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Abstract

Background: Fast seed-based alignment heuristics such as BLAST and BLAT have become indispensable tools in
comparative genomics for all studies aiming at the evolutionary relations of proteins, genes, and non-coding RNAs.
This is true in particular for the large mammalian genomes. The sensitivity and specificity of these tools, however,
crucially depend on parameters such as seed sizes or maximum expectation values. In settings that require high
sensitivity the amount of short local match fragments easily becomes intractable. Then, fragment chaining is a
powerful leverage to quickly connect, score, and rank the fragments to improve the specificity.

Results: Here we present a fast and flexible fragment chainer that for the first time also supports a sum-of-pair
gap cost model. This model has proven to achieve a higher accuracy and sensitivity in its own field of application.
Due to a highly time-efficient index structure our method outperforms the only existing tool for fragment chaining
under the linear gap cost model. It can easily be applied to the output generated by alignment tools such as
segemehl or BLAST. As an example we consider homology-based searches for human and mouse snoRNAs
demonstrating that a highly sensitive BLAST search with subsequent chaining is an attractive option. The sum-of-
pair gap costs provide a substantial advantage is this context.

Conclusions: Chaining of short match fragments helps to quickly and accurately identify regions of homology that
may not be found using local alignment heuristics alone. By providing both the linear and the sum-of-pair gap cost
model, a wider range of application can be covered. The software clasp is available at http://www.bioinf.uni-leipzig.
de/Software/clasp/.

Background
The detection of (potentially) homologous sequence
fragments is a basic task in computational biology that
underlies all comparative approaches from molecular
phylogenetics to gene finding, from detailed analysis of
evolutionary patterns of individual genes to global com-
parisons of genome structure. On genome-wide scales,
BLAST [1] has become the bioinformatician’s work
horse for homology search, with a sensitivity and specifi-
city that is sufficient for most applications in compara-
tive genomics. It is in particular the basis for the
currently available genome-wide alignments, which in
turn underlie a wide variety of subsequent analyses.
Some specialized tasks such as the search for distant

homologs of short structured RNAs [2], require more

sensitive techniques. In particular, sequence families
exhibiting only short conserved blocks interspersed with
highly variable regions are difficult for BLAST or BLAT
[3] because the seeds have to be very short in this case.
This typically leads to a huge number of short match
fragments that require sophisticated post-processing to
discriminate single random hits from sets of adjacent
hits potentially indicating true homologs.
The objective of fragment chaining is to efficiently find

sets of consistent fragments with a maximal score [4].
The order of fragments is assumed to be congruent in
both query and database sequences. While the case of
overlapping fragments is explicitly excluded, gaps
between fragments are allowed and may be penalized
according to different scoring models. In the case of a
local fragment chaining, the score of any fragment within
a chain must not be smaller than the penalty that is
assigned to the gap to the successive fragment. Thus, a
chain is a sequence of non-overlapping, i.e., disjoint,
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ordered fragments and its score is the sum of their frag-
ment scores minus the penalties for any gaps between
them. Introduced in sequence alignments [5], fragment
chaining may be used in several comparative tasks such
as whole genome comparison, cDNA/EST mapping, or
identifying regions with conserved synteny as described
in [6].
Let fbeg.x, fend.x denote the start and end position of a

fragment f in the database sequence x. The start and
end positions in the query y are denoted by fbeg.y and
fend.y, respectively. Let f and f’ be two non-overlapping
ordered fragments, i.e., assume fend.x < f ′

beg.x and
fend.y < f ′

beg.y. Linear gap costs g1(f’, f) between the frag-
ments f and f’ are calculated by:

g1(f ′, f ) = λg1 · �x(f ′, f ) + εg1 · �y(f ′, f ) (1)

with �x(f ′, f ) = |f ′
beg.x − fend.x − 1 |, �y(f ′, f ) = |f ′

beg.y − fend.y − 1 |,
and weighting parameters λg1 , εg1 � 0. Note that the use
of weighting parameters in the gap cost model is equiva-
lent to linear weights on fragment scores. A graphical
illustration of fragments and chaining connections is
shown in Figure 1. For λg1 , εg1 > 0 linear gap costs
penalize any distance between fragments on query and
database sequence. This scoring system may not be sui-
table, however, when scattered blocks of local sequence
conservation are expected.
The more flexible sum-of-pair gap cost model intro-

duced by Myers and Miller [7] allows to penalize differ-
ences of the distances between adjacent fragments on
query and database only. The sum-of-pair gap costs gsop

