
T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

JCB: ARTICLE

© The Rockefeller University Press  $15.00
The Journal of Cell Biology, Vol. 176, No. 7, March 26, 2007 965–977
http://www.jcb.org/cgi/doi/10.1083/jcb.200604179

JCB 965

Introduction
Transmission of force from skeletal muscle myofi brils to the 

ECM is thought to be mediated largely by intermediate fi la-

ments (IFs). Several IF proteins are expressed in muscle, in-

cluding vimentin, nestin, synemin, syncoilin, lamins, cytokeratins, 

and desmin, the major muscle-specifi c IF protein (for review 

see Paulin and Li, 2004). The desmin IF network forms a 3D 

scaffold surrounding Z-disks, extends from one Z-disk to 

the next, and fi nally connects the contractile apparatus to 

the plasma membrane at the level of Z-disks but also to organ-

elles such as mitochondria and the nucleus (for review see 

 Capetanaki, 2002). The dystrophin–glycoprotein complex (DGC) 

has been implicated in mediating the IF-ECM link through syn-

coilin and synemin, which interact with desmin and bind to the 

DGC protein α-dystrobrevin (Bellin et al., 2001; Newey et al., 

2001; Poon et al., 2002). The DGC is a large protein complex 

consisting of integral membrane proteins (α- and β-dystro-

glycan [βDG], α-, β-, γ-, and δ-sarcoglycan, and sarcospan), the 

>425-kD large actin-binding protein dystrophin, and dystrophin-

associated proteins such as the syntrophins and α-dystrobrevin. 

Components of the DGC are part of the costameric protein 

network that, among other proteins, also includes integrins, 

vinculin, talin, α-actinin, and caveolin-3. Costameres are sub-

sarcolemmal protein assemblies that circumferentially align in 

register with the Z-disks of peripheral myofi brils (for reviews 

see Spence et al., 2002; Ervasti, 2003); some authors include 

elements located above M-lines and in longitudinal lines in this 

term (Bloch et al., 2002).

Muscular dystrophies (MDs) are a group of clinically and 

genetically heterogeneous diseases characterized by progres-

sive muscle wasting. Lack of dystrophin leads to the most com-

mon form, Duchenne MD (DMD), but MD can also result from 

mutations in genes whose products are not known to associate 

with the DGC (Burton and Davies, 2002). Most patients with 

plectin defects, who mainly suffer from various subtypes of the 

skin blistering disease epidermolysis bullosa (Pfendner et al., 

2005), have also been diagnosed with MD, and muscle phenotypes 

have been observed in plectin-defi cient mice (Andrä et al., 1997). 
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 I
n skeletal muscle, the cytolinker plectin is prominently 

expressed at Z-disks and the sarcolemma. Alternative 

splicing of plectin transcripts gives rise to more than 

eight protein isoforms differing only in small N-terminal 

sequences (5–180 residues), four of which (plectins 1, 1b, 

1d, and 1f) are found at substantial levels in muscle tissue. 

Using plectin isoform–specifi c antibodies and isoform ex-

pression constructs, we show the differential regulation of 

plectin isoforms during myotube differentiation and their 

localization to different compartments of muscle fi bers, 

identifying plectins 1 and 1f as sarcolemma-associated 

isoforms, whereas plectin 1d localizes exclusively to Z-disks. 

Coimmunoprecipitation and in vitro binding assays using 

recombinant protein fragments revealed the direct bind-

ing of plectin to dystrophin (utrophin) and β-dystroglycan, 

the key components of the dystrophin–glycoprotein 

complex. We propose a model in which plectin acts as 

a  universal mediator of desmin intermediate fi lament 

anchorage at the sarcolemma and Z-disks. It also explains 

the plectin phenotype observed in dystrophic skeletal mus-

cle of mdx mice and Duchenne muscular dystrophy patients.
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The cytolinker protein plectin is prominently expressed in stri-

ated muscle cells and has been visualized at Z-disks, the sarco-

lemma, and at mitochondria (Wiche et al., 1983; Schröder et al., 

1997; Reipert et al., 1999; Hijikata et al., 2003), but the mole-

cular mechanisms involved in plectin-related muscle disease/

defects are unknown.

Plectin is a large (Mr > 500,000) protein consisting of 

N- and C-terminal globular domains separated by an �200-nm–

long rod. The N-terminal domain contains a multifunctional 

 actin-binding domain (ABD; Andrä et al., 1998) that is capable of 

also interacting with integrin β4 (Rezniczek et al., 1998; Geerts 

et al., 1999) and vimentin (Sevcik et al., 2004) and also contains 

binding sites for nesprin-3 (Wilhelmsen et al., 2005) and the 

nonreceptor tyrosine kinase Fer (Lunter and Wiche, 2002). The 

C-terminal domain contains binding sites for IFs (Nikolic et al., 

1996), the γ1 subunit of AMP kinase (Gregor et al., 2006), and 

the PKC scaffolding protein RACK1 (Osmanagic-Myers and 

Wiche, 2004). Several different plectin isoforms, which are 

generated by tissue and cell type–dependent alternative splicing 

of transcripts from a single gene with >40 exons, form the basis 

for its broad versatility (Fuchs et al., 1999; Rezniczek et al., 

2003). Isoforms with eight alternative N termini have been 

identifi ed, and specifi c functions have been linked to distinct 

isoforms. Plectin 1a anchors keratin IFs to hemidesmosomes in 

basal keratinocytes (Andrä et al., 2003), and a specifi c role in 

fi broblast and T cell migration has been demonstrated for plectin 1 

(Abrahamsberg et al., 2005).

In skeletal muscle, four isoforms (plectins 1, 1b, 1d, and 1f) 

are expressed at considerable levels. In this study, we address 

the following issues: Where on the subcellular level are these 

plectin isoforms localized in muscle fi bers? What are their 

muscle-specifi c (novel) binding partners? Are they differen-

tially regulated during differentiation? What role do they play in 

dystrophic muscle, such as that of mdx mice?

Results
Muscle fi ber type–dependent expression 
and isoform-specifi c subcellular localization 
of plectin
Plectins 1d, 1f, 1b, and 1, the isoforms most abundantly expressed 

in skeletal muscle, show relative mRNA ratios of >10:4:3:1, 

respectively (Fuchs et al., 1999). To obtain data about their 

 expression and localization in skeletal muscle on the protein 

level, we isolated the quadriceps, a typical fast-twitch muscle 

composed of mainly type 2 fi bers, from 10-wk-old mice and 

processed it for immunolabeling. Anti–pan-plectin antiserum 

revealed strong subsarcolemmal and moderate sarcoplasmic 

staining in cross sections of small diameter fi bers and only faint 

sarcoplasmic and sarcolemmal staining in larger diameter fi bers 

(Fig. 1 C). On longitudinal sections, Z-disks were stained in 

all fi bers, but the signal was much stronger in small diameter 

fi bers, where additionally the plasma membrane was stained 

(Fig. 1 A). These fi bers, which showed strong autofl uorescence 

at 488 nm (Fig. 1, F and H; insets), were positive for myosin 

heavy chain (MyHC)–2A (Fig. 1 B; also see E, G, and I), whereas 

those with larger diameters were MyHC-2B positive (Fig. 1 K). 

