Crystal structure of cobalt aluminum silicide, $\mathrm{Co}_{10+x} \mathrm{Al}_{23} \mathrm{Si}_{9-2 x}(x=0.14)$, the φ phase in the Co-Al-Si system

K. W. Richter*,I and Yu. Prots ${ }^{\text {II }}$

${ }^{\text {I }}$ Universität Wien, Institut für Anorganische Chemie/Materialchemie, Währingerstrasse 42, 1090 Wien, Austria
${ }^{\text {II }}$ Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany

Received April 5, 2006, accepted and available on-line April 27, 2006; CSD no. 409870

Abstract

$\mathrm{Al}_{23} \mathrm{Co}_{10.14} \mathrm{Si}_{8.72}$, orthorhombic, Pnma (no. 62), $a=13.852(3) \AA, b=23.055(5) \AA, c=7.340(2) \AA$, $V=2344.1 \AA^{3}, Z=4, R_{\mathrm{gt}}(F)=0.035, w R_{\mathrm{ref}}\left(F^{2}\right)=0.081$, $T=293 \mathrm{~K}$.

[^0]
Source of material

The title compound was identified in several Al-rich samples during an investigation of the Co-Al-Si phase diagram [1]. Samples were prepared from the pure elements by arc melting and subsequent heat treatment in alumina crucibles placed into evacuated silica ampules. After slow cooling from $1050^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}(5 \mathrm{~K} / \mathrm{h})$ in order to promote crystal growth from the melt the samples were
annealed for 4 weeks at $800^{\circ} \mathrm{C}$. Single crystals suitable for X-ray structure analysis were isolated from a crushed sample with the nominal compositions $\mathrm{Co}_{22} \mathrm{Al}_{58} \mathrm{Si}_{20}$ which also contained small amounts of liquid phase at the annealing temperature.

Experimental details

Samples were characterized by X-ray powder diffraction (Huber Image Plate Guinier camera G670, $\mathrm{Co} K_{\alpha 1}$ radiation, $\lambda=$ $1.788965 \AA, 5^{\circ} \leq 2 \theta \leq 100^{\circ}, \mathrm{LaB}_{6}$ as internal standard, $a=$ $4.1569 \AA$).

Discussion

The title compound $\mathrm{Co}_{10+x} \mathrm{Al}_{23} \mathrm{Si}_{9-2 x}(x=0.14, \varphi$ phase) is the most Co-poor of five new complex ternary compounds that were found during the investigation of the Co-Al-Si system [1]. It adopts an own structure type with some structural relations to the phases in the adjacent binary Co-Al system. The crystal structures of Al-rich binary compounds in the Co-Al system like $o-\mathrm{Co}_{4} \mathrm{Al}_{13}$ [2], $m-\mathrm{Co}_{4} \mathrm{Al}_{13}$ [3], $h-\mathrm{Co}_{4} \mathrm{Al}_{13}[4]$ and $\mathrm{Co}_{2} \mathrm{Al}_{5}$ [5] are closely related to quasicrystals like the decagonal $\mathrm{CoAl}_{3}[6]$. An important common structural motif of these compounds is the existence of condensed pentagonal prismatic channels which are arranged in different ways depending on the structure adopted [7]. A similar motif can also be seen in the φ phase which shows pentagonal prismatic channels along the c axis of the structure around the atomic