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ABSTRACT

The Negatome is a collection of protein and
domain pairs that are unlikely to be engaged in
direct physical interactions. The database currently
contains experimentally supported non-interacting
protein pairs derived from two distinct sources: by
manual curation of literature and by analyzing
protein complexes with known 3D structure.
More stringent lists of non-interacting pairs
were derived from these two datasets by exclud-
ing interactions detected by high-throughput
approaches. Additionally, non-interacting protein
domains have been derived from the stringent
manual and structural data, respectively. The
Negatome is much less biased toward functionally
dissimilar proteins than the negative data derived by
randomly selecting proteins from different cellular
locations. It can be used to evaluate protein and
domain interactions from new experiments and
improve the training of interaction prediction
algorithms. The Negatome database is avail-
able at http://mips.helmholtz-muenchen.de/proj/
ppi/negatome.

INTRODUCTION

Protein–protein interactions are a crucial part of the
majority of biological processes. A vast array of high-
and low-throughput methods are currently used to
expand our knowledge about protein interaction
networks (1). Many of these experimental techniques
are inherently noisy and suffer from relatively high
false positive and negative rates [see, e.g. Huang and
Bader (2)].

To some extent, the problem of noisy and contradictory
results can be tackled by integrating heterogeneous data
within a rigorous machine-learning or statistical frame-
work (3,4). The availability of a high-quality standard of
truth is often crucial for the validation of new interaction
datasets and machine learning approaches. Positive
trusted data describing high-confidence interaction pairs
usually stem from careful literature curation efforts.
Extensive gold standard datasets are currently available
for several model organisms, including yeast (5) and
human (6). In contrast, the datasets containing experimen-
tally confirmed non-interacting protein pairs (NIPs) are
presently quite sparse (7). The lack of negative training
data represents a significant problem because the knowl-
edge about NIPs is as important for developing and
evaluating prediction algorithms as the knowledge of
true positive pairs (7–9).

A common practice in constructing negative ‘gold-
standards’ is to randomly select pairs of proteins having
different cellular localization and/or involved in different
biological processes (3,4,10–13). As demonstrated by
Ben-Hur et al. (14), the latter approach can lead to over-
optimistic estimation of method performance. Restricting
negative data only to pairs of proteins localized in differ-
ent cellular compartments allows for the creation of
protein sets enriched in non-interacting pairs, but such
pairs may introduce substantial functional bias hurting
downstream analyses and predictions. The use of such
data for building a classifier can result primarily in
predictions of protein co-localization. The fact that inter-
acting protein pairs have to be in the same place and time
does not imply that all proteins in the same compartment
will be interacting with each other. Furthermore, localiza-
tion to different cellular compartments does not exclude
physical binding in all cases: many proteins involved
in functional interactions re-locate to different compart-
ments during their life cycle and interactions between
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compartments exist, facilitated by organelle membrane
proteins, which have the ability to engage in interactions
on both sides of the organelle boundary.

The ratio of interacting protein pairs to all possible
pairs has been estimated to be below 1%. For example,
in Saccharomyces cerevisiae �6000 proteins allow for �18
million potential pairwise interactions but the true number
of interactions has been estimated to be well below 100 000
(15,16). Hence, proteins sharing the same cellular com-
partment and/or the same biochemical process are not
necessarily interacting with each other. Another possible
consequence of reducing the negative set to differentially
localized proteins is that sequence composition variability
between interacting and non-interacting datasets will be
artificially high (14). Such bias in sequence composition
can lead to over-optimistic performance estimations for
sequence-based protein–protein interaction prediction
methods. One possible way to address the problem of
bias is to use a negative set constructed by random
sampling of proteins from a given organism regardless
of their localization. Based on the estimated low number
of interacting pairs, such dataset will be fairly enriched
in negative data but still contain a small background of
interacting pairs.

In this publication, we describe two complementary
efforts to construct reliable negative interaction datasets.
One effort involves the collection of evidence against
physical interactions from literature, focusing only on
those cases where the lack of interaction between two
proteins was experimentally validated by an individual
experiment. In parallel, we analyzed complexes consisting
of three or more proteins deposited in the PDB (Protein
Data Bank) (17) and derived a set of protein pairs that,
while being in immediate vicinity in the context of a
protein complex, do not interact directly with each
other. The resulting database, which we call
the Negatome, is freely available from http://mips
.helmholtz-muenchen.de/proj/ppi/negatome.

