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A bacterial genome in transition - an exceptional
enrichment of IS elements but lack of evidence
for recent transposition in the symbiont
Amoebophilus asiaticus
Stephan Schmitz-Esser1,3*†, Thomas Penz1†, Anja Spang2 and Matthias Horn1

Abstract

Background: Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread
among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont
Amoebophilus asiaticus contains an unusually large number of transposase genes (n = 354; 23% of all genes).

Results: The transposase genes in the A. asiaticus genome can be assigned to 16 different IS elements termed
ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element
load, the A. asiaticus genome displays a GC skew pattern typical for most bacterial genomes, indicating that no
major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the
high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS
elements suggest that the IS elements of A. asiaticus are transpositionally inactive. Although we could show
transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our
results from sequence analyses. However, we detected contiguous transcripts between IS elements and their
downstream genes at nine loci in the A. asiaticus genome, indicating that some IS elements influence the
transcription of downstream genes, some of which might be important for host cell interaction.

Conclusions: Taken together, the IS elements in the A. asiaticus genome are currently in the process of
degradation and largely represent reflections of the evolutionary past of A. asiaticus in which its genome was
shaped by their activity.
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Background
Mobile genetic elements such as phages, plasmids and
transposable elements play a vital role in horizontal
gene transfer and genome rearrangement in bacteria
and archaea [1]. Among transposable elements, insertion
sequence (IS) elements are particularly widespread
within bacterial and archaeal genomes, and are consid-
ered the most abundant and ubiquitous genes in nature
[2-6]. IS elements can have profound effects on chromo-
some structure and evolution. Due to their ability to

disrupt genes and to induce rearrangements such as
inversions, duplications and deletions they are key med-
iators of genome plasticity [2,3,7-9]. Although IS ele-
ments are perceived primarily as genomic parasites,
their activity can also be beneficial. As composite trans-
posons IS elements are able to mobilize adjacent genes,
thereby mediating the spread of antibiotic resistance
genes and genes involved in the catabolism of complex
xenobiotics [10,11]. IS elements may also promote adap-
tation of their host genomes as demonstrated in experi-
mental evolution experiments [12-15]. In addition, IS
elements can influence or activate the expression of
adjacent genes, e.g. by forming hybrid or fusion
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promoters or by containing outward-directed promoters
[16-22].
IS elements are usually less than 2.5 kbp in length and

have a relatively simple genetic organization. Most IS
elements are flanked both by inverted and direct repeats
and generally encode no function other than those
involved in mobility, which is mediated by transposases
[16]. IS elements have been classified into several
families based on the degree of sequence conservation
of their transposases and its catalytic site, similar genetic
organization such as size, number of open reading
frames (ORFs) and potential coding sequences (CDSs),
inverted repeats, and genome target sites [2,16]. The
majority of IS elements encode transposases containing
the so-called DDE-motif consisting of the three amino
acids aspartic acid, aspartic acid, and glutamic acid.
These residues form the catalytic triad necessary for
transposition. They are found in three regions (N2, N3,
and C1) of the transposase amino acid sequence sepa-
rated by spacers of various lengths [2,16].
Although IS elements are found in the majority of

sequenced bacterial and archaeal genomes [2-4], their
distribution is patchy, and their occurrence within single
genomes is usually below 3% [2,6]. IS elements are very
rare in the genomes of most ancient host-restricted
symbionts or pathogens such as mutualistic insect and
clam symbionts or chlamydiae [23,24]. On the other
hand, elevated numbers of IS elements has been
observed in the genomes of bacteria which adapted only
recently to an intracellular or pathogenic lifestyle
[8,25-27]. However, this view has been challenged by
the recent detection of IS element-rich genomes in
ancient symbionts such as Wolbachia spp. or Orientia
tsutsugamushi [9,28-31]. Interestingly, the genomes con-
taining the highest percentages of IS elements are from
obligate intracellular bacteria: Orientia tsutsugamushi
[28,29], the g1 symbiont of the marine oligochaete Ola-
vius algarvensis [32], the symbionts of grain weevils
[26,33], and the amoeba symbiont Amoebophilus asiati-
cus 5a2 [34].
Amoebophilus asiaticus is a Gram-negative, obligate

intracellular symbiont, which has been discovered within
an amoeba isolated from alkaline lake sediment [35].
Highly similar A. asiaticus strains have been recovered
from various sources worldwide [35-38]. A. asiaticus
shows highest 16S rRNA similarity to ‘Candidatus Car-
dinium hertigii’, an obligate intracellular parasite of
arthropods able to manipulate the reproduction of its
hosts [39]. Both organisms belong to the phylum Bacter-
oidetes and form a monophyletic lineage in 16S rRNA-
based phylogenetic trees [35], consisting only of sym-
bionts and sequences retrieved from coral samples [40].
The A. asiaticus genome is only moderately reduced in
size compared to many other obligate intracellular

bacteria [41,42] but nevertheless, its biosynthetic cap-
abilities are extremely limited [34]. The A. asiaticus gen-
ome encodes a hitherto unparalleled high number of
proteins with eukaryotic domains such as ankyrin
repeats, TPR/SEL1 repeats, leucine-rich repeats and
domains from the eukaryotic ubiquitin system, and it
contains an unusually large number of transposase
genes (n = 354) corresponding to 23% of all genes [34].
Here, we report on the in-depth analysis of the IS ele-

ments in the A. asiaticus genome. We classified them
and describe their main characteristics. We demon-
strated that other symbionts closely related to A. asiati-
cus contain highly similar IS elements, and we could
show that although they are transcribed, they exhibited
no transpositional acitivity on a population level during
a time period of almost 1,000 days. Taking into account
evidence that no major rearrangements have occurred
recently in the A. asiaticus genome, this suggests that
the IS elements are evolutionary older components of
the A. asiaticus genome, which likely played an impor-
tant role during genome reduction and adaptation to an
obligate intracellular life style.

Results
Diversity of IS elements in the A. asiaticus 5a2 genome
IS elements make up 183 kbp (10%) of the A. asiaticus
genome. In total, 354 transposase genes (corresponding
to 23% of all CDSs) were identified in the detailed and
manually curated analysis performed here (Tables 1, 2).
Compared to other sequenced prokaryotic genomes, the
percentage of IS elements as well as the number of IS
elements per megabase genome is among the highest in
A. asiaticus (Additional file 1, Figures S1, S2). We were
able to assign the vast majority of these transposase
genes (n = 329, 93%; including partial IS element copies)
to 16 different IS elements (ISCaa1 to ISCaa16), which
belong to eight different IS element families, with IS5
family IS elements being most abundant in the A. asiati-
cus genome (Table 2). Each of the 16 IS elements is pre-
sent in 2 to 24 full-length copies in the A. asiaticus
genome, the only exception being ISCaa1, which was
identified earlier by the ISFinder website [43] and is
only present as a single full-length copy (Table 2). This
results in a total copy number of 122 full-length IS ele-
ments that are evenly spread across the A. asiaticus gen-
ome [34]. A high number of IS elements in A. asiaticus
is truncated (n = 143), and in some cases (e.g. ISCaa5,
ISCaa6 and ISCaa11) there are more truncated than
full-length copies present (Table 2). Truncation sites
were generally not conserved, i.e. truncations occurred
in different regions, and truncated IS elements show
varying lengths (Additional file 1, Figure S3). For most
of the full-length IS element copies (n = 101, 83%) we
could not identify direct repeats (Tables 1, 2). In the
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following sections we shortly describe few selected IS
elements of A. asiaticus in more detail.

ISCaa4
ISCaa4 is the most abundant IS element in A. asiaticus. It
is present in 24 full-length copies, 21 of these copies
should be able to produce an intact, functional transpo-
sase. ISCaa4 belongs to the IS1 family and shows a typical
IS1 family DDE-motif [2,44]. Similar to other IS1 family
members, the ISCaa4 transposase is encoded by two over-
lapping ORFs, which are probably translated into a 226
amino acid transposase by -1 ribosomal frameshifting
(Table 2, Additional file 1, Figure S4). Translational frame-
shifting is often found in IS elements and represents an
important mechanism regulating the expression of the
transposases at a translational level [16,45]. Translation
starts at the first ORF (orfA) and shifts to the -1 reading
frame at the so-called slippery site and continues in a sec-
ond overlapping ORF (orfB) resulting in a transframe
ORFAB protein. The predicted frameshift site in ISCaa4
(AAAAAAG) is highly shift-prone in bacteria such as A.
asiaticus that have only a single tRNALys (anticodon:
UUU) and lack the tRNALys with the anticodon UUC
[45,46]. In ISCaa4 five nucleotides downstream of the
putative slippery site a stem-loop structure is predicted
(ΔG -6.3 kcal/mol) (Additional file 1, Figure S4). Such
stem-loop structures have been shown to be stimulatory
for -1 ribosomal frameshifting [45,46]. Interestingly,
ISCaa4 shows highest amino acid sequence identity (46 to
51%) to uncharacterized IS elements from methanogenic
archaea of the family Methanosarcinaceae; the similarity
to other transposases is lower than 40%. In phylogenetic
trees, ISCaa4 forms a stable monophyletic group with
these archaeal transposases, indicating interdomain hori-
zontal gene transfer between methanogenic archaea and
A. asiaticus (Figure 1, Additional file 1, Figure S5).