(f’, f) between non-overlapping ordered fragments f and
f’ is given by

gsop(f ′, f ) = λgsop · (max{�x(f ′, f ), �y(f ′, f )}
− min{�x(f ′, f ), �y(f ′, f )})

+ εgsop · min{�x(f ′, f ), �y(f ′, f )}
(2)

with parameters λgsop , εgsop � 0. Intuitively, λgsop

expresses the penalty to align an anonymous character
with a gap position while εgsop is the penalty to align two
anonymous characters. With egsop = 0, the chaining only
minimizes the distance difference between fragments.
The software tool CHAINER, a part of CoCoNUT[8,9],

implements fragment chaining with linear gap costs.
AXTCHAIN, part of the UCSC genome browser pipeline,
also uses the linear gap model [10,11]. The tool expects
pairwise alignments alignments as input and hence can-
not be used “as is” with plain fragment files produced
from external applications. The SeqAn library provides
algorithms for fragment chaining with different gap cost
models [12]. A running tool that implements these
models, however, is not available at present.

Implementation
We implemented the local fragment chaining algorithm,
introduced by [4,6]. In addition to the linear gap cost
model in CHAINER, the more flexible sum-of-pair gap
cost model has been incorporated for the first time in a
standalone tool.
The chaining algorithm is based on sparse dynamic

programming [13], since for any fragment only a small
set of possible predecessors needs to be considered in
order to find the optimal one. More precisely, the opti-
mal predecessor is a non-overlapping chain preceding
the fragment in both database and query sequence that
leads to the maximal combined score considering the
gap cost penalty between them. In the case of local frag-
ment chaining, the fragment is chained to the optimal
predecessor only if its score is equal to or higher than
the necessary gap costs. Using theoretical results on
both gap cost models [4], priorities can be assigned to
chains in such a way that the optimal predecessor has
the maximal priority. Using the line-sweep paradigm,
the algorithm scans through the list of fragment start
and end points ordered by their database position. For
any start point, the optimal predecessor is identified by
means of range maximum queries (RMQs) over the set
of active chains, i.e., chains only comprised of fragments
with already processed end points. The RMQ reports
the element with maximal priority within a given range
that involves only non-overlapping chains preceding the
current fragment in both database and query sequence.
For any end point, a novel chain is generated by con-
necting the optimal predecessor to the current fragment
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Figure 1 Graphical representation of fragments and chaining
connections. Graphical representation of fragments as blocks with
their respective database and query positions. All valid chaining
connections are depicted as edges including their distance on
database x and query sequence y. Note that f1 and f3 can not be
chained due to their overlap on the query sequence y.
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and is marked as active. In the end, the algorithm
groups together chains with common first fragment and
reports the best-scoring chain of each group. Note that
a fragment does not necessarily have to be the first frag-
ment of any best-scoring chain.
In contrast to CHAINER, we implemented Johnson

priority queues [14] and range trees padded with Johnson
priority queues instead of simple kd-trees to support
RMQs. One-dimensional RMQs are answered using
Johnson priority queues, i.e., semi-dynamic tree structures
permitting non-recursive binary searches on tree paths.
The priority domain, i.e., the range of possible priorities, is
defined at the point of initialization. Hence, the balanced
tree structure provides binary search information at tree
nodes. In order to condense the priority domain, we linked
the priorities to the sorting order of all potential elements.
Let n be the length of the priority domain. Johnson prior-
ity queues support predecessor, successor, insert, and
delete operations in O(log(log(n))) time. To efficiently
implement sum-of-pair gap costs we need to consider two
distinct sorting dimensions [4]. For the two-dimensional
RMQs, range trees were padded with Johnson queues (see
Figure 2). More precisely, the range tree is a primary
binary search tree for all elements sorted by their first-
dimension order. Additionally, each node v stores a John-
son priority queue containing all elements in the subtree
beneath v, referred to as the canonical subset CS(v).
Elements in Johnson priority queues are sorted by the sec-
ond-dimension order. In summary, the implemented frag-
ment chaining algorithm requires O(n(log(n)) in time
with linear gap costs and O(n(log(n)(log(n))) in time
with sum-of-pair gap costs.
Because the database is typically much larger than the

