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Introduction
The GTPases Rho, Rac, and Cdc42 control fundamental 
processes including cell shape, polarity, and migration but 
also gene expression and cell cycle progression. Thus, Rho  
GTPases and their effectors are promising therapeutic targets 
for several diseases, including cancer (Heasman and Ridley, 
2008; Olson, 2008).

The Rho effectors Rok- and - (Riento and Ridley, 
2003; Zhao and Manser, 2005) are serine/threonine kinases 
with a modular structure comprising an N-terminal catalytic 
domain, a coiled-coil region containing the Ras/Rho-binding 

domain (RBD), and a C-terminal regulatory region with an 
unusual pleckstrin homology (PH) domain interrupted by a 
cysteine-rich domain (CRD; Riento and Ridley, 2003). Roks 
are regulated by autoinhibition; their C-terminal regulatory 
region, particularly the PH/CRD domain, binds to the kinase 
domain and inhibits its activity (Amano et al., 1999; Chen  
et al., 2002). Interaction of two RhoA molecules with the RBD 
domains arranged in a parallel coiled-coil dimer relieves auto-
inhibition (Amano et al., 1999; Shimizu et al., 2003; Dvorsky 
et al., 2004) and leads to kinase domain dimerization, trans-
autophosphorylation, and activation (Riento and Ridley, 2003; 
Zhao and Manser, 2005).

Raf-1, a serine/threonine kinase member of the Ras/
extracellular signal-regulated kinase (ERK) signaling pathway, 
interacts with Rok- (Ehrenreiter et al., 2005; Piazzolla et al., 
2005). In Raf-1 knockout (KO) cells, hyperactive Rok- causes 
cytoskeletal changes, leading to inhibition of cell migration 

The activity of Raf-1 and Rok- kinases is regulated 
by intramolecular binding of the regulatory region 
to the kinase domain. Autoinhibition is relieved upon 

binding to the small guanosine triphosphatases Ras and 
Rho. Downstream of Ras, Raf-1 promotes migration and 
tumorigenesis by antagonizing Rok-, but the underlying 
mechanism is unknown. In this study, we show that Rok- 
inhibition by Raf-1 relies on an intermolecular interaction 
between the Rok- kinase domain and the cysteine-rich 

Raf-1 regulatory domain (Raf-1reg), which is similar to 
Rok-’s own autoinhibitory region. Thus, Raf-1 mediates 
Rok- inhibition in trans, which is a new concept in kinase 
regulation. This mechanism is physiologically relevant be-
cause Raf-1reg is sufficient to rescue all Rok-–dependent 
defects of Raf-1–deficient cells. Downstream of Ras and 
Rho, the Raf-1–Rok- interaction represents a novel 
paradigm of pathway cross talk that contributes to tumori-
genesis and cell motility.
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FL Rok- (Fig. 1, B and C; and Fig. S1 A). In contrast, Raf-1 
hardly interacted with the Rok- regulatory domain (Rok-reg; 
Fig. 1 B). Next, we used multiphoton fluorescence resonance 
energy transfer (FRET)/fluorescent lifetime imaging micros-
copy (FLIM) to directly monitor protein–protein interactions in 
cells. The fraction of FL Raf-1 bound to FL Rok- in asynchro-
nously growing cells was under the detection limit. However, 
robust interaction was detected upon coexpression of active 
RhoA with the FL proteins or using Rok-–K as an acceptor 
(Fig. 1, D and E). FRET efficiency was much higher in cell pro-
trusions (28%; Fig. 1 D, inset), suggesting protein accumulation 
and increased interaction in these locations. In line with the co-
immunoprecipitation experiments, these results show that Raf-1 
preferentially binds to the kinase domain of Rok-. They rule 
out the possibility that Raf-1 inhibits Rok- activation by com-
peting with RhoA and suggest instead that RhoA favors inter-
molecular interaction between Rok- and Raf-1 by disrupting the 
intramolecular interaction between the kinase and Rok-reg.

Ras binding similarly disrupts the interaction between the 
regulatory and kinase domains of Raf-1, rendering both more 
accessible for intermolecular interactions (Terai and Matsuda, 
2005). Indeed, EGF stimulation increased complex formation 
between endogenous (Fig. 2 A) or ectopically expressed pro-
teins, as shown by both FRET/FLIM and coimmunoprecipita-
tion experiments (Fig. 2, B and C; and Fig. S1 B). Constitutively 
active Ras or activation of endogenous Ras by a membrane-
tethered form of the Ras guanine nucleotide exchange factor 
SOS (Sibilia et al., 2000) also stimulated Raf-1–Rok- inter
action (Fig. 2 D). Conversely, mutating the Raf-1 RBD (R89L) 
or CRD (CC165/168SS; CC/SS) significantly reduced complex 
formation (Fig. 2, E–G). Thus, activation by Ras is both neces-
sary and sufficient to promote Raf-1–Rok- interaction.