ISCaa3
ISCaa3 is present in ten full-length copies in A. asiaticus
and belongs to ISL2 group within the IS5 family (based

on the presence of a typical DDE-motif) whose transpo-
sases typically consist of a single ORF [2,16]. The trans-
posase of ISCaa3 however, is encoded by two
overlapping ORFs most likely translated into a 275
amino acid protein by -1 ribosomal frameshifting. In
contrast to other IS elements with canonical slippery
sites like ISCaa4 and ISCaa9, no stimulatory stem-loop
structure possibly enhancing ribosomal frameshifting is
predicted downstream of the slippery site in ISCaa3
(Additional file 1, Figure S6). ISCaa3 shows highest
amino acid sequence identity (57 to 66%) to ISCaa2 and
IS elements found in the intracellular bacteria Orientia
tsutsugamushi, Legionella drancourtii, Regiella insecti-
cola, and Parachlamydia acanthamoebae. In phyloge-
netic analyses ISCaa2, ISCaa3 and related IS elements
from intracellular bacteria consistently group together in
all treeing methods applied, suggesting horizontal trans-
fer of IS elements between these intracellular bacteria
(Figure 1, Additional file 1, Figure S7). Interestingly, a
number of cyanobacterial IS elements form a sister
group with the ISCaa3-related IS elements.

ISCaa9
ISCaa9 is an 881 bp IS element which is present in 15
almost identical copies (the differences occur only in the
inverted repeats). ISCaa9 belongs to the IS5 family and
shows highest amino acid sequence identity (45%) to
ISMac15 from Methanosarcina acetivorans C2A, and
40% amino acid identity to ISWpi1, an IS element found
in many Wolbachia strains [47,48]. The ISCaa9 transpo-
sase is encoded by three consecutive and overlapping
ORFs which are translated into a 253 amino acid pro-
tein (Table 2, Additional file 1, Figure S8). We propose
a stop codon read-through to occur at the stop codon
(UGA) at nucleotide positions 263 to 265, which is sup-
ported by the presence of the stop codon in all 15
ISCaa9 copies in A. asiaticus, the absence of a stem-
loop structure indicative of a terminator downstream of
the stop codon, and the observation that UGAA is a
weak stop codon quartet [49,50]. We predict that the

Table 1 IS element statistics for the genome of A. asiaticus

No. of protein coding genes 1557

No. of transposase encoding genes 354
(23% of all protein coding genes)

No. of transposase encoding genes assigned to IS elements 329
(93% of all transposase genes)

No. of full-length IS element copies* 122

No. of partial IS element copies* 143

No. of full-length IS element copies with functional transposase gene 106
(87% of all full-length IS element copies)

No. of full-length IS element copies without direct repeats 101
(83% of all full-length IS element copies)

* Note that IS elements can consist of more than one transposase gene
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Table 2 IS elements in the A. asiaticus 5a2 genome

IS
element

IS
family

Number of ORFs
(predicted translational frameshift)

Length
of IS

element
[bp]

Inverted
repeats
[bp]a

Direct
repeats
[bp]b

G+C content
of IS

element [%]
(range)

Length of
transposase
[amino acids]

Number of full-length IS
element copies

(conservation on DNA level)

Number of
partial IS
element
copies

Number of full-length IS element
copies with intact transposase

genes
(conservation on protein level)

ISCaa1c IS1 1 759 17/21 0 35.7 232 1 6 1

ISCaa2 IS5,
ISL2
group

2
(-1)

916 19/20 0 36.3 275 3
(99-100%)

3 3
(99-100%)

ISCaa3 IS5
ISL2
group

2
(-1)

914 22/23 0 36.5 275 10
(99-100%)

5 9
(99-100%)

ISCaa4 IS1 2
(-1)

732 17/22 8/10 37.4
(36.2 - 38.0)

226 24
(85-100%)

8 21
(96-100%)

ISCaa5 IS982 1 932 18/21 0 38.2 274 10
(99-100%)

24 8
(99-100%)

ISCaa6 IS5,
ISL2
group

1 991 15/19 0 36.6
(35.3 - 36.6)

275 18
(86-100%)

41 17
(88-100%)

ISCaa7 IS110 1 1483 0 0 31.9 343 3
(100%)

4 3
(100%)

ISCaa8 IS5,
IS1031
group

2
(+1)

893 18/22 0 39.5 264 6
(99-100%)

6 6
(99-100%)

ISCaa9 IS5 3
(-1 ORFBC)

881 18/21 0 38.8 253 15
(100%)

3 15
(100%)

ISCaa10 IS200/
IS605
IS200
group

1 527 0 0 38.5 147 7
(99-100%)

2 7
(99-100%)

ISCaa11 IS481 1 1031 10/11 6/3 38.9
(37.4 - 39.7)

314 10
(83-100%)

27 3
(87-100%)

ISCaa12 IS481 1 1210 29/34 6/2 37.6 364 3
(100%)

3 3
(100%)

ISCaa13 IS5,
IS427
group

2
(+1)

860 17/21 0 40.7 253 2
(99%)

7 1

ISCaa14 IS110 1 1256 0 0 38.1 326 2
(97%)

0 1

ISCaa15 IS1182 1 1434 18/18 4/2 35.9 457 3
(100%)

3 3
(100%)

ISCaa16 IS6 1 837 15/18 0 37.4
(34.4 - 37.4)

235 5
(82-100%)

1 5
(85-100%)

a number of base pairs conserved between left and right end repeats/length of the repeat
b length of direct repeat/number of isoforms with direct repeat
c ISCaa1 was identified by the ISFinder website http://www-is.biotoul.fr/
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stop codon is recoded into tryptophane (UGG), a com-
mon feature of UGAA stop codon quartets [50]. In
addition, the majority of ISCaa9-related transposases
encodes a tryptophane at the position of the stop codon
read-through in ISCaa9 (Additional file 1, Figure S9).
We predict a translational -1 frameshifting at a slippery
site (AAAAAAG) between orfB and orfC (Additional file
1, Figure S7). Five nucleotides downstream of this puta-
tive slippery site, a stem-loop structure (ΔG -12.6 kcal/
mol) is predicted in ISCaa9 (Additional file 1, Figure
S8). The ISCaa9 transposase contains a DDE-motif,
which is most similar to the IS1031 group within the
IS5 family, the transposases of this group however, are
usually encoded by a single ORF [2].

ISCaa10
ISCaa10 is with a length of 527 bp a very short IS ele-
ment that contains a single ORF encoding a 147 amino
acid transposase. It belongs to the IS200/IS605 family
and IS200 group of IS elements comprising the shortest
known transposases [2]. Members of the IS200 group
are unusual IS elements because their transposases do
not contain the DDE-motif found in most transposases.
Instead they belong to the Y1 transposases with a cataly-
tic tyrosine residue and a conserved HuH motif (consist-
ing of a histidine, a hydrophobic amino acid, and
another histidine) [51,52]. Interestingly, this motif is pre-
sent only in two of seven ISCaa10 copies; in the others,
the second histidine is replaced by tyrosine, which

might render these copies nonfunctional. Other unusual
features of IS200 IS elements, that are also found in
ISCaa10, are the absence of both direct and terminal
inverted repeats and the presence of secondary struc-
tures leading to low transcriptional and transpositional
activity [51-53]. For example, IS200 from Salmonella
typhimurium LT2 forms two stem-loop structures: The
first is a transcriptional repressor terminating impinging
transcripts, the second acts at the translational level and
occludes the ribosome binding site [53]. Similarly, a
stem-loop structure is predicted ten nucleotides
upstream of the start codon of the ISCaa10 transposase
and close to the 3’ end of ISCaa10 (ΔG -13 kcal/mol
and -20.3 kcal/mol, respectively). ISCaa10 shows highest
amino acid sequence identity (76%) to (uncharacterized)
IS200 family transposases from Xenorhabdus nemato-
phila (GenBank accession no: YP_003712757).

Unclassified IS elements
Twenty-five transposase genes could not be assigned to
either of the 16 A. asiaticus IS elements under the cri-
teria applied here. Among these unclassified full-length
transposases two transposases belong to the IS110
family (Aasi_1379 and Aasi_1284); and to the Tn3
family (Aasi_0096, Aasi_0545); one belongs to the IS3
family (probably consisting of the two consecutive ORFs
Aasi_1748 and Aasi_0907); and two belong to the
YhgA-like family of putative transposases (Aasi_0894,
Aasi_1306; PFAM-family PF04754).