query sequence, we introduced a novel clustering
approach to facilitate local fragment chaining. The basic
idea is to improve the running time by assigning frag-
ments to clusters that can be chained separately from
each other without resulting in different chaining

outcome. It first pools neighboring fragments in a single
linear scan using the following observation: Let f and f’
be two adjacent non-overlapping fragments on the data-
base sequence. Clearly, f’ and f may never be chained
and can be assigned to different clusters if

λgsop�x(f ′, f ) + min{0, εgsop − λgsop} · maxy > maxscore (3)

where maxscore is the highest possible chain score and
maxy is the maximal distance of fragments on the query
sequence. Note that maxscore is bounded from above by
the length of the query multiplied by the maximal score
per fragment position. Estimates of maxscore and maxy
are calculated and updated during the linear scan.
Hence, the clustering is accomplished with only one lin-
ear scan consuming only a negligible amount of addi-
tional memory. Subsequently, rather than applying the
chaining algorithm to the entire list of fragments, each
of the clusters can be chained separately, improving
both running time and memory consumption. In the
worst case, all fragments are in the same cluster leading
to the same performance as without clustering. We
incorporated clustering in local fragment chaining with
linear gap costs using an analogous condition. Note that
fragments from different queries or database sequences
(e.g., chromosomes) can be processed in a single pass by
our tool but are generally chained separately from each
other (even without use of clustering).
More details on the implemented data structures, their

worst-case time complexities, and the chaining algo-
rithm can be found in the Additional file 1. Note that
the algorithm is implemented for two-dimensional frag-
ments only, i.e., fragments with position information on
one query and one database sequence, due to its
intended area of application.

Results and Discussion
Performance Tests
In order to evaluate the performance of clasp using
linear gap costs with εg1 = 1 and λg1 = 1, we compared
it to CHAINER v3.0 with options -l -lw 1 producing
comparable scores. Each simulated data set contained
fragments of length 100 covering 1 KB query
sequences, uniformly sampled from a virtual 100 KB
large database. Scores were sampled from a normal
distribution. Both programs were executed single-
threaded on the same 64-Bit machine with equal data
sets. Moreover, the performance of clasp was ana-
lyzed with and without the use of our clustering
method. The results for different numbers of sampled
fragments are shown in Figure 3 and 4. We measured
the performance in terms of running time in user
mode and peak virtual memory consumption. If not
disabled, the clustering procedure as an integral part

v

Johnson priority queue

Binary search tree

CS(v) sorted by first-dimension order

CS(v) sorted by second-dimension order

Figure 2 Illustration of a range tree padded with Johnson
priority queues as stratified tree structure. Illustration of the
stratified tree structure consisting of a primary binary search tree
sorted by the first-dimension order padded with Johnson priority
queues in each node sorted by the second-dimension order.
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of our algorithm is naturally included in all measure-
ments of running time and memory consumption.
In terms of running time, clasp (with and without

clustering) outperforms CHAINER in any tested setting
at the expense of a three-fold increased memory con-
sumption during execution. Due to the uniform distri-
bution of query sequences the use of clustering only
leads to a minor performance improvement. In each
test case, the quality of the chains was assessed by

comparing the distributions of chain scores reported
by both programs. In a few cases, only marginal differ-
ences between clasp and CHAINER were observed.
These differences do not require further attention
from our side.