Therefore, it appears that in quadriceps, fast 2A fi bers express 

plectin at higher levels than type 2B fi bers, as has previously 

been reported for type 2 compared with slow type 1 fi bers 

(Schröder et al., 1997). Double immunolabeling of plectin 1f 

and MyHC-2A on longitudinal sections revealed this plectin iso-

form to be located at Z-disks in 2A fi bers but to be hardly ex-

pressed in 2B fi bers (Fig. 1, D and E; and not depicted). On cross 

sections, 2A fi bers showed moderate sarcoplasmic plectin 1f–

specifi c staining as well as irregular and weak staining of the 

membrane (Fig. 1, F and G). Staining of longitudinal sections 

using a plectin 1–specifi c antiserum revealed this isoform to be 

much less abundant, if at all present, at Z-disks. However, a strong 

Figure 1. Immunolocalization of plectin isoforms in quadri-
ceps of 10-wk-old mice. Consecutive (except A–C) serial lon-
gitudinal and cross sections were stained with antibodies 
(pan-plectin) recognizing all plectin isoforms (A and C) or spe-
cifi cally isoforms 1f (D and F) or 1 (H and J); in addition, anti-
bodies specifi c to MyHC-2A (B, E, G, and I) and -2B (K), all 
in combination with Cy5-labeled secondary antibodies, were 
used. The boxed area in D (bottom right) is shown enlarged 
in the inset. The insets in F and H show autofl uorescence after 
excitation at 488 nm recorded in the standard FITC channel. 
Bar, 50 μm.
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signal came from sarcolemma-associated structures, primarily 

in 2A fi bers (Fig. 1 H). On cross sections, plectin 1–specifi c 

 signals were detected as irregularly distributed accumulations at 

the sarcolemma of 2A but not 2B fi bers (Fig. 1 J).

As we were unsuccessful in generating isoform-specifi c 

antibodies directed against plectins 1b and 1d, we ectopically 

expressed and visualized GFP fusions of all four full-length 

plectin isoforms (1, 1b, 1d, and 1f) in myotubes (Fig. 2, A–D). 

Plectin 1 was expressed in a diffuse dotty pattern throughout the 

cytosol (Fig. 2 A; see virtual cross sections in insets 1 and 2) 

and was concentrated in the vicinity of nuclei. Immunolabeling 

with antibodies specifi c for sarcomeric α-actinin, a marker for 

Z-disks, revealed that areas positive for α-actinin were com-

pletely devoid of plectin 1 (Fig. 2 A, a and b; see areas marked 

by identically positioned arrowheads). Plectin 1b was distrib-

uted throughout the sarcoplasm in a pattern somewhat more 

patchy but similar to that observed for plectin 1, also mostly ex-

cluding areas that were positive for α-actinin (Fig. 2 B; a, b, and 

cross sections). Plectin 1d was located exclusively at structures 

identifi ed as Z-disks (Fig. 2 C; arrowheads in a and b indicate 

the same exemplary positions). Contrary to expectations based 

on the immunostaining of tissue sections, plectin 1f was found 

not to be associated with Z-disks (Fig. 2 D). However, the ob-

served sarcolemma association of this isoform was impressively 

confi rmed (Fig. 2 D, virtual cross sections 1–4; a and b show 

 individual confocal sections as indicated in panel 1). Immuno-

labeling of in vitro–differentiated C2C12 cells with plectin 1– and 

1f–specifi c antibodies revealed the same localization of the 

 native isoforms (unpublished data).

To further investigate the sarcolemma association of plectin, 

extensor digitorum longus (EDL) muscle was teased into 

 sin gle fi bers, which were immunolabeled for plectin and βDG, 

a costameric membrane marker (Fig. 2 E). Both proteins co-

localized in costameric structures. Whereas βDG staining 

 resembled a gridlike pattern (Z-disks and longitudinal lines), 

pan-plectin serum revealed prominent Z-disk and perinuclear 

localization and only a rare association of plectin with longitu-

dinal lines. Virtual cross and longitudinal sections (Fig. 2 E, 

 insets 1 and 2) through confocal stacks showed plectin at the 

sarcolemma but also extending into the fi bers in regular intervals. 

Analysis with isoform-specifi c antibodies showed distinct stain-

ing patterns for plectins 1 and 1f. Whereas plectin 1 was found 

in the perinuclear area, at longitudinal lines, and in a dotty 

 pattern at Z-disks (Fig. 2 F), plectin 1f was strongly expressed at 

Figure 2. Expression of full-length plectin isoforms in 
 differentiated myotubes and immunostaining of teased muscle 
fi bers. (A–D) Full-length plectin 1 (A), 1b (B), 1d (C), or 1f (D) ex-
pression plasmids (with C-terminal EGFP; green) were trans-
fected into myoblasts �12–16 h before differentiation. After 
96 h, differentiated myotubes were fi xed with methanol 
and processed for immunolabeling using antibodies specifi c 
for sarcomeric α-actinin (A–C) or caveolin-3 (D). Secondary 
antibodies were Texas red labeled (red), and nuclei were 
 visualized with Hoechst 33342 (blue). Main panels show 
composites of confocal stacks; dotted frames indicate areas 
shown in more detail in panels a and b of A–D. Numbered 
lines indicate confocal sections shown in correspondingly 
labeled insets; virtual cross sections were reconstructed from 
confocal stacks using LSM imaging software. Horizontal lines 
in insets 1–4 of D indicate the positions of the planes shown in 
panels a and b of D. Arrowheads in A and C indicate identi-
cal exemplary positions in panels a and b. (E–H) Teased 
fi bers were prepared and processed for IFM as described in 
Materials and methods. Primary antibodies used were anti-
serum #123 to plectin (E), anti–plectin 1 (F), anti–plectin 1f 
(G and H), monoclonal anti-βDG (E), anti–α-actinin (F and G), 
and antidystrophin (H). Plectin-specifi c antibodies were de-
tected with Cy3-conjugated secondary antibodies (green), 
and all others were detected with Cy5-conjugated secondary 
antibodies (red). Panels a and b show individual colors of the 
merged images. The virtual sections shown in insets 1 and 2 
in E are from a different fi ber. The line in H indicates the plane 
of section shown in inset 1. Bars in A and E apply to A–D and 
E–H, respectively; bars in panel b of C and E apply to panels 
a and b of A–D and E–H,  respectively. Bars, 20 μm.
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Z-disks and tightly encircled nuclei (Fig. 2 G). Intriguingly, when 

the staining patterns for both isoforms are merged, they match 

that observed with pan-specifi c plectin antibodies, suggesting 

that plectins 1 and 1f are the major sarcolemma-associated 

 isoforms. Costaining of plectin 1f with dystrophin revealed a 

partial colocalization of both proteins (Fig. 2 H). At the sarco-

lemma, plectin 1f was concentrated at Z-disks and extended 

into the fi ber, whereas dystrophin was limited to the sarcolemma 

but was also found between Z-disks (Fig. 2 H, inset 1).

Coexpression of plectin 1f and dystrophin 
during myoblast differentiation
To defi ne the role of plectin in the process of differentiation 

from myoblasts to myotubes, we profi led the expression of 

plectin and other skeletal muscle proteins (Fig. 3). After 96 h of 

differentiation, myoblast cultures had formed myotubes that 

started to twitch (unpublished data). During differentiation, 

plectin isoform 1 expression peaked at 8–16 h, which is similar 

to that of utrophin. Plectin 1f was expressed only later, starting 

between 24 and 48 h, and reached plateau levels after 72 h. 

Interestingly, dystrophin showed a very similar expression pro-

fi le, whereas βDG was detectable earlier (16 h), and caveolin-3 

was not detected before 48 h. Integrin α7B was already ex-

pressed in myoblasts and showed peak levels after �48 h 

of differentiation.