Cyanobacteria

Firmicutes

Regiella insecticola
ISCaa2 Amoebophilus asiaticus

ISCaa3 Amoebophilus asiaticus 
Legionella drancourtii

Parachlamydia acanthamoebae

Orientia tsutsugamushi

A B

Cyanobacteria

ISCaa4 Amoebophilus asiaticus

Methanosarcinaceae

Sulfolobus islandicus
Acinetobacter johnsonii

Flavobacterium johnsoniae

Enterobacteriaceae

Figure 1 Phylogenetic relationships of ISCaa3, IsCaa4 and related IS5 and IS1 family transposases. Amino acid-based phylogenetic trees
calculated with ARB using the TREE-PUZZLE algorithm are shown: (A) Phylogenetic relationships of ISCaa3 (IS5 family) and (B) ISCaa4 (IS1
family). Transposase sequences consisting of two ORFs were merged into a single ORF. Filled Black circles indicate nodes which are supported
by TREE-PUZZLE support values and maximum parsimony bootstrap values (1000x resampling) greater than 90%. The bar represents 10%
estimated evolutionary distance. Detailed versions of both phylogenetic trees are available as Additional file 1, Figure S5 and S7.
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Conservation of IS elements among different A. asiaticus
strains
In order to analyze whether the IS elements found in the
genome of A. asiaticus 5a2 are also present in closely
related A. asiaticus strains, we performed PCR using pri-
mers targeting the 13 most abundant IS elements (Addi-
tional file 2, Table S1) with genomic DNA from A.
asiaticus strain EIDS3 [35] as well as from two novel A.
asiaticus isolates, A. asiaticus US1 and A. asiaticus WR.
These strains show 98.9%, 99.2%, and 98.5% 16S rRNA
sequence similarity to A. asiaticus 5a2, respectively, cor-
responding to strain and species level diversity, respec-
tively. Six out of the 13 IS elements analyzed here were
detected in all four A. asiaticus isolates. Cloning and
sequencing of PCR products obtained from A. asiaticus
EIDS3 revealed nucleic and amino acid sequence identi-
ties to consensus sequences of the A. asiaticus 5a2 IS ele-
ments of 87% to 98% (Table 3). The lack of PCR
products for some IS elements indicates either the
absence of these IS elements in the investigated A. asiati-
cus strains or a low degree of conservation and hence the
absence of or mismatches with the primer target sites.

Transcription but lack of transpositional activity of the A.
asiaticus IS elements
The large copy number and the high degree of conser-
vation of some IS elements identified in the A. asiaticus

5a2 genome might indicate that they are transposition-
ally active. To investigate this, we first asked whether
the IS elements are transcribed during intracellular
replication of A. asiaticus in its amoeba host. Using
reverse transcriptase (RT)-PCR, we analyzed the tran-
scription of those 13 IS elements that are present in at
least three copies in the genome (ISCaa2 to ISCaa12,
ISCaa15 and ISCaa16). The detection of transcripts of
all 13 IS elements demonstrates that at least one copy
each is actively transcribed (Figure 2). Next, we used
Southern hybridizations to check for chromosomal rear-
rangements resulting from transposition events
[12,14,54]. We analyzed the same 13 IS elements for
which we could show transcription and compared DNA
from the same A. asiaticus culture isolated in November
2006 and in July 2009, respectively, a period of 984
days. We could not detect differences in the banding
pattern indicative for chromosomal rearrangements in
Southern hybridizations for any of the IS elements
tested (Figure 3).

Contiguous transcription of IS elements and their
downstream genes
Some of the A. asiaticus IS elements are in close proxi-
mity to their downstream genes (with distances less
than 50 bp). As previous reports have shown that IS ele-
ments can influence the transcription of neighboring

Table 3 Occurrence of IS elements in four different A. asiaticus strains based on PCR.

IS element in A. asiaticus 5a2 A. asiaticus EIDS3
(amino acid identity to A. asiaticus 5a2 element)

A. asiaticus WR A. asiaticus US1

ISCaa2 +
>(95%)

- -

ISCaa3 +
>(97%)

+ +

ISCaa4 - + -

ISCaa5 +
>(94%)

- +

ISCaa6 +
>(92%)

- +

ISCaa7 - - -

ISCaa8 +
>(91%)

+ +

ISCaa9 +
>(94%)

+ +

ISCaa10 +
>(98%)

+ +

ISCaa11 +
>(90%)

+ +

ISCaa12 +
>(98%)

+ +

ISCaa15 +
>(87%)

+ -

ISCaa16 - - -
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genes [17-21], we investigated whether contiguous tran-
scripts between A. asiaticus IS elements and down-
stream genes occur. We analyzed ten selected loci
where IS elements and their downstream genes are
encoded on the same strand and have the same orienta-
tion (Figure 4). Using RT-PCR we could show contigu-
ous transcripts of the investigated IS elements with their
downstream genes at 9 out of 10 analyzed loci (Figure
5). We performed two control experiments in order to
exclude that the observed transcripts from RT-PCR
derive from unspecific background noise transcriptional
read-through. One control targeted an unlikely contigu-
ous transcript between two genes located on different
strands and oriented in opposite directions (Aasi_1200/
1201, Figure 4). We could not detect transcripts in this
control reaction (Figure 5), indicating that the observed
transcripts from the nine loci of IS elements and their
downstream genes are above unspecific read-through
transcription. This is further supported by a second,
semi-quantitative control experiment in which we com-
pared RT-PCR products (using the same conditions)
from contiguous transcripts between IS elements and
their downstream genes with the products from RT-
PCR reactions targeting only the downstream genes

(Additional file 1, Figure S10). In all cases the obtained
bands were of similar intensity, providing further evi-
dence that the observed contiguous transcripts are
above unspecific transcriptional read-through.

Discussion
Mobile genetic elements such as IS elements move
within and between genomes. Owing to its intracellular
lifestyle in free-living amoebae A. asiaticus is, however,
largely shielded from other bacteria. Although horizontal
gene transfer seems unlikely to occur under these cir-
cumstances, previous studies proposed that amoebae
may serve as hot spots for horizontal gene transfer
among intracellular bacteria [34,55], and according to
the ‘intracellular arena’ hypothesis genetic material may
move in and out of communities of obligate intracellular
bacteria that co-infect the same intracellular host envir-
onment [23]. We identified four IS elements in A. asia-
ticus that were likely involved in horizontal gene
transfer although the direction of the transfer cannot be
inferred (ISCaa2, ISCaa3, ISCaa4, ISCaa12; Figure 1,
Additional file 1, Figure S5, S7). Three of these IS ele-
ments group with IS elements from several other intra-
cellular bacteria related to rickettsiae, legionellae and

m 4 5 6 m

16S rRNA

1000 bp

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 mm

ISCaa2 ISCaa3 ISCaa4 ISCaa5 ISCaa6 ISCaa7

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 mm

ISCaa8 ISCaa9 ISCaa10 ISCaa11 ISCaa12 ISCaa15

1 2 3m m

ISCaa16

800 bp

500 bp

600 bp

400 bp

500 bp

A

B

Figure 2 Transcription of IS elements during intracellular growth of A. asiaticus 5a2 in its Acanthamoeba host. Transcription of 13
selected A. asiaticus IS elements was analyzed with reverse transcriptase PCR. Whole RNA from the Acanthamoeba host harboring A. asiaticus
was transcribed into cDNA and subsequently used for PCR. (A) Reverse transcriptase PCR reactions. Lanes 1: cDNA; lanes 2: positive control,
genomic DNA purified from amoebae containing A. asiaticus; lanes 3: negative control, no nucleic acids added. (B) PCR using 16S rRNA gene-
specific primers was used to control for the absence of DNA in the RNA preparation. Lane 4: positive control, genomic DNA; lane 5: RNA; lane 6:
negative control, no nucleic acids added. m: molecular size marker. Reverse transcriptase-PCR reactions were performed in three biological
independent replicates.
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chlamydiae, and consistent with previous findings it is
conceivable that amoebae or other protozoa served as a
common habitat for these microbes. One IS element of
A. asiaticus is most closely related to IS elements found
in free-living methanogenic archaea (Methanosarcina-
ceae). Anoxic aquatic sediments, where free-living amoe-
bae and methanogenic archaea can be found, might
represent a possible shared habitat facilitating horizontal
gene transfer [56-58]. Horizontal gene transfer of IS ele-
ments between distantly related organisms is rather rare
[59]. Hence the discovery of related IS elements in three
different bacterial phyla (Bacteroidetes, Proteobacteria,
Chlamydiae) and the Archaea might be surprising.
However, a recent study based on the analysis of 800
bacterial and archaeal genomes showed that although
the majority of horizontal gene transfer events occur
between closely related organisms there is a consider-
able number of large-distance horizontal gene transfer
events [60]. Our observations expand our view on the

extent of horizontal gene transfer of IS elements among
distantly related microbes, and they provide a glimpse
into past interactions of A. asiaticus with other
microbes during its evolutionary history.
Several lines of evidence point to an ancient origin of

many IS elements in A. asiaticus. First, ISCaa4, ISCaa6,
ISCaa11, and ISCaa16, which together make up 46% of
all full-length A. asiaticus IS elements, show a remark-
ably low degree of sequence conservation among their
different copies (Table 2). This is in contrast to high
sequence similarities expected if IS elements have
entered a genome and spread only recently [4,61]. Sec-
ond, the high number (n = 143) of truncated IS element
copies suggests that these IS elements have been present
in the A. asiaticus genome for extended time periods
during which they disintegrated slowly. Third, the GC-
content of the A. asiaticus IS elements (37.3% on aver-
age, range: 31.9 to 40.7%) is similar to the overall GC
content of the A. asiaticus genome (35.0%). This