Homology searches with Human box H/ACA snoRNAs
To assess the performance of clasp in real-life applica-
tions, a sequence-based homology search was carried
out. Human box H/ACA snoRNA families, an important
class of structured RNAs, were selected to identify
potentially homologous regions in entire genome of
Mus musculus. BLAST fails to report sufficiently long
hits but, e.g., in the case of the 134 nt long Human
H/ACA snoRNA 42 (SNORA42 in the snoRNABase
[15]), dumps more than 10 millions short hits in the
mouse genome when executed in a very sensitive mode
with small word sizes and high expectation values
(options: -W 8 -e 1e+20 -F F).
We executed clasp using the sum-of-pair cost model

with εgsop = 0, λgsop = 0.5 (only punish for distance differ-
ences with half of the match score) fragment scores
according to the length of the BLAST hit, and a minimal
required chain score of 30. The use of clustering greatly
reduced the memory requirements: Instead of more
than 100 GB, the fragment chaining on the 1.2 GB
BLAST output file consumed only 1.6 GB and took less
than 5 minutes on a single 2.33 GHz 64-Bit Intel Xeon
CPU. In the end, clasp reported 17 chains in disjoint
regions of the mouse genome. In order to check for
conservation of H-box and the ACA-motif, the mouse
candidates were aligned to the initial Human H/ACA
snoRNA 42 sequence using the multiple alignment tool
ClustalW[16]. We further checked the secondary
structure conservation and stability by folding each can-
didate using RNAsubopt[17] with constraints, i.e.,
demanding single-stranded regions at the H-box and
ACA-motif. In total, we identified 7 of the 17 regions as
H/ACA snoRNA candidates homologous to the Human
H/ACA snoRNA 42 (see Additional file 2). The
sequence alignment of the final candidates and the
Human H/ACA snoRNA 42 including consensus sec-
ondary structure and sequence conservation is shown in
Figure 5. By checking with previous annotations, all of
the final candidates were confirmed as snoRNA ortho-
logs by the Ensembl database [18,19]. However, ncRNAs
in the Ensembl database were annotated using extensive
Infernal screens with Rfam covariance models [20],
i.e., profile stochastic context-free grammars comprising
primary sequence and secondary structure information.
To illustrate the benefits of the sum-of-pair gap cost
model, we additionally compared the performance of
clasp using both models in a snoRNA homology
search experiment. We selected the entire set of 19

Figure 3 Comparison of running times between clasp and
CHAINER. Average running time for clasp (linear gap costs with
λg1 = 1, λg1 = 1) and CHAINER (options: -l -lw 1) by chaining
different numbers of randomly generated fragments of length 100
between a 1 KB large query sequence from a virtual 100 KB large
database under the linear gap cost model. Comparison of running
time between use of clustering (by default) and no clustering in
clasp with equal data sets shown in inlay plot (same units on
axes).

Figure 4 Comparison of peak virtual memory usage between
claspand CHAINER. Peak virtual memory usage for clasp using
linear gap costs with εg1 = 1, λg1 = 1 (with and without
clustering) and CHAINER (with options -l -lw 1) by chaining
different number of randomly generated fragments of length 100
between a 1 KB large query sequence from a virtual 100 KB large
database under the linear gap cost model.
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annotated Human SNORA42 homologs in the Ensembl
database as a positive set. In the comparative
study, clasp was executed with sum-of-pair
gap costs (with εgsop = 0, λgsop = 0.5) and linear gap
costs with several different parameter selections
(εg1 = λg1 = 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 4, 8). For each para-
meter setting, the true positive rate (i.e., the fraction of
SNORA42 that was covered by at least one chain) was
recorded with respect to the total number of reported
chains, a function of the minimal required chain score.
In the average as well as the best case of parameter
selection the linear gap cost is outperformed by the
sum-of-pair model (Figure 6). Using sum-of-pair with
εgsop = 0 and λgsop = 0.5, 11 out of 19 annotated snoRNAs
are among the 19 best chains. With linear gap costs and
optimal parameter settings (εg1 = λg1 = 0.1), a list of 900
best scoring chains has to be scanned to find the same
number of annotated snoRNAs (49-fold increase). With
suboptimal parameters, about 6000 chains (314-fold
increase) need to be screened on average to retrieve the
same amount of snoRNAs. Note that alternative weight-
ing functions of fragment scores or in the linear gap
cost model, e.g., affine or non-linear functions, are cur-
rently not implemented but are subject to further
research.
Using the same methods and parameters as in the