Plectin interacts with the EF-ZZ domains 
of dystrophin and utrophin
The spatially and temporally coordinated expression of plec-

tin 1f and dystrophin suggested a possible direct interaction of 

both proteins. In immunoprecipitation (IP) experiments using 

IP lysates (see Materials and methods) from wild-type muscle 

tissue, plectin coprecipitated with dystrophin and vice versa 

(Fig. 4 A, lanes 5 and 7). From mdx IP lysates, which were 

used as negative controls, plectin was not precipitated using 

dystrophin antibodies (Fig. 4 A, lanes 6 and 8). Interestingly, 

although plectin was expressed at higher levels in mdx com-

pared with wild-type muscles (Fig. 4 A, lanes 1 and 2), less of 

it was immunoprecipitated from mdx (Fig. 4 A, lanes 5 and 6; 

also see Fig. 6, A and C), indicating a shift of plectin into an 

insoluble pool. Utrophin and plectin were coprecipitated from 

rat fibroblast lysates (unpublished data). To identify inter-

acting subdomains of the proteins, we immobilized His-tagged 

fragments of utrophin, including its N-terminal ABD, the C ter-

minus, and the entire WW-ZZ domain as well as its three sub-

domains WW, EF, and ZZ on nitrocellulose membranes and 

overlaid them with various plectin samples (Fig. S1 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200604179/DC1; 

summarized in Fig. 4 B). Using either purified full-length 

 plectin or plectin-rich cell lysates, we found plectin bound 

to the ABD and WW-ZZ domain of utrophin but not to its 

C-terminal part. A recombinant plectin ABD showed similar 

specifi city, although its binding to the utrophin ABD was very 

weak compared with that of full-length plectin. When over-

laid onto WW-ZZ subdomains, positive signals were obtained 

for the EF and ZZ domains, whereas a fragment encoded by 

exons 9–12 of plectin did not show binding to any of the utro-

phin fragments used. Confi rming these results, a Eu3+-labeled 

version of the plectin ABD specifi cally bound to WW-ZZ 

domains of utrophin and dystrophin when overlaid onto micro-

titer plate–immobilized proteins (Fig. S1 B). Furthermore, the 

WW-ZZ domain of dystrophin competed with that of utrophin 

for plectin ABD binding as did actin (with considerably higher 

effi ciency; Fig. S1 C). This suggested that simultaneous binding 

of actin and WW-ZZ domains to the plectin ABD was unlikely 

to occur.

Up-regulation of sarcolemmal plectin 
in mdx muscle
To defi ne the relation of plectin with costameric membrane com-

plexes in muscles lacking dystrophin, we characterized plectin 

localization in skeletal muscle fi bers at different stages of MD 

in mdx mice by immunolabeling cross sections of quadriceps 

Figure 3. Protein expression profi ling during the differentiation of myo-
blasts in vitro. Myoblasts isolated from plectin (+/+)/p53 (−/−) mice were 
differentiated in vitro for up to 96 h. Immediately before the start of differ-
entiation and after 4, 8, 16, 24, 48, 72, and 96 h, cells were lysed in 
sample buffer, and proteins were separated by SDS-PAGE on 5% (plectin, 
dystrophin, and utrophin) or 15% (βDG, caveolin-3, integrin α7B, and 
 tubulin) gels and analyzed by IB. Bands were scanned and evaluated den-
sit ometrically. Signals were normalized to tubulin and represent the means 
of at least triplicate experiments. 100% corresponds to the highest expres-
sion of each protein during the course of differentiation. Error bars (SD; 
rarely >10%) have been omitted for clarity. 
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from 2-, 4-, and 14-wk-old animals with plectin-specifi c anti-

bodies (Fig. 5, A–K). Compared with normal muscle, no differ-

ences were observed at the (prenecrotic) age of 2 wk (not 

depicted) and in unaffected areas of quadriceps from 4-wk-old 

(peak necrotic) mdx mice (Fig. 5, A and B and D and E). Plectin 

1f was found in the sarcoplasm and irregularly at the sarco-

lemma, whereas plectin 1 was localized only in subsarcolemmal 

accumulations. Dystrophic areas were clearly distinguished by 

the presence of high numbers of small-diameter fi bers with cen-

tralized nuclei and loose connective tissue, expressing very high 

levels of plectins 1 and 1f (Fig. 5, C and F). After 14 wk, most 

fi bers had already passed through one round of degeneration/ 

regeneration, and, as was expected from fi ndings in DMD 

 muscles (Schröder et al., 1997), we observed increased plectin 

staining at the sarcolemma of regenerated fi bers when using 

a pan-plectin antibody (unpublished data). Isoform-specifi c anti-

bodies revealed that this increased sarcolemmal staining was 

caused by the up-regulation of plectin 1f (Fig. 5, H and I vs. G). 

This was especially evident in 2B fi bers, which are identifi ed as 

large-diameter fi bers lacking autofl uorescence (Fig. 5 I; insets 

in G–I show autofl uorescence). For plectin 1, on the other hand, 

we could not detect notable differences between mdx and con-

trol samples (Fig. 5, J and K). Thus, during the regeneration 

of mdx muscles, plectins 1 and 1f were both up-regulated in 

regenerating myotubes, but only plectin 1f associated with the 

sarcolemma and stayed there at high levels after regeneration 

was complete.

To obtain quantitative estimates of plectin up-regulation 

in mdx mice compared with other sarcolemma-associated 

 proteins, we prepared KCl-washed microsomes from skeletal 

muscle of 8–10-wk-old mdx and control mice (Ohlendieck and 

Campbell, 1991; Cluchague et al., 2004). Compared with total 

muscle lysates (Fig. 6 A), microsome fractions from control 

muscle were enriched in DGC components (dystrophin, utro-

phin, and βDG) and the membrane markers caveolin-3 and 

integrin α7B; in addition, actin and plectins 1 and 1f but not 

tubulin were detected in microsomes (Fig. 6 B). Comparing 

corresponding control and mdx samples, we found increased 

levels of plectin (�170%) and utrophin (�140%) in total mus-

cle lysates, whereas those of actin were similar (Fig. 6 C). Total 

plectin was two- to threefold more abundant in mdx versus con-

trol microsome fractions, with relative levels of plectin 1 and 

plectin 1f of �300% and �150%, respectively. Interestingly, 

the levels of utrophin in the sarcolemmal fraction were only 

�50% of those found in the wild type, suggesting a weaker 

membrane association of utrophin in mdx muscle. With our 

 lysis protocol (see Materials and methods), the levels of βDG 

were found at �50% compared with the wild type, although 

mdx βDG levels as high as �100% of wild type have been 

 reported when samples were treated with cholate detergent 

(Cluchague et al., 2004). Caveolin-3 appeared slightly increased, 

and no notable difference was observed in the case of actin. 

Interestingly, the mdx levels of integrin α7B were approxi-

mately fourfold increased (Fig. 6 D). Thus, these biochemical 

data were in agreement with the observed up-regulation of plec-

tin in mdx muscle and the sarcolemma association of isoform 1f 

observed in the immunolabeling of tissue sections.

Utrophin is likely not the preferred binding 
partner of plectin at the sarcolemma 
of mature mdx muscle fi bers
To assess whether utrophin was substituting for dystrophin as a 

linker protein between βDG and plectin in dystrophin-defi cient 

muscle, we stained cross sections of mdx gastrocnemius for 

βDG and utrophin (Fig. 7, A–L). The antiserum to βDG gave 

a strong signal in control samples of all ages (2, 4, and 14 wk; 

Figure 4. Co-IP of plectin with dystrophin and direct 
binding of plectin to the utrophin/dystrophin EF-ZZ 
domain via its ABD. (A) Total and IP lysates of wild-
type (wt) and mdx muscle tissues were prepared as 
described in Materials and methods. IP lysates were 
incubated without (IP: Control) or with antibodies spe-
cifi c for plectin (IP: Ple) or dystrophin (IP: Dys). After 
separation and transfer to nitrocellulose, total lysates 
and precipitated samples were probed with anti-
bodies specifi c for plectin (top) or dystrophin (bottom). 
(B) Schematic drawing of plectin and utrophin show-
ing locations of binding interfaces, fragments used in 
blot overlay assays (bars above and below drawings), 
and a summary of binding data. Actual data are 
shown in Fig. S1 (available at http://www.jcb.org/
cgi/content/full/jcb.200604179/DC1). N and C 
termini of proteins are indicated. ABD, actin-binding 
domain. Overlaid plectin was either purifi ed from cell 
cultures (C6) or contained in cell lysates (804G). ++, 
strong binding; +/−, weak binding; −, no binding.
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Fig. 7, A, E, and I) and reduced but still clearly positive sig-

nals in the corresponding mdx samples (Fig. 7, C, G, and K). 