DATABASE CONTENT

The Negatome comprises several datasets based on litera-
ture evidence and structural information (Table 1). A rep-
resentation focusing on non-interacting protein domains
is available as well. Experimental evidence was annotated
according to the standards established for protein-
interaction experiments in the PSI-MI format (18).

Structurally non-interacting protein pairs

From experimental structures of biological units as
provided by PDB (17), we derived our non-interacting
pairs as follows. First, for each biological unit hosting
more than two protein chains, we measured inter-chain
distances between all Cb atoms (Ca for glycine) using
the CCP4 software package (19,20). A pair of protein
chains was declared to be non-interacting if all inter-
chain distances were more than 8 Å (Supplementary
Figure S1). Pairs that were nearest neighbors to each
other in terms of inter-chain distances and pairs
mapping to same UniProt (21,22) accession number
were removed. For example, the PDB structure 1U0N
(Supplementary Figure S1) contains four chains: A, B, C
and D corresponding to von Willebrand factor, botrocetin
alpha chain, botrocetin beta chain and platelet
glycoprotein Ib. The physically interacting pairs are
A–B, A–C, A–D, B–C and C–D. Chains B and D do
not interact and are not nearest neighbors, therefore we
claim that those two proteins do not interact.
A total of 809 non-interaction pairs were derived for the

PDB dataset (Table 1). Because non-interacting pairs
derived from these structures may be a consequence of
non-observed electron density, truncation or modification
of the proteins to allow for crystallization, or other exper-
imental conditions, which do not occur naturally, we per-
formed additional filtering to derive a second dataset,
PDB-stringent, by removing interacting protein pairs as
described in the IntAct database (23). After IntAct filter-
ing, we were left with 745 NIPs (termed the PDB-stringent
dataset) (Table 1). For all protein pairs from PDB-
stringent, we list PDB chain ids and UniProt accessions
of associated full-length proteins (http://mips
.helmholtz-muenchen.de/proj/ppi/negatome).

Manually curated non-interacting pairs

Annotation of the manual dataset was performed analo-
gous to the annotation of protein–protein interactions and
protein complexes in previous projects published by our
group (24,25). Information about NIPs was extracted
from scientific literature using only data from individual
experiments but not from high-throughput experiments.
Only mammalian proteins were considered. Data from
high-throughput experiments were omitted in order to
maintain the highest possible standard of reliability.
Since negative results are usually of low scientific

Table 1. Overview of the Negatome datasets

Dataset name Derived from Description Number of pairs

PDB The PDB database Protein pairs that are members of at least one structural complex but do not
interact directly. Organism of origin is not restricted.

809

PDB-stringent PDB The PDB dataset filtered against the IntAct dataset. 745
PDB-PFAM PDB-stringent Non-interacting PFAM domains found in the same structural complex, filtered

as described in ‘Methods’ section.
458

Manual Manual literature
annotation

Manually annotated literature data describing the lack of protein interaction.
High-throughput data are not included. The data is restricted only to
mammalian proteins.

1291

Manual-stringent Manual The Manual dataset filtered against the IntAct dataset. 1162
Manual-PFAM Manual-stringent PFAM domain pairs found in the Manual dataset filtered as described in

‘Methods’ section.
523
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importance for the authors, this kind of data is inherently
difficult to find. Full-text searches in journals using terms
like ‘not interact’ reveal large numbers of articles which,
upon closer inspection, do not provide explicit experimen-
tal evidence supporting the non-interaction status of
protein pairs. Such data are mostly generated from
investigations of protein–protein interactions and protein
complexes.
We focused on the non-interacting pairs selected

manually from the scientific articles where they have
been used as control experiments or where they appear
as a result of testing multiple proteins as potential
interactors of target proteins. Often scientists carefully
choose negative controls for such experiments to be
present in the compartment of interest and/or to be
involved in relevant processes.
For example, Snyder et al. (26) reported that

b-synuclein regulates proteasome activity by interaction
with a-synuclein but does not interact with proteasomal
subunit S6. In another study, it was shown that Fbxl3
controls clock oscillations by mediating the degradation
of the two-cryptochrome proteins Cry1 and Cry2 (27).
Immunoprecipitation experiments of Cry proteins with
nine further F-box proteins revealed that only Fbxl3 was
able to co-immunoprecipitate with Cry1 and Cry2 and the
other nine proteins were not interacting with Fbxl3.
A total of 246 articles were used for the generation of

the Manual dataset. Due to the relatively large size of the
dataset, there is no strong bias toward certain functional
systems or cellular locales. In addition to UniProt primary
accessions of the non-interacting proteins, experimental
method and the PMID (PubMed identification number)
of the respective experiment are given in this dataset.
We also provide the Manual-stringent dataset obtained
by filtering literature derived data against known interac-
tion pairs from the IntAct database and removing pairs
involving the same proteins. The Manual and Manual-
stringent datasets contain 1291 and 1162 pairs, respec-
tively. Interestingly, the overlap between PDB-stringent
and Manual-stringent dataset is only 15 pairs.