search for homologs, the Human genome was screened
with the entire set of annotated Human H/ACA snoR-
NAs in the snoRNABase (107 sequences with a median
length of 134 nt) to identify divergent paralogs. Frag-
ment chaining of the 155 GB of BLAST output, com-
prising more than 1.3 × 109 hits, took only 11 hours on
a single 2.27 GHz 64-Bit Intel Xeon CPU with a peak
virtual memory consumption of 18 GB. In the end, 2294
non-overlapping chains were reported with sum-of-pair
gap costs. Requiring conservation in the H-box, the
ACA-motif, as well as in the secondary structure, 1550
candidates were retained. To filter out non-paralogous
regions different sequence identity cutoffs in the Clus-
talW alignment to known Human H/ACA snoRNAs
were applied. The number of remaining chains including

their fragment counts and their overlap with existing
annotations are summarized in Table 1. The annotations
comprise the snoRNABase, the set of snoRNAs and
snoRNA pseudogenes from the Ensembl database and
the Eddy-BLAST-snorna lib. The latter one is a set of
snoRNA candidates retrieved by post-processing WU-
BLAST screens starting from Human snoRNAs [21]. By
requiring more than 70% sequence identity to a snoR-
NABase annotated sequence, our set of final candidates
comprises 295 sequence of which 187 are not annotated

.......((((((((((.((((((........)))))).)))))).)).))................(((((((.....((.(((((((..((..........)))))..)))).))....)))))))......
HACA_42_H_sapiens UGGUAAUGGAUUUAUGGUGGGUCCUUCUCUGUGGGCCUCUCAUAGUGUACCCAUGCCAUAGCAAAUGGCAGCCUCGAACCAUUGCCCAGUCCCCUUACCUGUGGGCUGUGAGCACUGAAGGGGGUUGCACAGUG
HACA_42-1_Mus_musculus UGGGUUUGGAUUUAUGACAGGCCCGUUCCCCUGGGCCUCUCAUAGUGU-CCCAUGCUAGAGCAAUCCAUGGCCCCAAACCAUUGCCUGG--CCUGUGUCUGUAGGCUGCUGACAGUGAAGUGGGC--CACAAAG
HACA_42-7_Mus_musculus UGGAUUUGGAUUUAUGGCAGGCUCUUCCCCGUGGGCCUCUCAUAGUGU-CCCAUGCUAGAGCAAAUUGUGGCUCCUAACCAUUGCCCAGCCUCCGUGCCUGUAGGCUGCAGGCACUGAAGUGGGUCACACAACG
HACA_42-11_Mus_musculus UGGAUUUGGAUUUAUGGCAGGCUCAUCUCCCUGGGCCUCUCAUAGUGU-CCCAUGCUAGAGCAAAUUGUGGCUCCUAACCAUUGCCCAG--CCUCCG---------UGCUGGCACUGAAAUGGGU--CACACUG
HACA_42-14_Mus_musculus UUAGUUUGGAUUUAUGGCAGGCCCCUUUCCCUGGGCCUCUCAUAGUGU-UCUGUGCUAGAGCAGCUCUUGGCUCUGAACCAUUGCCUGG--CCUGUGUCUGUAGGCUGCUGGCACUGAAGUGGGUCACACAAUA
HACA_42-15_Mus_musculus UGGGUUUGGAUUUAUGGCAGGCCCGUUCCCCUGGGUCUGUCAUAGUGU-CCCGUGCUAGAGCAACCCGUGGCCCCGAACCAUUGCCUGG--CCUCUGCCUGUAGGCUGCUGGCACUGAAGUGGGUCGCACAGAA
HACA_42-16_Mus_musculus UGGAUUUGGAUUUAUGGCAGGCUAGUCCCCAUGGGCCUCUCAUAGUGU-CCCAUGCUAGAGCAAACUGUGGCUCCUAACCAUUGCCCAGCCUCCAUGCCUAUAGGCUACAGGCACUGAAGUACGUCACACAGUG
HACA_42-17_Mus_musculus AGUCAUUGGAUUGAUGGCAGGCUCGUCCCCCUGGGCCUCUCAUAGUGU-CCCAUGCUAGAGCAAAUUGUGGCUCCUAACCAUGACCUGGCCUCCGUGCCUGUAGGUGGCUGGCACUGAAGUGGGUCACACAGUG