Actively regenerating mdx fi bers, which are marked by small 

diameters and centralized nuclei, showed a much stronger staining 

at the age of 4 wk that was almost similar in intensity to the sig-

nal in control fi bers (Fig. 7 G). Utrophin was strongly expressed 

at the sarcolemmas of 2-wk-old control animals, whereas only 

limited staining was observed in corresponding mdx muscle 

samples (Fig. 7, compare B with D). At later developmental 

stages of normal muscle, utrophin was detectable at myotendi-

nous (Fig. 7 F, arrowheads) and neuromuscular junctions (not 

depicted), but no general sarcolemmal staining was observed 

(Fig. 7, F and J). In the case of 4- and 14-wk-old mdx muscle, 

utrophin was present exclusively in regenerating small-diameter 

fi bers (Fig. 7, H and L; asterisks) and at myotendinous junctions 

(Fig. 7 H, arrowheads). Faint sarcolemmal utrophin-specifi c 

staining that was not visible in wild-type muscle was observed 

in mdx muscle (Fig. 7, H and L). The low levels of utrophin and 

the positive identifi cation of βDG at the sarcolemma of mdx 

muscle prompted us to costain teased wild-type and mdx muscle 

fi bers for plectin and βDG (Fig. 7, M–R). Both mAbs as well as 

an antiserum to βDG revealed that the gridlike staining pattern 

typical for costameres was lost in mdx fi bers, and, instead, βDG 

was found exclusively above Z-disks together with plectin 1f 

(Fig. 7, compare the insets of N and P, which are magnifi ed in Q 

and R). We also examined microsome fractions and sections 

prepared from muscles of mdx/utr−/− mice and found a similar 

situation as in mdx muscles (Fig. S2, available at http://www

.jcb.org/cgi/content/full/jcb.200604179/DC1).

Direct interaction of plectin with 𝛃DG 
via multiple binding sites
The redistribution of βDG to sites above Z-disks where plectin 

1f was concentrated suggested that plectin could directly inter-

act with the cytoplasmic domain of βDG. Co-IP of both pro-

teins from lysates of C2C12 myoblasts, mouse keratinocytes, 

and the human colon adenocarcinoma cell line CaCo-2 using 

anti-βDG antibodies was successful (Fig. 8 A). Using no or 

 irrelevant antibodies, neither plectin nor βDG was detectable in 

the corresponding precipitates (unpublished data). Plectin and 

βDG could also be coprecipitated from lysates of skeletal mus-

cle from mdx mice (Fig. 8 B). Immuno-EM confi rmed the close 

association of both proteins at the sarcolemma of muscle fi bers 

(Fig. 8 C). When the plasma membrane was lost as a result of 

Triton X-100 extraction, βDG remained anchored to subsarco-

lemmal fi lamentous structures (Fig. 8, white arrowheads), which 

were also positive for plectin (Fig. 8 D). βDG and plectin 

 la beling was most prominent at subsarcolemmal regions over-

lying Z-disks. Additionally, the plectin label was concentrated 

at the periphery of Z-disks (Fig. 8 E).

To map the βDG-binding sites on plectin, a panel of 

His-tagged plectin fragments representing different structural 

domains (Fig. 9, A and B) were blotted onto nitrocellulose and 

overlaid with the cytoplasmic domain of βDG. The WW-ZZ 

domain of dystrophin, which binds to the C terminus of βDG 

(Ilsley et al., 2002), and the utrophin ABD or BSA were used as 

positive and negative controls, respectively. Using βDG- specifi c 

antibodies for detection, we found an interaction of βDG with 

two nonoverlapping plectin fragments (Fig. 9 C). One was en-

coded by plectin exons 12–24, representing part of the plakin 

domain located C terminally of the ABD within the plectin 

N-terminal globular domain, and the other corresponded to the 

C terminus of plectin, starting within repeat domain 4. No other 

protein tested showed binding except for the dystrophin WW-

ZZ domain. To narrow down the region of βDG involved in 

binding to plectin, a fragment (βDGcyt∆DBS) corresponding 

to roughly 70% of the βDG cytoplasmic domain (lacking the 

C-terminal region containing the dystrophin/utrophin-binding 

motif) was overlaid onto the same panel of recombinant pro-

teins (Fig. 9 D). It bound to both plectin fragments identifi ed 

before but bound much weaker to the C-terminal plectin frag-

ment (Ple R4-C), suggesting that additional C-terminal βDG 

sequences were needed for effi cient binding to this fragment. 

As expected, the truncated βDG fragment failed to bind to the 

dystrophin WW-ZZ domain.

Binding of βDG to both plectin fragments was effi ciently 

blocked by the dystrophin WW-ZZ domain (Fig. 9 E). When 

dystrophin was added to the overlay solutions at an equimolar 

ratio, βDG–plectin binding was only slightly reduced, but 

Figure 5. Distribution of plectin isoforms 1 and 1f in muscle during the 
course of MD in mdx mice. Cross sections of quadriceps from 4- and 
14-wk-old mdx and normal control mice were immunolabeled with plectin 
1f– (A–C and G–I) and plectin 1–specifi c antibodies (D–F, J, and K).  Secondary 
antibodies used were Cy5 labeled. Areas of unaffected (B and E), actively 
regenerating (C and F), and regenerated (H, I, and K) mdx muscles are 
shown. Insets in G–I show autofl uorescence after excitation at 488 nm, 
with autofl uorescent fi bers corresponding to type 2A fi bers. n, sectioned 
nuclei. Bar, 20 μm. 
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increasing the molar ratios to 1:5 or 1:10 in favor of dystrophin 

led to strongly reduced binding and no binding, respectively. 

Unexpectedly, in this competition experiment, positive signals 

were observed in two additional lanes (Ple E1–12 and Utr ABD; 

Fig. 9 E), suggesting that the dystrophin WW-ZZ domain me-

diated the indirect binding of βDG to the ABDs of utrophin 

Figure 6. Comparative (semiquantitative) IB analysis of total 
cell lysates and microsome fractions from control and mdx 
skeletal muscles. (A and B) Scans of typical bands obtained 
by IB. (C and D) Bands were evaluated as described in Fig. 3. 
Signals were normalized to tubulin (total lysates) or total pro-
tein content (microsome fractions) and are shown relative to 
protein amounts in control (wild type) samples (100%). Values 
represent means ± SD (error bars) of at least three gel runs 
using samples from two independent preparations.

Figure 7. Expression of 𝛃DG and utrophin during the course 
of MD in mdx mice and localization of 𝛃DG in teased muscle 
fi bers. (A–L) Cross sections of gastrocnemius from 2-, 4-, and 
14-wk-old normal control (A, B, E, F, I, and J) and mdx (C, D, 
G, H, K, and L) mice were immunolabeled using antibodies 
specifi c for βDG (A, C, E, G, I, and K) and utrophin (B, D, F, 
H, J, and L). Note the expression (albeit reduced at ages 2 
and 14 wk) of βDG in mdx muscle fi bers. Utrophin is present 
at the sarcolemma of muscle fi bers from young (<4 wk old) 
animals (normal and mdx) as well as in regenerating fi bers 
from adolescent and adult mdx animals; at these stages, 
utrophin localization in nonregenerating fi bers is virtually con-
fi ned to myotendinous junctions both in normal and mdx mice 
(arrowheads in F and H). Asterisks in H and L denote areas of 
active regeneration in mdx muscle. (M–R) Teased fi bers from 
normal and mdx muscles from 8-wk-old mice were stained with 
pan-plectin mouse antiserum #123 (pan), rabbit antiserum to 
plectin 1f (insets) and rabbit antiserum #1710 (AS), or mouse 
mAbs (insets) to βDG. Control and mdx samples were stained 
in parallel, and images were recorded using the same settings. 
Q and R show magnifi cations of the areas labeled Q and R in 
the insets in N and P. Bars (A–L), 50 μm; (M–P) 20 μm.
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and plectin. To confi rm the simultaneous binding of WW-ZZ 

domains to plectin and βDG, we performed an overlay assay 

in which the utrophin WW-ZZ domain was immobilized on 

 microtiter plates and incubated with constant amounts of Eu3+-

labeled βDG in the presence of increasing concentrations of 

 labeled or unlabeled versions of the plectin ABD (Fig. 9 F). In 

the fi rst case, the amounts of labeled protein bound remained 

unchanged (Fig. 9 F, gray bars), whereas signals were additive 

(Fig. 9 F, black bars) in the latter, clearly demonstrating that 

plectin and βDG bound to independent binding sites within the 

WW-ZZ domain.