positions $\mathrm{Co} 5, \mathrm{Al} 9$ and Si 3 (figure, left). Another common structural motif which connects the binary Co-Al phases with the ternary compound $\mathrm{Co}_{4} \mathrm{Al}_{7+x} \mathrm{Si}_{2-x}$ reported recently [8] is the existence of a "cluster" formed from by two trigonal prisms around cobalt and a distorted rectangular prism around the aluminum. This structural motif is not found in the title compound.
The structure of the φ phase may be represented by four different types of layers stacked perpendicular to the long b axis of the unit cell. These layers are shown in the right part of figure, and include the flat A layer situated within the mirror plane at $y=1 / 4$ as well as the puckered B, C and D layers. The atoms forming the centers of the condensed pentagonal prismatic channels are situated within the A layer, while the atoms forming the surrounding channels are situated in the A and B layers, respectively. The C and D layers together form a kind of slab which is separated from the columns by a small, but noticeable gap (figure, left).
The φ phase shows a remarkable defect structure. In contrast to the usual behavior of mixed $\mathrm{Al} /$ Si ternary compounds, only a very
limited amount of mixed $\mathrm{Al} / \mathrm{Si}$ occupation is found in this compound. All main group element positions can be identified as Al or Si positions based on their nearest distances to adjacent Co which are below $2.40 \AA$ in the case of Si and higher than $2.40 \AA$ for Al positions. The chemical formula (ignoring the split positions around Co6) is $\mathrm{Co}_{10} \mathrm{Al}_{23} \mathrm{Si}$. According to our analysis of the electron density map around Co6 (figure, bottom left) the Co6 position is not occupied by 100% Co atoms, but shows 14% vacant sites. An occupied Co6 position is connected with an occupied position Al7 and an occupied position Si 5 (86% occupation refined). In the case of a vacant site at the Co6 position, the position Co7 is occupied instead of Al7 and this is connected with an occupation of A15 and Al6 (14% occupation refined). The position A19 remains unoccupied in this case. Both alternatives yield realistic interatomic distances for all involved atoms and offer a consistent interpretation of the difference electron density map in the defect part of the structure. Furthermore, the refined overall composition according to our model $\left(\mathrm{Co}_{24.2} \mathrm{Al}_{55.0} \mathrm{Si}_{20.8}\right)$ is in excellent agreement with the composition of the φ phase found by EPMA at $800^{\circ} \mathrm{C}\left(\mathrm{Co}_{24.6(1)} \mathrm{Al}_{54.9(1)} \mathrm{Si}_{20.5(1)}\right.$ [1]). A small homogeneity range was reported for the φ phase [1], probably caused by the different ratio of the two environment alternatives around Co6/Co7 sites.