1 2

ISCaa9

1 2

ISCaa15

1 2

ISCaa4

1 2

ISCaa5

1 2

ISCaa6

1 2

ISCaa7

1 2

ISCaa8

1 2

ISCaa3

1 2

ISCaa10

1 2

ISCaa11

1 2

ISCaa12

1 2

ISCaa2

1 2

ISCaa16

Figure 3 Analysis of transpositional activity of the most abundant IS elements of A. asiaticus 5a2. Transposition of IS elements was
analyzed with Southern hybridizations using IS element-specific probes and DNA purified from the same A. asiaticus 5a2 culture in November
2006 and July 2009, respectively. DNA was digested with Eco32I (except for ISCaa2, where HindIII was used). Each visible band corresponds to at
least one IS element copy on the respective DNA fragment, as the restriction endonucleases do not cut within the IS elements. IS elements are
indicated above each hybridization; lanes 1: DNA isolated November 2006; lanes 2: DNA isolated July 2009. The absence of changes in the
banding patterns between both time points indicates that no (major) chromosomal rearrangements due to IS element transposition has
occurred.
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suggests that considerable time has elapsed to allow the
base composition of the IS elements to adapt towards
the general base composition of the A. asiaticus genome
[62]. Finally, at least six IS elements are conserved
among four different A. asiaticus strains, some of which
show a relatively high divergence (Table 3). Taking into
account that our PCR based screening likely underesti-
mates the actual number of shared IS elements (due to
mismatches at the primer binding sites in more diverged
homologs), this indicates that many - if not most - A.
asiaticus IS elements were already present in the last
common ancestor of the A. asiaticus strains investigated
here. Taken together, there is compelling evidence that
the IS elements have been residing in the A. asiaticus
genome for considerable evolutionary time periods.
We noted previously that the A. asiaticus genome

shows a GC skew pattern typical for most bacterial

genomes with two major shifts at the origin and termi-
nus of replication and only few local deviations, which
are indicative of recent genome rearrangements [34].
This is remarkable because with the exception of Lacto-
bacillus helveticus DPC 4571 and Shigella sonnei Ss046
(whose genomes contain significantly lower percentages
of IS elements than A. asiaticus; Additional file 1, Fig-
ures S1, S2)[27,63], all other bacteria with high numbers
of IS elements do not show such a regular genomic GC
skew pattern (Additional file 1, Figure S11). Thus,
despite of the high number of IS elements, the A. asiati-
cus genome has not been reshuffled extensively recently,
which indicates that most IS elements are transposition-
ally inactive and also that recombination events between
highly similar IS element copies have not occurred.
A mechanism by which apparently inactive, non-func-

tional IS elements can be maintained in bacterial
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Aasi_0380 ISCaa8
B
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Aasi_1135

I
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Aasi_1085
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ISCaa13
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ISCaa15
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L (positive control)
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ISCaa11

Figure 4 Genomic organization of selected A. asiaticus IS elements and their downstream genes. IS elements are shown as dark grey
pentagons; downstream genes as light grey pentagons; inverted repeats are represented by vertical black bars. The distance between IS
elements and downstream genes is indicated. Reverse transcriptase PCR was used to test for contiguous transcription (Figure 5); the size of the
expected PCR products are indicated as horizontal black lines below each locus. Panels (A) to (J) show the organization of IS elements and their
downstream genes. Panels (K) and (L) show the genomic organization of genes used for control reactions in the reverse transcriptase PCR
experiments. Aasi_1200 and Aasi_1201 are located in opposite direction on different strands and served as negative control; Aasi_0308 and
Aasi_0309 representing the groEL/groES operon served as positive control. An asterisk (*) indicates genes which are not drawn to scale (due to
their length). Further details on the genomic organization of the analyzed loci and the downstream genes (including locus_tags of the IS
elements) are available in Additional file 2, Table S3.
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genomes is gene conversion, which was described
recently for the genome of Wolbachia wBm, a mutualis-
tic symbiont of the nematode Brugia malayi whose gen-
ome contains a number of highly similar IS element
copies rendered non-functional by multiple stop codons
and frame shifts [64,65]. In contrast to Wolbachia wBm,
A. asiaticus still encodes intact copies of each IS ele-
ment, and many IS elements show relatively high
sequence divergence (Table 2). In addition, the transpo-
sase genes of different non-functional IS element copies
show variable pseudogenization states. This largely rules
out gene conversion as the main mechanism for mainte-
nance of IS elements in A. asiaticus.
Rather unexpectedly, we detected transcription of 13

A. asiaticus 5a2 IS elements during intracellular growth
in amoebae (Figure 2). Generally, IS elements are
among the lowest expressed genes due to their poten-
tially detrimental effects on the host genome
[16,61,66-70]. For several A. asiaticus IS elements
(ISCaa2, ISCaa9, ISCaa10, ISCaa14, ISCaa15; data not
shown) stable hairpin structures within the first 50 bp

of the IS elements are predicted, which might interfere
with expression both at the transcriptional and the
translational level, thus controlling the activity of these
IS elements. In addition, evidence for programmed
translational frameshifting, another regulatory mechan-
ism, can be found in six A. asiaticus IS elements (Table
2). Translational frameshifting acts at the level of trans-
lation elongation between two consecutive (and partially
overlapping) open reading frames where the ribosome
slides one basepair up- or downstream at a so-called
slippery site [16,45,66]. For several IS elements of A.
asiaticus, the occurrence of frameshifting is supported
by the presence of a canonical slippery site, of stimula-
tory secondary structures downstream of the slippery
site and, most importantly, the merged amino acid
sequences of the IS elements transposase ORFs show
more significant Blast hits than the single ORFs alone
(data not shown). In summary, transcription of several
IS elements occurs in A. asiaticus, but there is evidence
that many IS elements are tightly regulated both at the
transcriptional and the translational level.

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 mm

500 bp
700 bp

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 mm

800 bp

500 bp

300 bp
Figure 5 Contiguous transcription of A. asiaticus IS elements with their downstream genes. Transcription was analyzed with reverse
transcriptase PCR. Whole RNA from the Acanthamoeba host and A. asiaticus 5a2 was transcribed into cDNA and subsequently used for PCR.
Genomic organization of the tested loci and the expected sizes of the PCR products are shown in Figure 4. Locus_tags are indicated above the
gel images; lanes 1: cDNA; lanes 2: positive control, genomic DNA; lanes 3: negative control, no nucleic acids added. Contiguous transcription
was demonstrated for all tested loci except for the IS element Aasi_0897 (ISCaa16) and its downstream gene Aasi_1745. The genes Aasi_1200/
1201 were used as negative control (as they are located on different DNA strands and have opposing orientation). The groEL/groES operon
(Aasi_0308/0309) was used as a positive control. All experiments were performed in three biological independent replicates.
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Southern hybridizations demonstrated the absence of
major transposition events and genome rearrangements
for A. asiaticus during a time period of 984 days (Figure
3). With an estimated generation time of Acanthamoeba
sp. 5a2 infected with A. asiaticus of 19 h (data not
shown), this time period corresponds to approximately
1200 generations of the Acanthamoeba host. Although
the generation time of A. asiaticus is unknown, it must
be shorter than that of its amoeba host (due to the high
number of symbionts per amoeba cell [35,37]). The ana-
lyzed time period thus corresponds to considerably more
than 1200 A. asiaticus generations. For E. coli and Lacto-
coccus lactis, the first IS element-mediated genomic
changes (insertions, deletions, duplications) occurred
already after 400 to 500 generations [12-15]. This indi-
cates that the time period monitored in our study should
be sufficient to detect IS element-mediated genomic rear-
rangements. However, in contrast to our experiment, in
these studies bacterial cultures were exposed to environ-
mental stress conditions with respect to nutrient avail-
ability, temperature, or oxygen, facilitating adaptive
changes. Although no genome rearrangements were
observed for A. asiaticus, we cannot exclude the possibi-
lity that transposition events occurred in individual A.
asiaticus cells which subsequently became not fixed at
the population level and would thus be undetectable by
our experimental approach. However, Southern blot is a
highly sensitive method [71], and we have estimated that
we should be able to monitor changes in Southern blot
patterns in subpopulations consisting of only a few to a
few hundred of amoeba host cells (Additional file 2,
Table S2). Taking into account typical densities of
Acanthamoeba sp. 5a2 infected with A. asiaticus during
in vitro cultivation of 105 up to 107 cells/ml, the sensitiv-
ity of our assay should thus be sufficient to detect varia-
tions even in very small subpopulations. The IS elements
in A. asiaticus are therefore most likely transpositional
inactive. Their abundance is explained by transposi-
tional activity in the evolutionary past of A. asiaticus,
and while still being transcriptionally active, most IS
elements are transpositionally inactive in extant A. asia-
ticus. In addition to a tight transcriptional and (post-)
translational control there are several other conceivable
explanations for this observation. For example, A. asiati-
cus might lack host factors required for transposition
activity of IS elements although most of those are speci-
fic for certain IS elements; they act at different steps
and cellular processes and their exact role in transposi-
tion is still largely unclear [16,66,72]. Alternatively, the
small, reduced genome of A. asiaticus, which is highly
adapted to the intracellular life style and optimized for
host cell interactions, might not allow for major rear-
rangements as most transposition events would be dele-
terious rendering the cell nonviable.