Figure 5 Alignment of Human H/ACA snoRNA 42 and homologous H/ACA snoRNA candidates in mouse retrieved by BLASTand
claspwith sum-of-pair gap costs. Alignment of the Human H/ACA snoRNA 42 (SNORA42 in the snoRNABase) and 7 H/ACA snoRNA
candidates in mouse retrieved by combined use of BLAST (with options -W 8 -e 1e+20 -F F) and clasp (sum-of-pair gap costs with
λgsop = 0.5, λgsop = 0.5, fragment scores according to the length of the BLAST hit, and a minimal required chain score of 30). Sequence
alignment and consensus secondary structure were computed using ClustalW and RNAalifold with constraints, i.e. demanding single-
stranded regions at the H-box (blue rectangle) and ACA-motif (green rectangle).

Figure 6 Comparison between sum-of-pair gap costs and
linear gap costs in the retrieval of Ensemble annotated
SNORA42 homologs in mouse. The figure shows the true positive
rate (TPR) for identifying Ensembl-annotated Human SNORA42
homologs with respect to the total number of reported chains for
both linear and sum-of-pair gap cost models. In case of the linear
gap cost model, a wide range of values are selected for the
weighting parameters λg1 and εg1, i.e.,
λg1 = εg1 = {0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 4, 8}. In the
sum-of-pair gap cost model, the parameters εgsop = 0 and
λgsop = 0.5 are chosen. Note that the number of reported chains
for a given parameter set is entirely determined by the minimal
required chain score. The average TPR of clasp using the linear
gap cost model (λg1 = 0.5, εg1 = 0.5, dashed red line) is
significantly lower compared to sum-of-pair gap cost model (solid
black line). However, the performance of chaining with linear gap
cost models heavily depends on the selection of parameters
(shaded area).
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in the snoRNABase (see Additional file 3). 29 final can-
didates were not previously annotated in the snoRNA-
Base and only detectable by chaining two or more
BLAST hits. Overall, more than 98% of the final candi-
dates have been annotated previously, most of them by
the covariance approach of the Ensembl database. This
points out the high accuracy of this rather simple
homology search. Figure 7 shows a region that was
identified with a chain of only 3 fragments. It is a para-
log to the Human H/ACA snoRNA 77 (SNORA77 in
the snoRNABase) from the set of remaining unknown
snoRNA candidates.

Conclusions
Commonly used local alignment heuristics may fail to
retrieve sequence families with scattered conservation.
Chaining of short match fragments can overcome this
limitation, thereby substantially enhancing the effective
sensitivity of BLAST and similar approaches in homol-
ogy search. The clasp tool implements a fast local

fragment chaining algorithm supporting the linear and
the sum-of-pair gap model. The latter is available for
the first time in a running tool and is particularly sui-
table to cope with scattered sequence conservation, e.
g., evolutionary conserved structured ncRNAs. In this
field of application, it outperforms optimized linear
gap models in terms of accuracy and sensitivity. We
showed that the usage of Johnson priority queues
greatly improves the runtime performance in compari-
son to the only existing fragment chaining tool CHAI-
NER. The presented clustering approach facilitates
clasp to tackle large amounts of short match data by
alignment heuristics such as segemehl or BLAST. In
a simple homology search with H/ACA snoRNAs, we
were able to identify 7 H/ACA snoRNA candidates in
mouse, all confirmed by the annotation in the Ensembl
database. A large-scale survey for Human H/ACA
snoRNA paralogs yielded 295 candidates with more
than 70% sequence identity to Human H/ACA snoR-
NAs from the snoRNABase. More than 98% of the

Table 1 Novel candidates of Human H/ACA snoRNA paralogs

annotated candidate regions in %

sequence Identity fragments per chain number of chains snoRNABase Ensembl Eddy-BLAST-snornalib unknown

> 60% 1 286 37.8 94.4 84.3 6

2 29 0 69 86.2 3

≥ 3 10 0 70 60 3

all 325 33.2 91.4 83.7 12

> 70% 1 266 40.6 97.7 84.6 3

2 21 0 85.7 95.2 0

≥ 3 8 0 87.5 75 1

all 295 36.6 96.6 85.1 4

> 80% 1 233 46.4 98.7 85 1

2 10 0 90 100 0

≥ 3 2 0 100 100 0

all 245 44.1 98.4 85.7 1

Summary of H/ACA snoRNA candidates in Homo sapiens including their fragment counts and their overlap with previous annotations, i.e., the snoRNABase, the
set of snoRNAs and snoRNA pseudogenes from the Ensembl database and the Eddy-BLAST-snornalib in the UCSC RNAGenes track.