Table 1. Data collection and handling.

Crystal:	metallic, irregular,
	size $0.125 \times 0.065 \times 0.050 \mathrm{~mm}$
Wavelength:	Mo K_{α} radiation $(0.7107 \AA)$
$\mu:$	$82.99 \mathrm{~cm}^{-1}$
Diffractometer, scan mode:	Rigaku AFC-7 and Mercury CCD ω / φ
$2 \theta_{\text {max }}:$	63.94°
$N(h k l)_{\text {measured }}, N(h k l)_{\text {unique }}:$	31867,4064
Criterion for $I_{\text {obs }}, N(h k l)_{\text {gt }}:$	$I_{\text {obs }}>2 \sigma\left(I_{\mathrm{obs}}\right), 3822$
$N(\text { param })_{\text {refined }}:$	222
Programs:	SHELXL-97 [9], CSD [10], ATOMS [11]

Table 2. Atomic coordinates and displacement parameters (in \AA^{2}).

Atom	Site	Occ.	x	y	z	$U_{\text {iso }}$
$\operatorname{Al}(6)$	$4 c$	0.140	$0.1258(9)$	$1 / 4$	$0.299(2)$	$0.025(2)$

Table 3. Atomic coordinates and displacement parameters (in \AA^{2}).

Atom	Site	Occ.	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Co}(1)$	8d		0.21540(3)	0.33941(2)	0.90223(6)	0.0126(2)	0.0079(2)	0.0116(2)	0.0008(1)	-0.0016(1)	-0.0004(1)
$\mathrm{Co}(2)$	8d		$0.43936(3)$	0.42464(2)	$0.57628(5)$	0.0068(2)	0.0069(2)	0.0076(2)	-0.0001(1)	0.0004(1)	-0.0001(1)
$\mathrm{Co}(3)$	8d		0.34412(3)	0.50222(2)	$0.09220(5)$	0.0075(2)	0.0121(2)	0.0099(2)	0.0019(1)	0.0006(1)	0.0017(1)
$\mathrm{Co}(4)$	$8 d$		0.48021(3)	0.66492(2)	0.89966 (5)	0.0107(2)	0.0104(2)	0.0101(2)	0.0012(1)	-0.0013(1)	-0.0023(1)
$\mathrm{Co}(5)$	4 c		0.45277(4)	$1 / 4$	0.60913(8)	0.0125(3)	0.0083(2)	0.0127(3)	0	0.0029(2)	0
$\mathrm{Co}(6)$	4 c	0.860(2)	0.29049(5)	1/4	0.38610(9)	0.0093(3)	0.0072(3)	0.0130(3)	0	-0.0023(2)	0
$\mathrm{Co}(7)$	$8 d$	0.140	0.2083(2)	0.1607(1)	0.2775(4)	0.003(1)	0.003(1)	0.005(1)	0.0018(8)	-0.0001(8)	0.0022(8)
$\mathrm{Al}(1)$	$4 c$		$0.30536(9)$	$1 / 4$	0.7807(2)	0.0092(5)	0.0105(5)	0.0154(6)	0	0.0014(4)	0
$\mathrm{Al}(2)$	$8 d$		0.43523(6)	0.41850(4)	0.2224(1)	0.0087(4)	0.0102(4)	0.0101(4)	0.0020(3)	0.0001(3)	0.0002(3)
$\mathrm{Al}(3)$	8d		0.16311(7)	0.31377(4)	0.5940(1)	0.0141(4)	0.0168(4)	0.0093(4)	-0.0030(3)	-0.0023(3)	0.0014(3)
$\mathrm{Al}(4)$	4 c		0.12419(9)	1/4	0.8849(2)	0.0071(5)	0.0043(4)	0.0116(5)	0	0.0002(4)	0
$\mathrm{Al}(5)$	$8 d$	0.140	$0.328(1)$	$0.3516(7)$	0.510(2)	0.024(7)	0.028(7)	0.032(6)	-0.021(5)	-0.003(5)	-0.010(5)
$\mathrm{Al}(7)$	8d	0.860	0.17701(9)	0.18650(6)	0.2387(2)	0.0135(5)	0.0187(6)	0.0108(5)	-0.0043(5)	0.0021(4)	-0.0029(4)
$\mathrm{Al}(8)$	8d		0.10796 (7)	0.41739(4)	0.7929(1)	0.0080(4)	0.0123(4)	0.0182(4)	0.0012(3)	0.0017(3)	0.0050(3)
$\mathrm{Al}(9)$	4 c	0.860	0.5241(1)	3/4	0.7160(2)	0.0190(7)	0.0019(5)	0.0070(6)	0	-0.0032(5)	0
$\mathrm{Al}(10)$	8d		0.43827(8)	0.34673(4)	0.8063(1)	0.0269(5)	0.0112(4)	0.0118(4)	0.0006(4)	-0.0037(4)	0.0025(3)
$\mathrm{Al}(11)$	8d		0.03932(9)	0.34114(4)	0.0307(2)	0.0277(5)	0.0099(4)	0.0201(5)	0.0017(4)	0.0069(4)	0.0014(3)

Table 3. Continued.