Discussion
Distinct regulation and localization 
of plectin isoforms in skeletal muscle
Muscle formation is an incremental process in which differenti-

ating myoblasts fuse and form primary and fi nally secondary 

myotubes. As this process involves massive rearrangements of 

the cytoskeleton, it was not unexpected to fi nd that plectin iso-

forms were differentially expressed during its course. Of special 

interest was the striking similarity of the temporal expression 

patterns of plectin 1f and dystrophin, which suggested a role for 

this particular plectin isoform in the formation and maturation 

of costameres. This is supported by the observed exclusive 

membrane association of a recombinant version of this isoform 

in differentiated myotubes but not at the myoblast stage, where 

dystrophin is absent. A similar role of plectin had been sug-

gested previously by Schröder et al. (2000, 2002), who con-

cluded from their myoblast differentiation experiments that the 

association of plectin with Z-disks is a prerequisite for formation 

of the intermyofi brillar desmin cytoskeleton and, furthermore, 

that plectin is a component of primary longitudinal adhe-

sion structures, which are precursors of costameres that form 

mature costameres only after being subjected to contractile 

forces. This would also explain the apparent discrepancy in 

plectin 1f localization in the tissue and in teased fi bers (sarco-

lemma and Z-disks) versus transfected myotubes (sarcolemma 

only), as the latter represent a less mature stage. Interestingly, 

using mAb 121 to plectin, Schröder et al. (2002) identifi ed a 

membrane-associated plectin variant that is up-regulated during 

human myotube differentiation. Our results would suggest that 

this variant is plectin 1f. However, it is unexplainable how a 

mAb with an epitope in plectin’s rod domain could specifi cally 

detect one rod-containing isoform (1f) over others.

Immunostaining of muscle tissue revealed that plectin ex-

pression levels in individual fi bers varied and were dependent 

on the fi ber type. In cross sections of normal striated human 

muscle, a moderate to intense cytoplasmic and sarcolemmal 

staining of plectin has been reported in type 1 (slow twitch) 

 fi bers, whereas only faint staining of the sarcolemma was ob-

served in type 2 (fast twitch) fi bers (Schröder et al., 1997). In 

the present study, we show using an antiserum to plectin not 

discriminating among isoforms that in quadriceps (a typical fast 

muscle composed of mainly type 2 fi bers), plectin clearly was 

localized at Z-disks in both type 2A and 2B fi bers, with a 

stronger signal in 2A fi bers. This corresponds well with the in-

tense staining obtained with plectin 1f–specifi c antibodies in 

this fi ber type. Neither with anti–plectin 1f nor anti–plectin 1 

antibodies did we detect substantial Z-disk staining in 2B 

 fi bers. Based on this observation, one other plectin isoform ex-

pressed in skeletal muscle, plectin 1b or 1d, must be associated 

Figure 8. Co-IP and ultrastructural colocalization of plectin 
and 𝛃DG. (A) Cell lysates from C2C12 myoblasts (M), mouse 
keratinocytes (K), and CaCo-2 (C) cells were subjected to IP 
using anti-βDG antiserum; antibodies used for detection are 
indicated. (B) mdx muscle lysates were immunoprecipitated 
with the indicated antibodies and probed for βDG. (C–E) 
Preembedding immunogold labeling of teased muscle fi bers 
extracted with Triton X-100. Gold particles labeling plectin 
(5 nm) and βDG (10 nm) were silver enhanced. In C, note the 
intense labeling of both proteins at the plasma membrane lo-
cally separated from the muscle fi ber. The exterior of the fi ber (e) 
contains extracellular material, whereas the blistered interior (i) 
is empty. In D, a sarcomere positioned beneath the sarcolemma 
is shown. Although the plasma membrane is lost by Triton 
X-100 extraction, βDG as well as plectin remain anchored to 
fi lamentous structures (arrowheads) in the subsarcolemmal 
region. Also note plectin labeling in the interior of the fi ber at 
Z-disks. In E, details of a sarcomeric region proximal to a Z-disk 
are shown. Labeling of βDG is restricted to the subsarcolemmal 
 region with incomplete detachment of the sarcolemma. While 
most of the βDG is located at fi lamentous structures (white 
 arrowheads), it can also be observed (arrow) in association 
with the sarcolemma (black arrowheads). Bars, 500 nm.
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with Z-disks in type 2B fi bers. From our overexpression experi-

ments, we conclude that this isoform is plectin 1d, as it was 

found localized exclusively at Z-disks. At this time, the molecular 

mechanism of this targeting is unknown.

Plectin is associated with the DGC 
via multiple interfaces
Using co-IP and in vitro binding assays, we demonstrate direct 

interactions of plectin via multiple interfaces with components 

of the DGC, including (1) direct binding of its plakin domain 

to the cytoplasmic domain of βDG; (2) direct binding of its 

C-terminal portion to βDG; (3) binding of its ABD to the WW-ZZ 

domains of dystrophin and utrophin; and (4) binding of its ABD 

to the ABD of utrophin (Figs. 4 and 9, schematics). Whether the 

ABD of plectin would also interact with that of dystrophin re-

mains an open question considering that the functionalities of 

the ABDs of dystrophin and utrophin differ (Rybakova et al., 

2006), whereas their WW-ZZ domains are highly conserved 

(Hnia et al., 2007). Plectin and dystrophin had previously been 

coimmunoprecipitated from muscle lysates, but their interaction 

was assumed to be indirect via actin (Hijikata et al., 2003). In 

dystrophin-lacking mdx mice, one may thus expect to fi nd the 

reduced sarcolemma association of plectin, but our immuno-

fl uorescence and tissue fractionation experiments revealed that 

plectin was instead enriched at the sarcolemma of mdx muscle. 

It was widely believed that dystrophin defi ciency in skeletal mus-

cles of mdx mice and DMD patients leads to the reduced expression 

and sarcolemmal association of dystrophin-associated proteins, 

including a strong reduction or even absence of βDG immuno-

reactivity (Ohlendieck and Campbell, 1991) despite its mRNA 

levels being similar to those in normal samples (Ibraghimov-

Beskrovnaya et al., 1992; Rouger et al., 2002). However, in 

a recent study, Cluchague et al. (2004) challenged this view 

when they demonstrated that in mdx muscle samples treated 

with 2% cholate, βDG was detectable at levels comparable with 

those of wild-type samples. The authors proposed that βDG 

was targeted to the plasma membrane normally in dystrophin- 

defi cient mdx muscles but remained inaccessible to antibodies 

and, when tissues were lysed, became part of an SDS-insoluble 

pool. Using our protocols, we also found considerable levels of 

βDG in mdx skeletal muscle microsome fractions (�50% of 

wild type even without cholate treatment), and we were able to 

immunodetect βDG with variable intensities throughout mdx 

muscle regeneration. Thus, our results support the hypothesis of 

Cluchague et al. (2004), and the direct interaction of plectin 

with βDG provides an explanation for the observed increase in 

sarcolemmal plectin in mdx muscle (Fig. 10). In the absence of 

dystrophin, more plectin can bind to βDG, causing at the same 

time the redistribution and accumulation of βDG above Z-disks, 

where plectin is normally localized. Matching our βDG immuno-

staining results, Yurchenco et al. (2004) have observed a cor-

responding redistribution of αDG in teased mdx fi bers.