One reason why some IS elements were retained in
the A. asiaticus genome despite of the apparent lack of
transpositional activity might be their influence on the
transcription of downstream genes. Indeed, we could
show contiguous transcripts of IS elements with their
downstream genes at 9 out of 10 tested loci (Figure 4,
Figure 5). In some cases, the distance between the IS
element and the start codon of the downstream gene is
too short to include known Bacteroidetes Shine-Dal-
garno sequences, which are located at -33 and -7 bp
relative to the transcription initiation site [73,74].
Expression of the respective downstream genes might
thus depend on promoter sequences located within the
upstream IS element (e.g. in the inverted repeats), a fea-
ture often found in IS elements [16,66], or on the endo-
genous promoter of the IS element. In other cases the
distance between the analyzed IS elements and their
downstream genes was larger (up to 300 bp). Similar
polycistronic mRNAs starting from IS elements includ-
ing downstream genes have been described recently for
two IS elements in Francisella tularensis [17] and in
Mycobacterium tuberculosis IS6110 [21]. It is striking
that many of the genes whose transcription is affected
by the presence of IS elements in A. asiaticus likely play
an important role (Additional file 2, Table S3). For
example, Aasi_1844 is an uncharacterized membrane
protein conserved among most Bacteroidetes and Chlor-
obi; Aasi_1118 contains six TPR/SEL1 repeats, eukaryo-
tic domains that can be involved in host cell interaction
[75], and Aasi_0380 is a ferritin homolog involved in
iron storage. Furthermore, a genomic organization of IS
elements and downstream genes similar to the loci ana-
lyzed in this study was found in 44 other regions on the
A. asiaticus genome (data not shown), suggesting that
contiguous transcripts between IS elements and down-
stream genes are even more widespread and represent a
more general feature of A. asiaticus.
Genome reduction is an important process during the

adaptation of bacteria to an obligate intracellular life
style, and IS elements are considered to be important in
this process [2,8]. The genome of A. asiaticus is only
moderately reduced compared to other obligate intracel-
lular bacteria [41,42]. Its genome size is with 1.9 Mbp
notably larger than that of other related symbionts in
the Bacteroidetes (0.2 to 1.1 Mbp), but smaller than
those of free-living relatives (2.2 to 9.1 Mbp, Additional
file 1, Figure S12). The genome of A. asiaticus thus
represents a transitional stage in genome reduction. We
argue that the IS elements in the A. asiaticus genome
are evolutionary remnants. They have been present in
the A. asiaticus genome for extended time periods and
reflect the organism’s evolutionary history. The IS ele-
ments proliferated and were important during the adap-
tation of A. asiaticus to the intracellular life style, but
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they became increasingly redundant. The A. asiaticus
genome thus represents a snapshot of a bacterial gen-
ome which was shaped by the activity of IS elements
but whose IS elements are largely inactive and in the
process of further degradation at the present stage.

Conclusion
Analysis and characterization of the A. asiaticus IS ele-
ments provides evidence for an extremely IS element-
rich genome, which seems to be evolutionary surpris-
ingly stable - a feature not found in other IS element-
rich genomes. The presence of contiguous transcripts
between IS elements and their downstream genes indi-
cates that these IS elements influence the transcription
of their downstream genes, most of which likely play an
important role for A. asiaticus. Proliferation of IS ele-
ments in the evolutionary past of A. asiaticus might
thus have been an important process during the adapta-
tion of A. asiaticus to an intracellular life style in which
its genome was shaped by their activity.

Methods
Sequence analyses
The genome sequence of A. asiaticus 5a2 has recently
been determined and analyzed [34] and is available at
GenBank under accession no. CP001102. For identifica-
tion of IS elements we first compiled a list of candidate
transposase genes by keyword, PFAM and InterPro
domain search available in the genome annotation soft-
ware Pedant [76]. We then manually inspected this list
in order to verify the evidence for each gene to encode
a putative transposase. In addition, further transposase
genes were identified by manually analyzing each pre-
dicted gene in the A. asiaticus genome (e.g by using
Blast against the NCBI nr dataset (provided by the
annotation software Pedant), Blast against the ISfinder
database http://www-is.biotoul.fr/) In order to classify
the transposases into groups of homologs we performed
Blast (BlastP, BlastN) searches against the A. asiaticus
genome. In order to identify full-length IS elements, the
gene sequences of the transposases and surrounding
genomic regions were aligned and the full-length IS ele-
ments were then manually identified based on these
alignments. Partial IS element copies were identified by
BlastN and BlastP searches and alignment of full-length
IS element copies against the A. asiaticus genome.
Inverted repeats were identified with the EMBOSS soft-
ware palindrome and einverted [77]. Nucleic acid
sequences of IS elements and amino acid sequences of
transposase genes were aligned with MAFFT [78]; align-
ments were visualized using BOXSHADE http://www.
ch.embnet.org/software/BOX_form.html. For detection
of direct repeats the nucleic acid alignments of the IS
elements and their genomic neighborhood were

searched manually. We grouped and classified IS ele-
ments using Blast against the ISfinder website http://
www-is.biotoul.fr/[43] and the following criteria: (i) a
minimum amino acid sequence identity of 30% of the
transposase to described transposases, (ii) the presence
of flanking inverted repeats (exception: IS elements
belonging to family IS110 and IS200/605, which do not
have flanking inverted repeats), and (iii) the presence of
at least two copies in the genome. IS element copies
that shared more than 80% nucleic and amino acid
sequence identity over at least 98% of their length were
considered isoforms. The nomenclature suggested by
the ISFinder website was used for naming of IS elements
http://www-is.biotoul.fr/[43]. mRNA secondary struc-
tures were predicted using the Mfold web server [79].
For calculations of phylogenetic relationships of the
transposases from selected IS elements, the amino acid
sequences of overlapping ORFs were merged resulting
in a single peptide sequence (in the case of IS elements
with predicted ribosomal frameshifting), aligned with
MAFFT [78] and imported into ARB [80]. Phylogenetic
trees were constructed with the Phylip maximum parsi-
mony, distance matrix (Fitch), ProML (using the JTT
amino acid replacement model) methods and the TREE-
PUZZLE algorithm (using the VT model of amino acid
substitution) [81,82] implemented in ARB. Maximum
parsimony bootstrap analysis was performed with 1000
resamplings. A filter considering only those alignment
positions that were conserved in at least 10% of all
sequences (resulting in a total number of 274 and 228
alignment columns for ISCaa3 and ISCaa4, respectively)
was used for all treeing calculations. For each IS ele-
ment analyzed, the overall tree topology between the
different treeing methods applied was consistent, thus
only trees calculated using the TREE-PUZZLE algorithm
are shown.

Cultivation and isolation of amoebae
Amoebae harboring A. asiaticus 5a2 (ATCC no. PRA-
228) and amoebae harboring A. asiaticus EIDS3 (ATCC
no. PRA-221) were maintained as adherent culture in 25
cm2 tissue culture flasks containing 10 ml peptone-
yeast-glucose medium (PYG: 20 g/l proteose peptone, 2
g/l yeast extract, 90 mM glucose, 4 mM MgSO4*7H2O,
3.4 mM C6H5Na3O7*2H2O, 2.5 mM KH2PO4, 1.3 mM
Na2HPO4*2H2O, 51 μM Fe(NH4)2(SO4)2*6H2O). Cul-
tures were incubated at 27°C and passaged at confluency
by 1:10 dilution of the culture every five to ten days.
Amoebae harboring A. asiaticus WR and amoebae har-
boring A. asiaticus US1 were isolated from soil and lake
sediment (Alkaline lake “Unterer Stinker”, Burgenland,
Austria) samples, respectively, using non-nutrient agar
plates seeded with live or heat-inactivated Escherichia
coli as described previously [83]. Both isolates were
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cultivated as described above using modified PYNFH (10
g/l bacteriological peptone, 10 g/l yeast extract, 1 g/l
yeast nucleic acid, 15 mg/l folic acid, 1 mg/l hemin, 2.6
mM KH2PO4, 2,8 mM Na2HPO4*2H2O).

DNA isolation
Amoebae harboring A. asiaticus 5a2, EIDS3, WR and
US1 were harvested by centrifugation (5000 × g, 10
min). The cell pellet was resuspended in 250 μl 1× TE
buffer (10 mM Tris, 1 mM EDTA, pH 8) and subse-
quently used for high molecular weight DNA isolation
using a modified protocol from Zhou et al. [84]. Briefly,
675 μl DNA extraction buffer (100 mM Tris/HCl, 100
mM EDTA, 100 mM sodium-phosphate, 1.5 M NaCl,
1% (w/v) cetyltrimethylammonium bromide (CTAB),
200 μg/ml proteinase K, pH 8.0) were added to the cell
pellet and incubated for 30 min at 37°C. After addition
of 75 μl 20% (w/v) SDS, the samples were incubated at
65°C for 1 h. To recover the aqueous phase, the lysate
was mixed with an equal volume of chloroform/isoamy-
lalcohol (24:1, v/v) and centrifuged (11200 × g, 10 min).
Nucleic acids were precipitated with 0.6 volume isopro-
panol at room temperature for 1 h. The resulting pellet
from centrifugation (16000 × g, 20 min) was washed
with 70% ethanol, centrifuged again (16000 × g, 5 min),
resuspended in ddH2O and stored at -20°C until use.