Non-interacting domain pairs

We also provide datasets of non-interacting PFAM
domains derived from the PDB-stringent and the
Manual-stringent dataset, respectively. We mapped
proteins to PFAM (28) domains using cross-references
from the UniProt database (21). We assume that the
PFAM domains residing in the non-interacting PDB
amino acid chains do not interact. However, since chains
in the PDB do not always contain full-length proteins,
interacting domains might be missed. To account for
this possibility, we removed all domain–domain pairs
found in interacting protein pairs from IntAct. We make
a generous assumption that all domains are interacting
with each other if they belong to interacting proteins.
We also subtract all pairs of known interacting PFAM
domains as defined in the 3DID (29) and iPFAM (30)
databases. In summary, the number of unique non-
interacting PFAM domain pairs provided in the
Negatome is 458 and 523 for the PDB-PFAM and

Manual-PFAM datasets, respectively. Two domain pairs
are common between PDB-PFAM and Manual-PFAM.

DATA ANALYSES

Comparing non-interacting pairs with predictions from
STRING

The STRING database (31) aggregates vast amounts
of data and predictions of protein–protein associations
and interactions including the evidence based on
physical binding, genetic and functional context, experi-
mental data and text-mining results. We mapped our NIPs
against the STRING using a 100% sequence identity
threshold. Only a small fraction (13.8, 9.3, 8.9 and 8.3%
for PDB, PDB-stringent, Manual and Manual-stringent,
respectively) of our non-interacting pairs is functionally
associated by STRING. Most of these associations are
by ‘text-mining’ (Manual: 85%, Manual-stringent:
86.9%, PDB: 75.4%, PDB-stringent: 81.3% of the total
number of pairs associated by STRING) and ‘experimen-
tal’ (Manual: 57.5%, Manual-stringent: 52.3%, PDB:
71.4%, PDB-stringent: 56.5%) evidences (Supplementary
Table S1). Association by ‘text-mining’ can be misleading
as the names of NIPs derived from manual annotation
appear in the same text by definition. Likewise, proteins
co-occurring in the same structural complex have a very
high chance to be described together in publications. The
‘experimental’ evidence may contain a significant number
of false positive interactions since it is derived from many
high-throughput experiments.

Two methods measuring shared evolutionary pressure
(‘neighborhood’ and ‘co-occurrence’) support association
of <27 and 7% of NIPs found in STRING derived from
the PDB and Manual datasets, respectively. More
frequent association of PDB-derived non-interacting
pairs can be explained by tighter evolutionary constraint
between proteins sharing the same complex. NIPs from
the PDB dataset are additionally associated by
‘database’ evidence (PDB: 72%, PDB-stringent: 65%) as
they are frequently part of the same functional complex
and commonly share the same metabolic pathway.

Interestingly, there is higher support for association of
PDB non-interacting proteins by the ‘co-expression’
evidence compared with Manual dataset (�60% versus
4%), which contrasts to the generally poor levels of
co-expression of complex members found in yeast (32).
More detail analysis (see Supplementary Data).

Will a growing interaction dataset wipe the Negatome?

A possible criticism of our database could be that with
more and more complete knowledge of the interactome,
an ever-growing fraction of our NIPs will be proven
wrong. We attempted to estimate the rate at which our
data will be falsified in the near future. For protein inter-
action data, we used dates provided by IntAct, and for our
non-interaction pairs the dates of PDB deposition and
PubMed entry creation, respectively. By counting the
number of non-interaction pairs known at each given
time point from 1995 to 2007 (Supplementary Figure S2),
we found that the percentage of PDB non-interacting
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pairs contradicted by protein–protein interaction data
grew substantially from 0% in 1999 to 7% in 2002
where it stabilized, oscillating between 6.5% and 8%.
For the Manual dataset, the percentage of contradicted
interactions stabilized after increasing from 0 to 2% in
1999 and from 2 to 6% in 2004. The growth rate of our
stringent datasets allows us to believe that an increasing
number of non-interacting pairs will be available in the
foreseeable future. Finding interactions between a
pair of proteins does not necessarily falsify a NIP.
Differences in conditions in which experiments are
carried out may explain differences in propensities of
proteins to interact. Our database provides lists of
negative protein interactions which, when compared
with newly discovered interactions between the same
proteins, may help discern conditions preventing or
promoting such interactions.