It has been suggested that utrophin could substitute for 

dystrophin in dystrophic muscles, but its intimate association 

with βDG may be limited to the time of regeneration only (Tinsley 

et al., 1998). The �50% reduction of utrophin observed in 

Figure 9. Direct binding of 𝛃DG to N- and C-terminal 
 domains of plectin. (A) Schematic representation of plectin, 
βDG, dystrophin, and protein fragments used for in vitro inter-
action assays. Binding interfaces between plectin, dystrophin, 
and βDG are indicated by brackets connected by lines. ABD, 
actin-binding domain; IFBD, IF-binding domain; TM, trans-
membrane domain; DBS, dystrophin-binding site. N and C 
termini of proteins are indicated. (B–E) Blot overlay assay. A 
panel of protein fragments recombinantly expressed in bacteria 
(B; Coomassie) was immobilized on nitrocellulose membranes 
and overlaid with βDGcyt (C) or βDGcyt∆DBS, a shorter 
fragment comprising amino acids 765–857 and lacking 
the dystrophin-binding site (D). Bound proteins were detected 
using mAbs to βDG (C) or via the S tag contained in 
βDGcyt∆DBS (D). In E, membranes were overlaid with 
βDGcyt in the presence of Dys WW-ZZ, a fragment corre-
sponding to the WW-ZZ domain of dystrophin. Molar ratios 
(βDGcyt/Dys WW-ZZ) were 1:1, 1:5, and 1:10 in the large, 
small top, and small bottom panels, respectively. (F) Microtiter 
plate competition binding assay. Recombinantly expressed 
and purifi ed WW-ZZ domains of utrophin (immobilized) were 
overlaid with constant amounts of a Eu3+-labeled version of 
the full-length cytoplasmic domain of βDG (βDGcyt; white 
bars; 100% indicated by the dotted line) and increasing 
amounts of unlabeled (gray bars) or Eu3+-labeled (black bars) 
recombinant plectin ABD. Data represent mean ± SD (error 
bars) of a typical experiment performed with triplicate wells.
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 microsome preparations from muscle of �10-wk-old mdx mice 

despite the overall higher expression of utrophin (�150% of 

wild-type levels) would support this notion. Furthermore, this 

observation also suggests that plectin binds to βDG with a higher 

affi nity than utrophin. Remaining sarcolemmal utrophin staining 

that was observed in transgenic mdx mice overexpressing Dp71, 

a short splice variant of dystrophin lacking rod and N-terminal 

domains (Cox et al., 1994; Greenberg et al., 1994), was explained 

by Cox et al. (1994) to possibly be caused by the binding of utro-

phin to subsarcolemmal actin via its ABD. Our fi nding that βDG 

immunostaining signals observed in mdx tissue from 4-wk-old 

animals was almost as strong as in normal muscle would also fi t 

the proposed model (Fig. 10), as the higher expression of utro-

phin during the phase of peak necrosis/regeneration may dis-

place plectin from βDG and, thus, restore accessibility of the 

epitopes masked by plectin. Similarly, the overexpression of 

Dp71 (or other dystrophin or utrophin deletion variants) in mdx 

restored normal DGC components, whereas a full phenotypic 

rescue was achieved only by proteins with functional ABDs and 

intact C-terminal βDG-binding domains (Tinsley et al., 1998).

Plectin acts as a universal mediator 
of IF anchorage
The DGC has been considered to be responsible for connecting 

the subsarcolemmal actin cytoskeleton to the ECM, and disrup-

tion of this link causes a dystrophic phenotype. However, in re-

cent years, it has been established that the contractile actions of 

a muscle fi ber are mechanically integrated by desmin IFs, which 

are responsible for linking individual myofi brils laterally with 

each other and to the sarcolemma at the level of the Z-disks. 

Previous studies have implicated the DGC as the transmem-

brane complex linking the IF network with the ECM (for 

r eviews see Blake and Martin-Rendon, 2002; Capetanaki, 2002; 

Paulin and Li, 2004). The necessary link would be created by 

an α-dystrobrevin–synemin/syncoilin–desmin bridge. Synemin 

may also directly interact with vinculin, providing an alternative 

anchorage of desmin IFs to costameres (Bellin et al., 2001). 

Plectin directly interacts with desmin via its C-terminal IF-

binding domain (Reipert et al., 1999) and also with multiple 

components of the DGC, including its transmembrane core pro-

tein βDG. Thus, we propose that plectin acts as a direct linker 

between the DGC and the desmin IF network. There is prece-

dence for such a function of plectin in basal keratinocytes, where 

the protein directly links the keratin IF network to the cyto-

plasmic domain of the β subunit of the laminin receptor integrin 

α6β4 (Rezniczek et al., 1998). It could be that synemin plays 

the essential role in establishing the direct linkages between 

heteropolymeric IFs and the myofi brillar Z-disk and costameric 

regions, and plectin might only provide additional structural 

support at these sites. However, this would be in confl ict with 

observations in differentiating human skeletal muscle cultures, 

where plectin was already localized in a cross-striated pattern, 

whereas desmin was still found in longitudinal fi laments (Schröder 

et al., 2000).

Recently, it was shown that besides type III and IV IFs, 

the cytokeratins K8 and K19 are also expressed in striated mus-

cle and localize to Z-disks and M-lines and that K19 directly 

 interacts with the dystrophin ABD (Stone et al., 2005). Whereas 

plectin has been shown to directly bind to keratins 5, 14, and 18 

(Geerts et al., 1999; Steinböck et al., 2000), it is unknown 

whether it can also interact with the muscle-specifi c keratins 

and possibly plays a role in their anchorage as well.

Based on our observations, we propose the following 

model for plectin’s association with the DGC (Fig. 10). Because 

(1) binding of plectin to βDG via its C-terminal binding site 

was abolished in the absence of the C-terminal part of βDG’s 

cytoplasmic domain (harboring the PPxY motif required for 

 interaction with the WW domain of dystrophin and utrophin; 

see Ilsley et al., 2002 for a discussion of the WW domain and its 

interactions) and (2) binding of plectin to βDG was effi ciently 

blocked by dystrophin, only a portion of the βDG cytoplasmic 

tails would normally be available for binding to plectin when 

dystrophin is present. However, plectin could remain associated 

with the DGC via binding of its ABD to dystrophin (utrophin). 

Figure 10. Model of DGC-cytoskeleton linkage via plectin in normal and 
mdx/DMD muscle fi bers. Under normal conditions (left), plectin molecules 
are associated with the DGC by binding to βDG via the binding site in its 
plakin domain and/or by binding to dystrophin via its ABD, leaving the 
IF-binding domain available for binding to the desmin IF network. Binding 
of dystrophin and plectin to βDG may occur simultaneously at costameric 
structures above Z-disks but not M-lines (smaller-scale structures). When 
dystrophin is absent (right), plectin can additionally bind with its C-terminal 
domain to βDG using a binding site on βDG normally occupied by 
 dystrophin. This leads to increased levels of plectin at the sarcolemma and 
to a redistribution of βDG (and DGCs) from their normal gridlike localiza-
tion (top left) to areas overlying Z-disks only (top right). Furthermore, the 
tight interaction with multiple plectin molecules causes the complex to 
 become SDS insoluble (see Discussion). Binding to βDG via the C-terminal 
domain could leave the plectin ABD available for binding to fi lamentous 
actin, potentially fulfi lling to some degree dystrophin’s function of linking 
the DGC to the actin cytoskeleton. However, the ABD of plectin and potentially 
also signaling molecules scaffolded on plectin may have adverse regula-
tory effects.
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In such a constellation, the plectin C-terminal domain, sepa-

rated from the N terminus by the �200-nm–long rod domain, 

would be exposed and available for binding to muscle IFs (des-

min and potentially also cytokeratins 8/19). In the absence of 

dystrophin, however, the available binding sites on βDG are oc-

cupied by plectin, leading to the increased sarcolemmal plectin 

1f signal observed in mdx, mdx/utr−/−, and DMD muscle fi bers 

and consequently to an increased insolubility of βDG and mask-

ing of its epitopes. Binding via the C terminus would also leave 

the plectin ABD available for interaction with fi lamentous actin, 

possibly taking over some of the responsibilities of dystrophin. 