Transcription analysis
Amoebae harboring A. asiaticus 5a2 were harvested by
centrifugation (7000 × g, 3 min, 27°C). The resulting
cell pellet was resuspended in 750 μl TRIzol (Invitrogen
Life Technologies), transferred to a Lysing Matrix A
tube (MP Biomedicals) and homogenized using a
BIO101/Savant FastPrep FP120 instrument (speed: 4.5
m/sec, 30 sec). RNA was extracted by phase separation,
precipitation, washing and redissolving according to the
recommendations of the manufacturer (TRIzol, Invitro-
gen Life Technologies). Remaining DNA was removed
using the TURBO DNA-free Kit (Ambion). After DNase
treatment RNA was resuspended in ddH2ODEPC and
stored at -80°C until use. The absence of DNA contami-
nation in the DNase-treated RNA was verified by per-
forming a control PCR with 42 cycles using primers
targeting the 16S rRNA gene of A. asiaticus 5a2 (Addi-
tional file 2,Table S1). DNA-free total RNA (containing
host and symbiont RNA) was used to synthesize cDNA
using the RevertAid™ First Strand cDNA Synthesis Kit
(Fermentas) according to the recommendations of the
manufacturer. cDNA was subsequently used as template
in standard PCR reactions (35 cycles and annealing tem-
peratures according to the optimal conditions for the
primers listed in Additional file 2, Table S1). Negative
controls (no cDNA added) and positive controls (geno-
mic DNA) were included in all PCR reactions.

Amplification products were sequenced to ensure that
amplification was specific. All experiments were per-
formed in biologically independent triplicates.

PCR screening for IS elements in different A. asiaticus
strains
A standard PCR cycling program with 35 cycles at low
stringency (annealing temperature 45°C) with primers
specific for different A. asiaticus 5a2 IS elements was
used for the detection of IS elements in the A. asiaticus
strains EIDS3, WR and US1 (see Additional file 2, Table
S1 for primer sequences). Negative (no DNA added)
and positive controls (genomic DNA from A. asiaticus
5a2) were included in all PCR reactions. The amplified
fragments from A. asiaticus EIDS3 were cloned using
the TOPO TA cloning kit and cloning vector pCRII
(Invitrogen Life Technologies). Nucleotide sequences of
the cloned DNA fragments were determined on an ABI
3130 XL genetic analyzer using the BigDye Terminator
kit v3.1 (Applied Biosystems).

Southern hybridizations
Southern hybridization was performed using a modified
protocol based on Sambrook et al. [71]. Two μg DNA
(containing host amoeba and A. asiaticus DNA) were
digested with Eco32I for all investigated IS elements,
except for ISCaa2, for which DNA was digested with
HindIII and subsequently separated on a 0.7% TAE
agarose gel (4°C, 17 h, 30 V). The gel was depurinated
for 10 min in 0.25 M HCl, denaturated for 30 min in
1.5 M NaCl/0.5 M NaOH and neutralized for 30 min in
1.5 M NaCl/1 M Tris-HCl (pH 7.5). Between each of
these steps the gel was briefly rinsed in ddH2O. DNA
was transferred onto Hybond N+ nylon membranes (GE
Healthcare) with a vacuum transfer system and 20× SSC
(3M NaCl, 0.3M sodium citrate, pH 7.0) as transfer buf-
fer for 30 min. After immobilizing the DNA by UV
cross-linking (120000 μJ cm-2), the membrane was
briefly rinsed in ddH2O. Pre-hybridization was carried
out for 2 h at 42°C in hybridization buffer (containing
50% formamide, 5× SSC, 2% blocking reagent (Roche),
0.1% N-lauroyl sarcosyl sodium salt, 0.02% SDS (v/v)) in
a rotation hybridization chamber as the following steps.
The blot was hybridized with digoxygenin (DIG)-labeled
probes (synthesized using the PCR DIG Probe Synthesis
Kit, Roche; each probe was specific for a single IS ele-
ment; see Additional file 2, Table S1) and hybridization
buffer over night at 42°C. The membrane was washed
twice for 15 min each with 2× SSC/0.1% SDS at 25°C,
and twice with 0.2× SSC/0.1% SDS at 60°C for 15 min,
followed by 2 min with DIG washing buffer (0.5 M
maleic acid, 0.75 M NaCl, 0.3% Tween 20, pH 7.5) at
25°C, 30 min with buffer 2 (0.5 M maleic acid, 0.75 M
NaCl, 0.3% Tween 20, 20% blocking reagent) at 25°C, 30
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min with buffer 2 and Anti-Digoxigenin-AP Fab frag-
ments (1:10000) at 25°C, twice for 15 min with DIG
washing buffer at 25°C and finally for 5 min in 100 mM
Tris/100 mM NaCl/50 mM MgCl2 (pH 9.5) at 25°C.
The membrane was swayed for 1 min in 1% CSPD solu-
tion (Roche) and subsequently exposed to Amersham
Hyperfilm™ ECL (GE Healthcare).

Amplification of 16S and 18S rRNA genes
Oligonucleotide primers targeting 16S rRNA or 18S
rRNA gene signature regions were used for PCR to
obtain near full-length bacterial 16S rRNA or amoeba
18S rRNA gene fragments of the novel isolates Acantha-
moeba sp. WR (containing A. asiaticus WR) and
Acanthamoeba sp. US1 (containing A. asiaticus US1);
see Additional file 2, Table S1. Nucleotide sequences of
DNA fragments were determined on an ABI 3130 XL
genetic analyzer using the BigDye Terminator kit v3.1
(Applied Biosystems).

Nucleotide sequence accession numbers
Obtained nucleotide sequences of IS elements of A.
asiaticus EIDS3 and 16S and 18S rRNA genes of the
isolates Acanthamoeba sp. WR (containing A. asiaticus
WR) and Acanthamoeba sp. US1 (containing A. asiati-
cus US1) were submitted to EMBL/DDBJ/GenBank
under accession numbers HM159367 to HM159370.
The sequences of the A. asiaticus IS elements were
deposited at EMBL/DDBJ/GenBank under accession
numbers HM159371 to HM159380 and the ISFinder
database http://www-is.biotoul.fr/[43].

Additional material

Additional file 1: pdf-file containing Figures S1 to S12.

Additional file 2: pdf-file containing Tables S1 to S32.

Acknowledgements
We are grateful to Daniela Teichmann and Christa Schleper (Department for
Genetics in Ecology, University of Vienna) for providing protocols and
helpful discussions. Technical assistance by Gabriele Schwammel, Diana
Perez-Lopez and Christian Baranyi is greatly acknowledged. This work was
supported by grants from the Austrian Science Fund (FWF) to SSE (grant no.
P22703-B17) and MH (Y277-B03).

Author details
1Department of Microbial Ecology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria. 2Department of Genetics in Ecology, University of
Vienna, Althanstrasse 14, 1090 Vienna, Austria. 3Institute for Milk Hygiene,
University of Veterinary Medicine Vienna Veterinärplatz 1, 1210 Vienna,
Austria.

Authors’ contributions
SSE and MH designed the study. SSE, TP and AS performed sequence
analyses; TP and AS carried out the molecular biology experiments. SSE and
MH wrote the manuscript; all authors read, edited, and approved the final
manuscript.

Received: 17 May 2011 Accepted: 26 September 2011
Published: 26 September 2011

References
1. Frost LS, Leplae R, Summers AO, Toussaint A: Mobile genetic elements:

the agents of open source evolution. Nat Rev Microbiol 2005, 3(9):722-732.
2. Siguier P, Filee J, Chandler M: Insertion sequences in prokaryotic

genomes. Curr Opin Microbiol 2006, 9(5):526-531.
3. Touchon M, Rocha EP: Causes of insertion sequences abundance in

prokaryotic genomes. Mol Biol Evol 2007, 24(4):969-981.
4. Wagner A, Lewis C, Bichsel M: A survey of bacterial insertion sequences

using IScan. Nucleic Acids Res 2007, 35(16):5284-5293.
5. Aziz RK, Breitbart M, Edwards RA: Transposases are the most abundant,

most ubiquitous genes in nature. Nucleic Acids Res 2010, 38(13):4207-4217.
6. Newton IL, Bordenstein SR: Correlations Between Bacterial Ecology and

Mobile DNA. Curr Microbiol 2011, 62(1):198-208.
7. Rocha EP: Order and disorder in bacterial genomes. Curr Opin Microbiol

2004, 7(5):519-527.
8. Moran NA, Plague GR: Genomic changes following host restriction in

bacteria. Curr Opin Genet Dev 2004, 14(6):627-633.
9. Klasson L, Westberg J, Sapountzis P, Naslund K, Lutnaes Y, Darby AC,

Veneti Z, Chen L, Braig HR, Garrett R, et al: The mosaic genome structure
of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad
Sci USA 2009, 106(14):5725-5730.