Functional similarity between non-interacting proteins

Interacting proteins are involved in some common biolo-
gical function (16). Randomly picked pairs and even more
so pairs randomly assembled from proteins found in dif-
ferent compartments are less likely to contain proteins
with the same specific function. In order to assess the
extent of this common functional bias, we computed a
functional similarity score between interacting proteins
from IntAct, non-interacting proteins pairs constructed
based on non-colocalization and our NIPs. Protein pairs
with differential cellular localization were derived using
localization data from the DBSubLoc database (33) and
filtered against protein interactions from the IntAct
database. Functional similarity between proteins was
computed using three graph-based similarity measures
developed by Resnik (34), GraSM (35) and Jiang-
Conrath (36) implemented in the GOSim package (37)
version 1.1.5.4 written in R language (version 2.9.1) (38)
and using GO.db database version 2.2.11. Computations
were carried out with the biological process sub-tree of
Gene Ontology (39). For reasons of computational feasi-
bility, similarity for protein pairs from IntAct was
computed for a subset of 5000 randomly picked pairs.
As expected, on average, interacting protein pairs were
found to have a higher functional similarity than protein
pairs from different cellular compartments. The Manual
subset of NIP showed a score distribution similar to
IntAct, while the highest degree of functional similarity
was found in the PDB-derived data (Supplementary
Figures S3 and S4). More details can be found in
Supplementary Data.

Coevolution of interacting and non-interacting protein
and domain pairs

We profiled the presence or absence of domains found
in known interacting pairs (from iPFAM and 3DID)
and those in our non-interaction datasets across 460
genomes (40). We found that domains had significantly
greater co-occurrence in these organisms if they were
interacting compared to those in non-interacting pairs
(Supplementary Table S3). This result did not change
even if we profiled against various subsets of these 460

genomes. Detail description of methods used for
co-evolution analysis and more detail results are described
in Supplementary Data.

Non-interacting proteins are part of the interaction
network

Interestingly, proteins that constitute our non-interacting
datasets (PDB-stringent, Manual-stringent) have similar
average numbers of interacting partners (PDB-stringent
5.37; SD 35.51; Manual-stringent 6.85; SD 19.92) as any
other proteins in IntAct (6.88; SD 18.37) indicating that
they are not generally biased against interaction. These
results show that proteins in our database can engage in
interactions with many other partners but interactions
have not been observed for certain pairs.

CONCLUSIONS

At the time of writing, we provide a total of 1892 NIPs
and 979 predicted non-interacting domain pairs based
on the experimental evidence. Phylogenetic profiling
of domains showed that pairs of known interacting
domains had much tighter domain coevolution
compared to our sets of non-interacting domain pairs in
terms of coordinated presence or absence of domains
across a set of species. This result agrees with the idea
that correlated evolution can be helpful for predicting
interactions. Further analyses showed that the mean func-
tional similarity between our non-interacting proteins
(Manual, PDB datasets) is higher than the similarity
between proteins interacting according to IntAct and
much higher than the similarity within pairs generated
by randomly selecting individual proteins from different
cellular locations. The non-interacting pairs derived from
PDB show the highest mean functional similarity because
each pair belongs to a common protein complex. While
the use of randomly generated negative pairs, as well
as of those, where proteins are selected from different
cellular locations can be helpful to train classifiers for pro-
tein–protein interactions, our data should be a valuable
contribution as it is not as biased toward functionally dis-
similar pairs of proteins as these former types of data.
Our data can be useful for assessing the quality of new
experimentally extracted protein interaction datasets. The
non-interacting PDB pairs, in particular, should be bene-
ficial for predicting protein interactions within the same
complex. Our time-course analysis of the Negatome and
IntAct databases suggests that in spite of a growing
fraction of contradicting pairs between both sets, the
absolute number of non-interacting pairs in our gold-
standard set is constantly increasing. In summary, the
Negatome resource is expected to complement current
popular approaches for training predictors of protein–
protein interaction.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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