Finally, based on the cellular targeting of overexpressed recom-

binant full-length versions of plectin isoforms, we propose plectin 

isoform 1d to be involved in the anchorage of desmin IFs to 

Z-disks (Fig. 10, bottom).

DGC signaling: plectin as a scaffold?
Recently, several proteins involved in signaling such as nonre-

ceptor tyrosine kinase Fer, the PKC scaffolding protein RACK1, 

and the key enzyme involved in energy homeostasis, AMP ki-

nase, have been identifi ed as novel interaction partners of plec-

tin and led to the proposal that plectin acts as a scaffolding 

platform for signaling proteins in addition to serving as a cyto-

skeletal linker. Having established plectin as a component of the 

DGC with multiple binding interfaces to its key components, 

it will now be a challenge to defi ne its role in DGC-mediated 

signaling. An important consequence implied by our model 

could be that misguided signaling mediated by the accumula-

tion of plectin scaffolds at the sarcolemma of mdx and DMD 

dystrophic muscle contributes to the disease phenotype.

Materials and methods
cDNA constructs
Full-length (mouse) plectin isoform cDNA constructs (including respective 
5′ untranslated regions) encoding proteins with C-terminal GFP have been 
described previously (Rezniczek et al., 2003). For bacterial expression of 
plectin fragments, the corresponding cDNAs were PCR amplifi ed by using 
primers with EcoRI tails and were cloned into pJD1, a modifi ed pET-15b 
(Novagen) that was obtained by replacing the EcoRI–BamHI fragment of 
pBN120 with that from pAD29 (Nikolic et al., 1996); expressed proteins 
contained an N-terminal His tag and a C-terminal c-myc tag. The following 
plectin fragments were used: Ple E1–12 (M1–R654), Ple E9–12 (E419–V541), 
Ple E12–24 (M546–E1128), Ple Rod (E2235–Q2577), Ple R1–R3 (A2762–K3852), 
and Ple R4–C (L3850–A4687), which were all from a rat (X59601), as well as 
Ple ABD (D181–N418) from a mouse (NM_201389). To express N-terminally 
His-tagged versions of human utrophin (X69086) fragments, Utr ABD (S19–
D261), Utr WW-ZZ (A2798–M3113), Utr WW (A2798–K2868), Utr EF (I2869–
S3014), Utr ZZ (N3015–M3113), and Utr C-terminal (M3204–M3433) EcoRI-fl anked 
cDNAs were cloned into pBN120 (Nikolic et al., 1996). The WW-ZZ 
 domain (A3041–M3356) of human dystrophin (X14298) was also expressed 
from pBN120. Fragments βDGcyt (L765–P895) and βDGcyt∆DBD (L765–D857) 
of human βDG (NM_004393) were expressed from pLJ1 (a pET32a 
[Novagen]-derived plasmid in which the sequence between the NcoI and 
XhoI restriction sites has been replaced by 5′-A A T T C C T G G T G C C A C G C G G-
T T C T -3′) as proteins with N-terminal Trx-His-S tags and C-terminal His tags. 
The cDNA fragments encoding Ple ABD and Dys WW-ZZ were also in-
serted into the EcoRI site of pMal-c2 (New England Biolabs, Inc.) to generate 
fusion proteins with N-terminal maltose-binding protein.

Antibodies
For immunoblotting (IB), IP, immunofl uorescence microscopy (IFM), and 
 immuno-EM, the following antibodies were used: mAbs 5B3 (IB) and 7A8 
(EM; Rezniczek et al., 2004) to plectin; antisera #9 (IB), #46 (IFM), and 
#123 (IFM) to plectin (Andrä et al., 2003); anti–plectin isoform 1 antiserum 

(IB and IFM; Abrahamsberg et al., 2005); anti–plectin isoform 1f anti-
serum (IB and IFM), which was prepared and affi nity purifi ed as described 
previously (Abrahamsberg et al., 2005) using amino acids M1–K28 of 
plectin 1f (NM_212539) as immunogen; mAb EA-53 (Sigma-Aldrich) to 
sarcomeric α-actinin (IFM); mAb AC-40 (Sigma-Aldrich) to actin (IB); mAb 
B-5-1-2 (Sigma-Aldrich) to tubulin (IB); mAb 43DAG1/8D5 (IB, IFM, and 
IP; Novocastra) and rabbit antisera #1709 and #1710 (Tyr 895-P; IB, 
IFM, IP, and EM; Ilsley et al., 2001) to βDG; anti-utrophin antiserum RAB5 
(IB, IP, and IFM; James et al., 2000); mAb DY4/6D3 (Novocastra) to dys-
trophin (IB); mAb (clone 26) to caveolin-3 (IB and IFM; BD Biosciences); 
anti–integrin α7 antiserum (IB; provided by U. Mayer, University of East 
Anglia, Norwich, UK; Cohn et al., 1999); mAbs to MyHC-2A (SC-71) and 
-2B (BF-F3; IFM; hybridomas were obtained from the German Resource 
Center for Biological Material; Schiaffi no et al., 1989); and mAb to myc 
epitope tag (1-9E10.2; IB; American Type Culture Collection). As secondary 
antibodies, we used goat anti–rabbit IgG AlexaFluor488 (Invitrogen), goat 
anti–mouse IgG Texas red (Jackson ImmunoResearch Laboratories), and 
donkey anti–rabbit Cy5 (Jackson ImmunoResearch Laboratories) for IFM 
and used goat anti–rabbit and goat anti–mouse IgGs conjugated to AP or 
HRP (Jackson ImmunoResearch Laboratories) for IB.

Immunocytochemistry
Thin sections (3–5 μm for longitudinal and 8–10 μm for cross sections) 
were prepared from skeletal muscle (quadriceps and gastrocnemius) dis-
sected from C57BL/10 control and mdx mice (Institut für Labortierkunde, 
Medical University of Vienna) and frozen in liquid nitrogen–cooled  isopentane. 
Sections were placed on slides, fi xed with acetone for 10 min, and 
 in cubated for 1 h in 5% goat serum in PBS to block nonspecifi c binding of 
antibodies. Samples were incubated with primary and secondary anti-
bodies diluted in PBS for 1 h each. Signal specifi city was controlled by the 
omission of primary antibodies or by using normal mouse or rabbit serum 
in their place. To prepare teased fi bers, mice were anesthetized with isofl u-
rane and perfused with 2% PFA in PBS. EDL was dissected and incubated 
with the same fi xing solution for 10 min. Using fi ne forceps, the muscle was 
teased into single fi bers, which were then adhered onto chrome-alaun/ 
gelatin-coated slides. Slides were blocked with PBS containing 0.1% BSA 
and 0.1% Triton X-100 for 1 h, incubated for 2 h with primary antibodies 
(diluted in blocking solution), washed with PBS for 30 min, incubated with 
secondary antibodies (diluted in PBS) for 1.5 h, and washed again with PBS. 
Finally, samples were briefl y rinsed with water and mounted in Mowiol.

Myoblast transfection and differentiation
Immortalized (p53 negative) mouse myoblasts (Gregor et al., 2006) were 
cultivated on collagen-coated (5 mg/ml in PBS overnight; Sigma-Aldrich) 
tissue culture dishes in F-10 (Invitrogen) medium containing 20% FCS, 2.5 
ng/ml human basic FGF (Promega), 100 U/ml penicillin, and 100 μg/ml 
streptomycin. Myoblasts were transfected using FuGENE6 (Roche), and 
differentiation was initiated after 12–16 h by switching the medium to 
DME containing 5% horse serum, 100 U/ml penicillin, and 100 μg/ml 
streptomycin. After 4–6 d, myotubes were fi xed with chilled (−20°C) meth-
anol and processed for immunolabeling and subsequent laser-scanning 
confocal microscopy. For IB analysis of protein expression profi les during 
differentiation, myoblast cultures were differentiated, and cells were lysed 
directly in reducing SDS sample buffer at different time points.