10. Tan HM: Bacterial catabolic transposons. Appl Microbiol Biotechnol 1999,
51(1):1-12.

11. Wagner A: Cooperation is fleeting in the world of transposable elements.
PLoS Comput Biol 2006, 2(12):e162.

12. de Visser JA, Akkermans AD, Hoekstra RF, de Vos WM: Insertion-sequence-
mediated mutations isolated during adaptation to growth and
starvation in Lactococcus lactis. Genetics 2004, 168(3):1145-1157.

13. Riehle MM, Bennett AF, Long AD: Genetic architecture of thermal
adaptation in Escherichia coli. Proc Natl Acad Sci USA 2001, 98(2):525-530.

14. Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M: Long-term
experimental evolution in Escherichia coli. IX. Characterization of
insertion sequence-mediated mutations and rearrangements. Genetics
2000, 156(2):477-488.

15. Treves DS, Manning S, Adams J: Repeated evolution of an acetate-
crossfeeding polymorphism in long-term populations of Escherichia coli.
Mol Biol Evol 1998, 15(7):789-797.

16. Mahillon J, Chandler M: Insertion sequences. Microbiol Mol Biol Rev 1998,
62(3):725-774.

17. Carlson PE Jr, Horzempa J, O’Dee DM, Robinson CM, Neophytou P,
Labrinidis A, Nau GJ: Global transcriptional response to spermine, a
component of the intramacrophage environment, reveals regulation of
Francisella gene expression through insertion sequence elements. J
Bacteriol 2009, 191(22):6855-6864.

18. Ciampi MS, Schmid MB, Roth JR: Transposon Tn10 provides a promoter
for transcription of adjacent sequences. Proc Natl Acad Sci USA 1982,
79(16):5016-5020.

19. Kallastu A, Horak R, Kivisaar M: Identification and characterization of
IS1411, a new insertion sequence which causes transcriptional activation
of the phenol degradation genes in Pseudomonas putida. J Bacteriol
1998, 180(20):5306-5312.

20. Lin H, Li TY, Xie MH, Zhang Y: Characterization of the variants, flanking
genes, and promoter activity of the Leifsonia xyli subsp. cynodontis
insertion sequence IS1237. J Bacteriol 2007, 189(8):3217-3227.

21. Safi H, Barnes PF, Lakey DL, Shams H, Samten B, Vankayalapati R,
Howard ST: IS6110 functions as a mobile, monocyte-activated promoter
in Mycobacterium tuberculosis. Mol Microbiol 2004, 52(4):999-1012.

22. Han HJ, Kuwae A, Abe A, Arakawa Y, Kamachi K: Differential Expression of
Type III Effector BteA Protein Due to IS481 Insertion in Bordetella
pertussis. PLoS One 2011, 6(3):e17797.

23. Bordenstein SR, Reznikoff WS: Mobile DNA in obligate intracellular
bacteria. Nat Rev Microbiol 2005, 3(9):688-699.

24. Moya A, Pereto J, Gil R, Latorre A: Learning how to live together: genomic
insights into prokaryote-animal symbioses. Nat Rev Genet 2008,
9(3):218-229.

25. Song H, Hwang J, Yi H, Ulrich RL, Yu Y, Nierman WC, Kim HS: The early
stage of bacterial genome-reductive evolution in the host. PLoS Pathog
2010, 6(5):e1000922.

Schmitz-Esser et al. BMC Evolutionary Biology 2011, 11:270
http://www.biomedcentral.com/1471-2148/11/270

Page 14 of 16

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM159367
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM159370
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM159371
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM159380
http://www-is.biotoul.fr/
http://www.biomedcentral.com/content/supplementary/1471-2148-11-270-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-11-270-S2.PDF
http://www.ncbi.nlm.nih.gov/pubmed/16138100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16138100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16935554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16935554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17251179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17251179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17686783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17686783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20215432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20215432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20577742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20577742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15451508?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15531157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15531157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19307581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19307581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10077818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17140282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11149947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11149947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11014799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11014799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11014799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9656481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9656481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9729608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19749055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19749055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19749055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6289329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6289329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9765560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9765560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9765560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17293427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17293427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17293427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16138097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16138097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18268509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18268509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20523904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20523904?dopt=Abstract


26. Plague GR, Dunbar HE, Tran PL, Moran NA: Extensive proliferation of
transposable elements in heritable bacterial symbionts. J Bacteriol 2008,
190(2):777-779.

27. Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, Tang X, Wang J, Xiong Z,
Dong J, et al: Genome dynamics and diversity of Shigella species, the
etiologic agents of bacillary dysentery. Nucleic Acids Res 2005,
33(19):6445-6458.

28. Cho NH, Kim HR, Lee JH, Kim SY, Kim J, Cha S, Kim SY, Darby AC,
Fuxelius HH, Yin J, et al: The Orientia tsutsugamushi genome reveals
massive proliferation of conjugative type IV secretion system and host-
cell interaction genes. Proc Natl Acad Sci USA 2007, 104(19):7981-7986.

29. Nakayama K, Yamashita A, Kurokawa K, Morimoto T, Ogawa M, Fukuhara M,
Urakami H, Ohnishi M, Uchiyama I, Ogura Y, et al: The Whole-genome
sequencing of the obligate intracellular bacterium Orientia
tsutsugamushi revealed massive gene amplification during reductive
genome evolution. DNA Res 2008, 15(4):185-199.

30. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA,
Martin W, Esser C, Ahmadinejad N, et al: Phylogenomics of the
reproductive parasite Wolbachia pipientis wMel: a streamlined genome
overrun by mobile genetic elements. PLoS Biol 2004, 2(3):E69.

31. Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S,
Earl J, O’Neill SL, Thomson N, et al: Genome Evolution of Wolbachia Strain
wPip from the Culex pipiens Group. Mol Biol Evol 2008, 25(9):1877-1887.

32. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO,
Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, et al: Symbiosis insights
through metagenomic analysis of a microbial consortium. Nature 2006,
443(7114):950-955.

33. Gil R, Belda E, Gosalbes MJ, Delaye L, Vallier A, Vincent-Monegat C, Heddi A,
Silva FJ, Moya A, Latorre A: Massive presence of insertion sequences in
the genome of SOPE, the primary endosymbiont of the rice weevil
Sitophilus oryzae. Int Microbiol 2008, 11(1):41-48.

34. Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T,
Horn M: The genome of the amoeba symbiont “Candidatus
Amoebophilus asiaticus” reveals common mechanisms for host cell
interaction among amoeba-associated bacteria. J Bacteriol 2010,
192(4):1045-1057.

35. Schmitz-Esser S, Toenshoff ER, Haider S, Heinz E, Hoenninger VM,
Wagner M, Horn M: Diversity of bacterial endosymbionts of
environmental Acanthamoeba isolates. Appl Environ Microbiol 2008,
74(18):5822-5831.

36. Choi SH, Cho MK, Ahn SC, Lee JE, Lee JS, Kim DH, Xuan YH, Hong YC,
Kong HH, Chung DI, et al: Endosymbionts of Acanthamoeba isolated from
domestic tap water in Korea. Korean J Parasitol 2009, 47(4):337-344.

37. Horn M, Harzenetter MD, Linner T, Schmid EN, Muller KD, Michel R,
Wagner M: Members of the Cytophaga-Flavobacterium-Bacteroides
phylum as intracellular bacteria of acanthamoebae: proposal of
‘Candidatus Amoebophilus asiaticus’. Environ Microbiol 2001, 3(7):440-449.

38. Xuan YH, Yu HS, Jeong HJ, Seol SY, Chung DI, Kong HH: Molecular
characterization of bacterial endosymbionts of Acanthamoeba isolates
from infected corneas of Korean patients. Korean J Parasitol 2007,
45(1):1-9.

39. Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS: Characterization of
a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae):
proposal of ‘Candidatus Cardinium hertigii’. Int J Syst Evol Microbiol 2004,
54(Pt 3):961-968.

40. Sunagawa S, Woodley CM, Medina M: Threatened corals provide
underexplored microbial habitats. PLoS ONE 2010, 5(3):e9554.

41. Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D: Massive comparative
genomic analysis reveals convergent evolution of specialized bacteria.
Biol Direct 2009, 4:13.

42. Moran NA, McCutcheon JP, Nakabachi A: Genomics and evolution of
heritable bacterial symbionts. Annu Rev Genet 2008, 42:165-190.

43. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M: ISfinder: the
reference centre for bacterial insertion sequences. Nucleic Acids Res 2006,
, 34 Database: D32-36.

44. Ohta S, Tsuchida K, Choi S, Sekine Y, Shiga Y, Ohtsubo E: Presence of a
characteristic D-D-E motif in IS1 transposase. J Bacteriol 2002,
184(22):6146-6154.

45. Baranov PV, Fayet O, Hendrix RW, Atkins JF: Recoding in bacteriophages
and bacterial IS elements. Trends Genet 2006, 22(3):174-181.

46. Namy O, Rousset JP, Napthine S, Brierley I: Reprogrammed genetic
decoding in cellular gene expression. Mol Cell 2004, 13(2):157-168.

47. Cordaux R: ISWpi1 from Wolbachia pipientis defines a novel group of
insertion sequences within the IS5 family. Gene 2008, 409(1-2):20-27.