Ras binding induces a conformational change in Raf-1 
and recruits it to the membrane to be phosphorylated by activat-
ing kinases (Bondeva et al., 2002). Tethering Raf-1 to the mem-
brane by fusing it to the Ki-Ras membrane-targeting signal 
(Raf-1 CAAX) activates the MEK–ERK pathway (Leevers  
et al., 1994), but it abolished binding to Rok- (Fig. 2 E). Thus, 
the change from a closed to an open conformation mediated by 
Ras binding is essential both for MEK–ERK activation and 
Raf-1–Rok- interaction, but these two functions of Raf-1 take 
place in distinct subcellular compartments. Indeed, single fluoro
phore video tracking of Raf proteins has shown that Raf-1 binds 
to Ras-GTP and activates MEK–ERK in the context of mem-
brane nanoclusters but redistributes to the cytosol when these 
structures dissolve (Tian et al., 2007). It is tempting to speculate 
that the activated Raf-1 molecules leaving the membrane may 
be those that bind Rok- in vivo.

Raf-1reg binds to Rok- and inhibits  
its kinase activity
The R89L and CC/SS mutations may prevent or weaken Ras 
binding, thus precluding the conformational change that makes 
Raf-1reg accessible for Rok-; alternatively, they may be more 
directly involved in the interaction with Rok-. To distinguish 
between these possibilities, we introduced the R89L and CC/SS 
mutations in Raf-1reg, which lacks the Raf-1 kinase domain. 

(Ehrenreiter et al., 2005) and hypersensitivity to Fas-induced 
apoptosis (Piazzolla et al., 2005). Intriguingly, Raf-1–mediated 
inhibition of Rok- is also essential for Ras-induced tumori-
genesis in vivo (Ehrenreiter et al., 2009).

Like Rok-, Raf-1 is part of a family of kinases recruited 
to the cell membrane and activated by a small GTPase, in this 
case, Ras. Raf kinases share a structure featuring three conserved 
regions (CRs): (1) CR1, with the RBD and the CRD, (2) CR2, 
rich in S/T residues, and (3) CR3, encompassing the kinase 
domain. Like Roks, Rafs are regulated by autoinhibition; their  
N-terminal regulatory domain, particularly the CRD, binds to 
the kinase domain, suppressing its catalytic activity (Cutler 
et al., 1998). Raf activation requires Ras binding, membrane 
recruitment, and phosphorylation of S/T sites in the activation 
loop of the CR3 region (Wellbrock et al., 2004).

All Raf kinases can activate the MAPK/ERK kinase 
(MEK)–ERK module, yet the main in vivo roles of Raf-1 in mi-
gration, survival, and Ras-induced tumorigenesis are MEK–ERK 
independent and rely on Raf-1’s ability to interact with and 
inhibit other kinases such as Rok- (Ehrenreiter et al., 2005; 
Piazzolla et al., 2005; Ehrenreiter et al., 2009), MST2 (O’Neill 
et al., 2004), and ASK-1 (Yamaguchi et al., 2004). Until now, 
the mechanisms underlying this inhibition were unknown.

Negative regulation of the activity of a kinase by other 
kinases can occur in the context of a negative feedback loop, 
as does the inhibition of MEK1 by ERK (Eblen et al., 2004; 
Catalanotti et al., 2009), or in the context of pathway cross talk, 
as exemplified by the down-regulation of Raf-1 by Akt or PKA 
(Wellbrock et al., 2004). In these and other cases, negative 
regulation is achieved by direct phosphorylation of one kinase 
by the other. In this study, we report a novel form of kinase 
regulation and pathway cross talk mediated by protein–protein  
interaction instead of phosphorylation. Upon growth factor stim-
ulation, GTPase binding to Raf-1 and Rok- relieves auto
inhibition, engendering a change from a closed, inactive state to  
an open, active conformation essential for Raf-1–Rok- inter
action. In the open state, the Raf-1 regulatory domain (Raf-1reg) 
binds to the kinase domain of Rok- and inhibits its enzymatic 
activity directly. This kinase-independent inhibition in trans 
represents a new paradigm in pathway cross talk and regula-
tion of kinase activity.

