established that taking an item-position-effect 
parameter into account results in much better data fit (χ2

LRT = 10.71, df=1, χ2
.01 = 6.635). The 

estimated learning parameter λ̂  disclosed a small effect of 0.01, with a confidence interval at 
the 95%-level of: [0.04; 0.016]. But be aware, that for higher presentation numbers – given, for 
example, the presentation number 30 – the effect increases to 0.3. As a matter of fact, as the 
effect is positive, it is rather a continuous fatigue effect than a practice effect. 

Second, the hypothesis of a non-linear item-position effect was tested. The last 10 items 
of a test booklet were assumed to establish this effect, so that item-position weights qi(r+1) 
were set to 0 for item roots presented at positions 1 to 24, but otherwise (for positions 25 to 
35) were set to 1. The results are very similar to the first analyses: Even for λ ≠ 0, LRT 
(Formula (3)) shows significance (χ2

LRT = 91.82, df = 56, χ2
.01 = 83.51), but Formula (4) 

discloses a better fit with a hypothesized item-position parameter than without: (χ2
LRT = 

10.61, df =1, χ2
.01 = 6.635). The estimated parameter λ̂  = 0.240 (with the confidence interval 
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of [0.095; 0.384]) indicates a fatigue effect, though a small one in comparison to the effect in 
our simulation study.  

 
 

5. Discussion 
 
As pointed out in the introduction, the occurrence of item-position effects must be tested 

when the same items (item roots) are administered in different test booklets at different posi-
tions (or the test is administered adaptively at all); this is because ignoring given position 
effects means that different examinees would be compared in an unfair manner. At the very 
least, if only fatigue effects take place, then test administration should be changed by either 
shortening the number of administered test items or by implementing a resting period.  

To summarize, LLTM has proven to be a proper means for testing item-position effects. 
We have focussed in this paper on the application of LLTM in the context of typical large-
scale assessments.  

As a byproduct, however, we established that before any analysis of empirical data is 
tried, simulation studies should be performed in accordance with the given empirical condi-
tions. For instance, in our case, we disclosed that the nominal significance level does not 
hold; the type-I-risk comes up to three times of the given α.  

Hence, the significant result in our empirical study is not at all unequivocal.  
Using simulation studies, we have also realized that the power of the LRT is poor, in par-

ticular as concerns Formula (3).  
Given that in our case Formula (4) nevertheless leads to significance, we conclude that an 

item-position effect indeed exists with respect to both types of hypotheses, a linear as well as a 
non-linear effect. As a matter of fact, both significant results are to be interpreted in the same 
way: especially at the very end of the test, the item solutions suffer from a fatigue effect.  

Of course, besides general, examinee-independent learning or fatigue effects as dealt 
within this paper, there also might be examinee-specific effects. In most cases, these may be 
subsumed in the examinee’s ability parameter estimation but are not to be taken further into 
account, unless such effects are again to some extent general. For instance, if an effect de-
pends on the number of previous solved items, the dynamic test model by Kempf (1974), 
which is also Rasch model-based, may come into question. 
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