Atom	Site Occ.	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Al}(12)$	$8 d$		$0.34671(7)$	$0.31042(4)$	$0.1030(1)$	$0.0064(4)$	$0.0193(4)$	$0.0085(4)$	$-0.0004(3)$	$-0.0005(3)$
$\mathrm{Al}(13)$	$8 d$	$0.28980(7)$	$0.42942(5)$	$0.7486(2)$	$0.0109(4)$	$0.0293(5)$	$0.0244(5)$	$0.0071(4)$	$0.0081(4)$	$0.0128(4)$
$\mathrm{Al}(14)$	$8 d$	$0.29847(7)$	$0.47447(4)$	$0.4082(1)$	$0.0086(4)$	$0.0143(4)$	$0.0095(4)$	$0.0001(3)$	$0.0008(3)$	$-0.0003(3)$
$\mathrm{Al}(15)$	$8 d$	$0.46580(7)$	$0.46920(4)$	$0.8730(1)$	$0.0159(4)$	$0.0150(4)$	$0.0096(4)$	$0.0012(3)$	$-0.0002(3)$	$-0.0033(3)$
$\mathrm{Si}(1)$	$8 d$	$0.38004(6)$	$0.57974(4)$	$0.8892(1)$	$0.0110(4)$	$0.0105(3)$	$0.0131(4)$	$-0.0007(3)$	$-0.0006(3)$	$0.0017(3)$
$\mathrm{Si}(2)$	$8 d$		$0.23273(6)$	$0.42179(4)$	$0.0959(1)$	$0.0139(4)$	$0.0104(3)$	$0.0112(3)$	$-0.0013(3)$	$-0.0001(3)$
$\mathrm{Si}(3)$	$4 c$		$0.4904(1)$	$3 / 4$	$0.0817(2)$	$0.0219(6)$	$0.0073(4)$	$0.0127(5)$	0	$0.0012(3)$
$\mathrm{Si}(4)$	$8 d$	$0.43596(6)$	$0.52788(3)$	$0.5853(1)$	$0.0078(3)$	$0.0083(3)$	$0.0092(3)$	$0.0002(3)$	$0.0001(2)$	$-0.0005(2)$
$\mathrm{Si}(5)$	$8 d$	0.860	$0.3508(2)$	$0.33772(9)$	$0.4854(3)$	$0.0223(9)$	$0.0202(8)$	$0.0255(9)$	$-0.0011(6)$	$-0.0050(6)$
									$-0.0006(6)$	

Acknowledgments. Financial support from the Austrian science foundation (FWF) under the project number P 14762-PHY is gratefully acknowledged. K. W. R. would also like to thank the MPG for a research fellowship.

References

1. Richter, K. W.; Tordesillas Gutiérrez, D.: Phase equilibria in the system Al-Co-Si. Intermetallics 13 (2005) 848-856.
2. Grin, Yu.; Burkhardt, U.; Ellner, M.; Peters, K.: Crystal structure of orthorhombic $\mathrm{Co}_{4} \mathrm{Al}_{13}$. J. Alloys Compd. 206 (1994) 243-247.
3. Burkhardt, U.; Ellner, M.; Grin, Yu.: Powder diffraction data for the intermetallic compounds $\mathrm{Co}_{2} \mathrm{Al}_{5}$, monoclinic $m-\mathrm{Co}_{4} \mathrm{Al}_{13}$ and orthorhombic o $\mathrm{Co}_{4} \mathrm{Al}_{13}$. Powder Diffr. 11 (1996) 123-128.
4. Gödecke, T.; Ellner, M.: Phase equilibria in the Al-rich portion of the binary system Co-Al. Z. Metallkd. 87 (1996) 854-864.
5. Burkhardt, U.; Ellner, M.; Grin, Yu.; Baumgartner, B.: Powder diffraction refinement of the $\mathrm{Co}_{2} \mathrm{Al}_{5}$ structure. Powder Diffr. 13 (1998) 159-162.
6. Ma, X. L.; Kuo, K. H.: Decagonal Quasicrystal and related crystalline phases in slowly solidified Al-Co alloys. Met. Trans. 23A (1992) 11211128.
7. Grin, Yu.; Burkhardt, U.; Ellner, M.; Peters, K.: Refinement of the $\mathrm{Fe}_{4} \mathrm{Al}_{13}$ structure and its relationship to the quasihomological homeotypical structures. Z. Kristallogr. 209 (1994) 479-487.
8. Richter, K. W.; Prots, Yu.; Grin, Yu.: Crystal structure, chemical bonding and phase relations of the novel compound $\mathrm{Co}_{4} \mathrm{Al}_{7+x} \mathrm{Si}_{2-x}(0.27 \leq x \leq$ 1.05). Inorg. Chem. 44 (2005) 4576-4585.
9. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.
10. Akselrud, L. G.; Zavalii, P. Y.; Grin, Yu.; Pecharsky, V. K.; Baumgartner, B.; Wölfel, E.: Use of the CSD program package for structure determination from powder data. Mater. Sci. Forum 133-136 (1993) 335-340.
11. Dowty, E.: ATOMS. A Complete Program for Displaying Atomic Structures. Version 5.0. Shape Software, Kingsport, Tennessee, USA 1999.

[^0]: * Correspondence author (e-mail: klaus-richter@univie.ac.at)