The candidates were retrieved by combined use of BLAST (with options -W 8 -e 1e+20 -F F) and clasp (sum-of-pair gap costs with εgsop = 0, λgsop = 0.5,
fragment scores according to the length of the BLAST hit, and a minimal required chain score of 30) with the entire set of Human H/ACA snoRNAs, annotated in
the snoRNABase. Each candidate shows a highly conserved H box and ACA motif as well as high secondary structure conservation with two separate stem loop
regions. Moreover, several different sequence identity scores in the ClustalW alignment to a known Human H/ACA snoRNA were required.

((((((.......(((((((.(((......))).))))))).......))))))...............(((.((((((..(((((((.......))))))).)))))).))).(....)......
HACA_63_H_sapiens GCAGACUCACUAUGCACCUGACUGUACUUCCAGGCAGGUGCUUUUUCUGUCUGCCAGAGAAACAUUCCAGGGUGCUGUGGCUGCCUC-ACCUAUCCAGGGCGAUGCAGCUCCCUGGGGACACAGGU
HACA_63-7_H_sapiens GCAGACUC--------CCUCA----GCAUCCA-GCGGGUGCUUUUUCGGUCUGCCAGUGAG-CAUUCCAUGGUGCUGUGACCAUUUUGACCUCUCUAGGGUGAUGCAGCUGCCUGGGGACACAGAG

Figure 7 Alignment of Human H/ACA snoRNA 77 and paralogous H/ACA snoRNA candidate retrieved by BLAST and clasp with sum-
of-pair gap costs. Alignment of the Human H/ACA snoRNA 77 (SNORA77 in the snoRNABase) and a novel paralogous H/ACA snoRNA
candidate retrieved by combined use of BLAST (options: -W 8 -e 1e+20 -F F) and clasp (sum-of-pair gap costs with εgsop = 0,
λgsop = 0.5, fragment scores according to the length of the BLAST hit, and a minimal required chain score of 30). It shows a highly conserved
H-box (blue rectangle) and ACA-motif (green rectangle) as well as high secondary structure conservation with two separate stem loop regions.
Despite a sequence identity score of 70 reported by ClustalW, BLAST was capable to retrieve only 3 short regions, marked by red rectangles,
none of which individually provides sufficient evidence of homology.
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candidates have been annotated previously, in particu-
lar with respect to the extensive Ensembl ncRNA
screens, emphasizing the high specificity of this rather
simple homology search.

Availability and requirements
Project name: clasp
Project home page: http://www.bioinf.uni-leipzig.de/

Software/clasp/
Operating system(s): platform independent
Programming language: C
Other requirements: none
License: GNU GPL
Any restrictions to use by non-academics: Note that a

license is needed to include the source code from the
clasp in commercial software projects.

Additional material

Additional file 1: More detailed description of data structures and
chaining algorithm. Text file containing a more detailed description on
the implemented data structures, i.e., Johnson priority queues and range
trees, as well as on the chaining algorithm with both gap costs models
and the clustering approach.

Additional file 2: Candidates of Human H/ACA snoRNA 42
homologs in mouse. Archive file containing genomic coordinates and
sequences of the 7 final candidates of Human H/ACA snoRNA 42
(SNORA42) homologs found in mouse (mm9).

Additional file 3: Candidates of Human H/ACA snoRNA paralogs.
Archive file containing genomic coordinates and sequences of the final
candidates of Human H/ACA snoRNAs paralogs, i.e., candidate set
requiring more than 70% sequence identity to a snoRNABase annotated
sequence, found in human (hg18) including the query sequences from
the snoRNABase.
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