Results and discussion
Activation increases Raf-1–Rok- 
interaction
In mouse embryonic fibroblasts (MEFs), Raf-1 binds to Rok-, 
limiting its activation and cell membrane localization (Ehrenreiter 
et al., 2005). Raf-1 could conceivably prevent binding of Rok- 
to RhoA by competing for or masking the Rho-binding site. Al-
ternatively, Raf-1 could interact with the negative regulatory 
PH/CRD domain or the kinase domain of Rok- and stabilize 
intramolecular autoinhibition. To test these possibilities, we ex-
amined the interaction of full-length (FL) Raf-1 with a series of 
Rok- deletion mutants (Fig. 1 A). A mutant lacking the PH/CRD 
domain (PH/CRD) and a truncated protein containing the ki-
nase domain (Rok-–K) bound to Raf-1 more efficiently than 
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Raf-1reg interacted with Rok-–K in vitro, pulling down 25% 
of the Rok-–K input, whereas GST–Raf-1reg CC/SS was 
much less efficient (Fig. 3 C). GST–Raf-1reg, but not a CC/SS 
mutant, reduced Rok-–K activity in an in vitro kinase assay 
(Fig. S2). Moreover, Raf-1reg inhibited recombinant Rok-–K 
in a dose-dependent manner (≥70% inhibition at approximately 
equimolar concentrations of Raf-1reg and MLC2; Fig. 3 D). The 
calculated half-maximal inhibitory concentration of 2.65 µM  
is fairly high, but this does not prejudice the physiological rel-
evance of the interaction per se, as exemplified by the even lower 
affinity (20 µM) of the Raf CRD for Ras-GTP (Williams et al., 
2000). Besides, it is unclear how a half-maximal inhibitory con-
centration calculated in vitro using recombinant proteins relates 

In contrast to FL Raf-1 R89L, Raf-1reg R89L retained the 
ability to coimmunoprecipitate with Rok- (Fig. 3 A). Thus, 
binding of Ras-GTP to FL Raf-1 is required solely to disrupt 
the interaction between the regulatory and kinase domains of 
Raf-1. Interfering with Ras binding did not increase complex 
formation with Rok-, indicating that Ras and Rok- do not 
compete for Raf-1.

In contrast, Raf-1reg CC/SS, which binds to Ras but not to 
the Raf-1 kinase domain (Cutler et al., 1998), failed to associ-
ate with Rok-, implying that the CRD plays a critical role in  
Raf-1–Rok- complex formation (Fig. 3 B).

Raf-1 CRD might restrain the activity of Rok- by bind-
ing directly to its kinase domain. Indeed, recombinant GST– 

Figure 1.  Raf-1 interacts with the Rok- kinase domain. (A) Rok- and Raf-1 proteins used in this study are shown. The phosphorylation and Ras-binding 
site mutants are indicated. (B and C) HA-tagged Rok- was immunoprecipitated from COS-1 cells cotransfected with Rok- and FL Raf-1. Input (1.5%) and 
the immunoprecipitates (IP) were immunoblotted with Raf-1, HA (B), or Rok- (C) antibodies. *, unspecified band. The amount of Raf-1 coprecipitating 
with the Rok- mutant proteins is plotted as fold of FL Raf-1–Rok- interaction (set as 1; mean ± SD of four experiments). (D) Fluorescence lifetime (), GFP 
intensity, and mRFP1 intensity in MCF-7 cells transfected with the indicated constructs. RhoAV14 expression was verified by staining with Flag antibody. 
The cell marked with the asterisks was excluded from the cumulative FRET efficiency analysis in E because of insufficient photon counts (see Material and 
methods). Inset shows a magnified view of the boxed region. (E) Percentage of FRET efficiency (mean ± SD of three experiments) is shown. **, P < 0.01; 
***, P < 0.005. Bars, 20 µm.
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to the binding affinity of the two FL, posttranslationally modi-
fied proteins in vivo. Indeed, when expressed at near-endogenous 
levels in KO MEFs, Raf-1reg wild type (WT), and much less so 
CC/SS, associated with Rok- and decreased its kinase activity 
to levels similar to those observed in WT MEFs (Fig. 3 E).