48. Cordaux R, Pichon S, Ling A, Perez P, Delaunay C, Vavre F, Bouchon D,
Greve P: Intense transpositional activity of insertion sequences in an
ancient obligate endosymbiont. Mol Biol Evol 2008, 25(9):1889-1896.

49. Cridge AG, Major LL, Mahagaonkar AA, Poole ES, Isaksson LA, Tate WP:
Comparison of characteristics and function of translation termination
signals between and within prokaryotic and eukaryotic organisms.
Nucleic Acids Res 2006, 34(7):1959-1973.

50. Poole ES, Brown CM, Tate WP: The identity of the base following the stop
codon determines the efficiency of in vivo translational termination in
Escherichia coli. Embo J 1995, 14(1):151-158.

51. Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M,
Dyda F: Mechanism of IS200/IS605 family DNA transposases: activation
and transposon-directed target site selection. Cell 2008, 132(2):208-220.

52. Guynet C, Hickman AB, Barabas O, Dyda F, Chandler M, Ton-Hoang B: In
vitro reconstitution of a single-stranded transposition mechanism of
IS608. Mol Cell 2008, 29(3):302-312.

53. Beuzon CR, Chessa D, Casadesus J: IS200: an old and still bacterial
transposon. Int Microbiol 2004, 7(1):3-12.

54. Martusewitsch E, Sensen CW, Schleper C: High spontaneous mutation rate
in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by
transposable elements. J Bacteriol 2000, 182(9):2574-2581.

55. Ogata H, La Scola B, Audic S, Renesto P, Blanc G, Robert C, Fournier PE,
Claverie JM, Raoult D: Genome sequence of Rickettsia bellii illuminates
the role of amoebae in gene exchanges between intracellular
pathogens. PLoS Genet 2006, 2(5):e76.

56. Liu Y, Whitman WB: Metabolic, phylogenetic, and ecological diversity of
the methanogenic archaea. Ann N Y Acad Sci 2008, 1125:171-189.

57. Khan NA: Acanthamoeba: biology and increasing importance in human
health. FEMS Microbiol Rev 2006, 30(4):564-595.

58. Rodriguez-Zaragoza S: Ecology of free living amoebae. Crit Rev Microbiol
1994, 20(3):225-241.

59. Wagner A, de la Chaux N: Distant horizontal gene transfer is rare for
multiple families of prokaryotic insertion sequences. Mol Genet Genomics
2008, 280(5):397-408.

60. Hooper SD, Mavromatis K, Kyrpides NC: Microbial co-habitation and lateral
gene transfer: what transposases can tell us. Genome Biol 2009, 10(4):R45.

61. Wagner A: Periodic extinctions of transposable elements in bacterial
lineages: evidence from intragenomic variation in multiple genomes.
Mol Biol Evol 2006, 23(4):723-733.

62. Lawrence JG, Ochman H: Amelioration of bacterial genomes: rates of
change and exchange. J Mol Evol 1997, 44(4):383-397.

63. Callanan M, Kaleta P, O’Callaghan J, O’Sullivan O, Jordan K, McAuliffe O,
Sangrador-Vegas A, Slattery L, Fitzgerald GF, Beresford T, et al: Genome
sequence of Lactobacillus helveticus, an organism distinguished by
selective gene loss and insertion sequence element expansion. J
Bacteriol 2008, 190(2):727-735.

64. Cordaux R: Gene conversion maintains nonfunctional transposable
elements in an obligate mutualistic endosymbiont. Mol Biol Evol 2009,
26(8):1679-1682.

65. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N,
Bhattacharyya A, Kapatral V, Kumar S, Posfai J, et al: The Wolbachia
genome of Brugia malayi: endosymbiont evolution within a human
pathogenic nematode. PLoS Biol 2005, 3(4):e121.

66. Nagy Z, Chandler M: Regulation of transposition in bacteria. Res Microbiol
2004, 155(5):387-398.

67. Kleckner N: Regulating Tn10 and Is10 Transposition. Genetics 1990,
124(3):449-454.

68. Jager D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA: Deep
sequencing analysis of the Methanosarcina mazei Go1 transcriptome in
response to nitrogen availability. Proc Natl Acad Sci USA 2009,
106(51):21878-21882.

69. Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, Assefa SA,
He M, Croucher NJ, Pickard DJ, et al: A strand-specific RNA-Seq analysis of
the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet
2009, 5(7):e1000569.

Schmitz-Esser et al. BMC Evolutionary Biology 2011, 11:270
http://www.biomedcentral.com/1471-2148/11/270

Page 15 of 16

http://www.ncbi.nlm.nih.gov/pubmed/17981967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17981967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16275786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16275786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17483455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17483455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17483455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18508905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18508905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18508905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18508905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15024419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15024419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15024419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16980956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16980956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18683631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18683631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18683631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20023027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20023027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20023027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18641160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18641160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19967080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19967080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11553234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11553234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11553234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17374972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17374972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17374972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15143050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15143050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15143050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20221265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20221265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19361336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19361336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18983256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18983256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16460832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16460832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14759362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14759362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18155858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18155858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18562339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18562339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16614446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16614446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7828587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7828587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7828587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18243097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18243097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18280236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18280236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18280236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15179601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15179601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10762261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10762261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10762261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16703114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16703114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16703114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18378594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18378594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16774587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16774587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7802958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18751731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18751731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19393086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19393086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16373392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16373392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9089078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9089078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17993529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17993529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17993529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19414524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19414524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15780005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15780005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15780005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15207871?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17246512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19996181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19996181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19996181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19609351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19609351?dopt=Abstract


70. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R: A single-base
resolution map of an archaeal transcriptome. Genome Res 2010,
20(1):133-141.

71. Sambrook J, Russell DW: Molecular cloning: a laboratory manual. Cold
Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press;, 3 2001.

72. Twiss E, Coros AM, Tavakoli NP, Derbyshire KM: Transposition is modulated
by a diverse set of host factors in Escherichia coli and is stimulated by
nutritional stress. Mol Microbiol 2005, 57(6):1593-1607.

73. Bayley DP, Rocha ER, Smith CJ: Analysis of cepA and other Bacteroides
fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett
2000, 193(1):149-154.

74. Chen S, Bagdasarian M, Kaufman MG, Bates AK, Walker ED: Mutational
analysis of the ompA promoter from Flavobacterium johnsoniae. J
Bacteriol 2007, 189(14):5108-5118.

75. Mittl PR, Schneider-Brachert W: Sel1-like repeat proteins in signal
transduction. Cell Signal 2007, 19(1):20-31.

76. Frishman D, Albermann K, Hani J, Heumann K, Metanomski A, Zollner A,
Mewes HW: Functional and structural genomics using PEDANT.
Bioinformatics 2001, 17(1):44-57.

77. Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet 2000, 16(6):276-277.

78. Katoh K, Toh H: Recent developments in the MAFFT multiple sequence
alignment program. Brief Bioinform 2008, 9(4):286-298.

79. Zuker M: Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res 2003, 31(13):3406-3415.

80. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Buchner A, Lai T,
Steppi S, Jobb G, et al: ARB: a software environment for sequence data.
Nucleic Acids Res 2004, 32(4):1363-1371.

81. Felsenstein J: PHYLIP - Phylogeny inference package (version 3.2).
Cladistics 1989, 5:164-166.

82. Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE:
maximum likelihood phylogenetic analysis using quartets and parallel
computing. Bioinformatics 2002, 18(3):502-504.

83. Heinz E, Kolarov I, Kastner C, Toenshoff ER, Wagner M, Horn M: An
Acanthamoeba sp. containing two phylogenetically different bacterial
endosymbionts. Environ Microbiol 2007, 9(6):1604-1609.

84. Zhou J, Bruns MA, Tiedje JM: DNA recovery from soils of diverse
composition. Appl Environ Microbiol 1996, 62(2):316-322.

doi:10.1186/1471-2148-11-270
Cite this article as: Schmitz-Esser et al.: A bacterial genome in transition
- an exceptional enrichment of IS elements but lack of evidence for
recent transposition in the symbiont Amoebophilus asiaticus. BMC
Evolutionary Biology 2011 11:270.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Schmitz-Esser et al. BMC Evolutionary Biology 2011, 11:270
http://www.biomedcentral.com/1471-2148/11/270

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/19884261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16135227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16135227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16135227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11094294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11094294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17483221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17483221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16870393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16870393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14985472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8593035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8593035?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Diversity of IS elements in the A. asiaticus 5a2 genome
	ISCaa4
	ISCaa3
	ISCaa9
	ISCaa10
	Unclassified IS elements
	Conservation of IS elements among different A. asiaticus strains
	Transcription but lack of transpositional activity of the A. asiaticus IS elements
	Contiguous transcription of IS elements and their downstream genes

	Discussion
	Conclusion
	Methods
	Sequence analyses
	Cultivation and isolation of amoebae
	DNA isolation
	Transcription analysis
	PCR screening for IS elements in different A. asiaticus strains
	Southern hybridizations
	Amplification of 16S and 18S rRNA genes
	Nucleotide sequence accession numbers

	Acknowledgements
	Author details
	Authors' contributions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