Fluorescence microscopy and imaging
Immunolabeled tissue and cell samples mounted in Mowiol were viewed in 
a fl uorescence microscope (Axiophot; Carl Zeiss MicroImaging, Inc.) using 
plan Neofl uar 40× NA 1.2 (for tissue sections; Carl Zeiss MicroImaging, 
Inc.) and plan Apochromat 63× NA 1.3 (for cells and teased fi bers; Carl 
Zeiss MicroImaging, Inc.) objectives. Confocal images were recorded using 
the LSM510 module (Carl Zeiss MicroImaging, Inc.) and the LSM510 soft-
ware package (version 3.2 SP2; Carl Zeiss MicroImaging, Inc.). Images 
were processed using LSM Image Browser (generation of projections of 
confocal stacks; gamma/contrast adjustments; version 3.2; Carl Zeiss 
 MicroImaging, Inc.) and Photoshop CS2 (cropping and splitting of color 
channels; Adobe) and were mounted/labeled using Illustrator CS2 (Adobe).

EM
For preembedding immuno-EM, perfusion-fi xed (2% PFA in PBS) adult 
rat EDL was dissected and teased into small fi ber bundles before shock 
freezing in liquid nitrogen–cooled isopentane. Samples were thawed in PBS, 
treated with 0.2% Triton X-100 in PBS for 1 h, and blocked for 1 h in 0.1% 
Triton X-100, 0.1% BSA, and 1:25 normal goat serum in PBS (blocking 
solution). For primary immunolabeling, teased fi bers were incubated 
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overnight at 4°C in a mixture of mAb 7A8 to plectin and antiserum 
#1710 to βDG (diluted in blocking solution without serum). After washing 
for 1 h (0.2% BSA in PBS), samples were incubated overnight at 4°C 
in a mixture of gold-conjugated goat anti–mouse (5 nm) and goat anti–
rabbit (10 nm) secondary antibodies (British Biocell International). Gold-
labeled fi bers were washed in PBS, postfi xed in 2.5% glutaraldehyde for 
30 min, and washed in double-distilled water before silver enhancement 
for 1 h (R-GENT SE-EM kit; Aurion). Samples were immersed in 0.5% 
OsO4 in PBS for 15 min, dehydrated, and embedded in epoxy resin 
(agar 100; Agar Scientifi c Ltd.). Thin sections were cut with an ultra-
microtome (Ultracut S; Leica), mounted on copper grids, counterstained 
with uranyl acetate and lead citrate, and examined at 80 kV in an elec-
tron microscope (JEM-1210; JEOL). Digital images were acquired and 
processed using a camera (Morada; Olympus) and the analySIS soft-
ware package (Olympus).

Preparation of total muscle lysates and microsome fractions
Hind leg muscles were dissected from C57BL/10 control and mdx mice, 
snap frozen in liquid nitrogen, and ground in a mortar. Muscles were 
 homogenized in solution A (20 mM Na4P2O7, 20 mM Na-PO4, pH 7.4, 
0.303 M sucrose, 0.5 mM EDTA, 1 mM MgCl2, 2 mM PMSF, and Com-
plete mini protease inhibitor cocktail [Roche]) using a Dounce homogenizer 
(�10 strokes). Part of the crude homogenate (total muscle lysate) was 
mixed with an equal volume of SDS sample buffer (0.4 M Tris, pH 6.8, 
0.5 M DTT, 10% SDS, 50% glycerol, and 0.1% bromophenol blue) for 
further analysis; the rest was centrifuged for 15 min at 20,000 g, and the 
pellet was rehomogenized. Combined supernatants were fi ltered through 
six layers of cheesecloth and centrifuged for 15 min at 25,000 g. The 
pellet was discarded. To the supernatant, solid KCl was added to a fi nal 
concentration of 0.6 M. After centrifugation for 35 min at 200,000 g, the 
pellet was resuspended in solution B (20 mM Tris-maleate, pH 7.4, 0.303 M 
sucrose, 0.6 M KCl, and the same protease inhibitors as in solution A). 
After incubating for 1 h, KCl-washed microsomes were pelleted for 35 min 
at 200,000 g and resuspended in solution B without KCl. 5 g of muscle 
yielded 0.5 ml of microsome suspension. All steps were performed at 4°C 
on ice. For subsequent IB analysis, microsome suspensions were mixed 
with 5 vol SDS sample buffer.

Gel electrophoresis and IB
Proteins were separated using standard 5 or 15% SDS-PAGE. Note the 
considerably higher concentration of SDS (�60 mg/ml) in our samples 
compared with standard conditions (�20 mg/ml). Under these conditions, 
immunoblot analysis of microsome fractions generally gave much better 
 results, which are likely caused by the enhanced solubilization of membrane-
associated protein complexes in these lipid-rich fractions. For IB, proteins 
were transferred to nitrocellulose membranes, and membranes were 
blocked with 5% nonfat dried milk in PBS–0.05% Tween 20 and incubated 
with primary and AP-conjugated secondary antibodies. For quantitation, 
stained membranes were scanned, and bands were evaluated using the 
ImageQuant 5.1 software package (Molecular Dynamics). Normalization 
factors based on total protein content or tubulin signals were applied to the 
values measured.

Co-IP
Mouse myoblasts (Gregor et al., 2006), mouse keratinocytes (Andrä et al., 
2003), and CaCo-2 (HTB-37; American Type Culture Collection) were cul-
tured as recommended or described previously. IP with antisera to plectin 
and βDG was performed essentially as described previously (James et al., 
2000). In brief, clarifi ed cell extracts in RIPA buffer were incubated for 2 h 
at 4°C with antibodies or, for control experiments, without antibodies or 
with host sera. Immunocomplexes were collected by centrifugation after a 
further 1-h incubation with protein A– or G–Sepharose beads (GE Health-
care) and extensive washing with RIPA buffer and were subsequently ana-
lyzed by IB. For IP from muscle tissue, total muscle lysates were prepared 
as for microsome preparations with the addition of 0.5% Triton X-100 to 
solution A. Part of the lysates was mixed with SDS sample buffer (total 
 lysates), and the rest was incubated for 3 h with protein A–Sepharose beads 
and centrifuged (IP lysates) before incubation with antibodies overnight. 
Immunocomplexes were captured by protein A–Sepharose beads and 
eluted with SDS sample buffer.

Expression and purifi cation of protein fragments
Recombinant protein fragments were expressed in Escherichia coli 
BL21(DE3) and purifi ed as described previously (Rezniczek et al., 2004).

Blot overlay assay
Protein fragments were transferred to nitrocellulose membranes after 10% 
SDS-PAGE. Membranes were blocked with 5% BSA in TBS containing 
0.5% Tween 20 and overlaid with 10 μg/ml of proteins in 20 mM Hepes, 
pH 7.5, 150 mM NaCl, 2 mM MgCl2, 1 mM DTT, and 5% BSA and incu-
bated overnight at 4°C with agitation. Bound proteins were detected by IB 
using protein- or epitope tag–specifi c primary and HRP-conjugated secondary 
antibodies or (in the case of His- and S-tagged fragments) by using the India 
HIS detection system (Pierce Chemical Co.) and HRP-conjugated S protein 
(Novagen), respectively.

Microtiter plate–binding assay
The experimental details of this binding assay have been described previ-
ously (Rezniczek et al., 2004). In brief, proteins immobilized on microtiter 
plates were overlaid with Eu3+-labeled proteins in solution at different 
 concentrations. After washing, the amounts of proteins bound were deter-
mined by measuring Eu3+ fl uorescence in comparison with a standard.

Online supplemental material
Fig. S1 shows the binding data (blot overlay assays) summarized in the 
table in Fig. 4 B as well as additional microtiter plate–binding data. 
Fig. S2 shows immunofl uorescence images of tissue sections from wild-
type and mdx/utr−/− mice coimmunolabeled with antibodies to plectin 
and βDG as well as immunoblots of wild-type and mdx/utr−/− muscle 
lysates using primary antibodies to plectin, dystrophin, utrophin, and 
βDG. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200604179/DC1.
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