Concentration of the partners in relevant subcellular com-
partments will also drive protein–protein interaction in vivo.  
FL Raf-1 and Rok- accumulate in membrane protrusions  
(Fig. 1 D), and both Raf-1 (Ehrenreiter et al., 2005) and Raf-1reg 
colocalize with Rok- on filamentous structures (Fig. 4 A) cor-
responding to the vimentin cytoskeleton. Vimentin is a direct 
substrate of Rok-, which by phosphorylating it contributes to 
its depolymerization (Sin et al., 1998). Vimentin collapses in 
juxtanuclear aggregates in Raf-1–deficient cells, a phenotype 
rescued by Raf-1reg (Fig. 4 B). Thus, Raf-1reg is sufficient to 
mediate the correct localization of Rok- to the vimentin cyto-
skeleton and to inhibit Rok- activity, preventing the collapse 
of these intermediate filaments. In addition to the vimentin de-
fects, Raf-1 KO cells are contracted and characterized by cortical  
actin bundles. They contain higher amounts of phosphorylated 
ezrin than WT cells, and their migration is impaired (Fig. 4, 
C–E). Finally, the death receptor Fas is found in characteristic 
clusters on the surface of Fas of Raf-1 KO cells, which are more 
sensitive to Fas-induced cell death (Fig. S3, A and B). All of 
these defects are caused by Rok- hyperactivity and can be res-
cued by chemical inhibition of Rok-, by expressing dominant-
negative Rok-, or by silencing the Rok- gene (Ehrenreiter  
et al., 2005; Piazzolla et al., 2005).

Raf-1reg, but not the CRD mutant, also corrected all de-
fects of Raf-1 KO cells: it significantly improved migration 
(Fig. 4 C), normalized cell shape, cortical actin bundles, and  
ezrin phosphorylation (Fig. 4, D and E). Finally, Raf-1reg re-
duced Fas surface clusters and cell death in Raf-1 KO cells 
(Fig. S3, A and B). These results demonstrate the biological 
relevance of the interaction between Rok- and Raf-1reg and 
formally rule out a contribution of Raf-1 kinase activity to the 
regulation of cell shape, migration, and Fas expression.

Raf-1reg and Rok-reg inhibit Rok-–K  
in vivo
Our data suggest that the activity of the Rok- kinase domain, 
restrained in cis by its own regulatory domain (Rok-reg) be-
fore activation (Amano et al., 1999), is inhibited in trans by 

Figure 2.  Activated Raf-1 preferentially interacts with Rok-. (A–C) EGF  
increases the Rok-–Raf-1 interaction. (A) MEFs were stimulated with  
10 ng/ml EGF, and endogenous Rok- was immunoprecipitated at the indi-
cated time points. (B and C) Fluorescence lifetime (), GFP intensity, and RFP 
intensity in MDA-MB-468 transfected with GFP-FL Raf-1 and mRFP–FL Rok- 
upon stimulation with 100 ng/ml EGF. (C) Percentage of FRET efficiency 
is shown. Error bars indicate SEM (n > 3). (D) Activated Ras promotes 
Rok-–Raf-1 interaction. COS-1 cells were transfected with HA-tagged FL 

Rok-, FL Raf-1, constitutively active Ras (RasV12), or membrane-tethered 
SOS-F, resulting in the constitutive activation of endogenous Ras and the 
corresponding vectors (V). UT, untransfected COS-1 cells; *, endogenous 
Ras. Black lines indicate that intervening lanes have been spliced out.  
(E–G) Ras binding and subcellular localization affect Rok-–Raf-1 inter
action. (E) COS-1 cells were transfected with HA-tagged FL Rok- and the 
indicated FL Raf-1 mutants. HA immunoprecipitates were analyzed and 
quantified as described in Fig. 1. (F) Fluorescence lifetime, GFP intensity, 
and mRFP1 intensity in MCF-7 cells transfected with GFP-FL Raf-1 WT or 
CC/SS mutant (donor) and mRFP1–Rok-–K (acceptor). The cell marked 
with the asterisks was excluded from the cumulative FRET efficiency analy-
sis in G as a result of insufficient photon counts (see Materials and meth-
ods). (G) Percentage of FRET efficiency is shown. (A, E, and G) Error bars  
indicate SD of three experiments. *, P < 0.05; **, P < 0.01; ***,  
P < 0.005. Bars: (B) 20 µm; (F) 30 µm.
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extent (Fig. 5 B). Finally, Rok-reg and Raf-1reg, but not 
Raf-1reg CC/SS, reduced the hyperphosphorylation of ezrin as 
a result of hyperactive endogenous Rok- in Raf-1 KO cells 
(Fig. 5 C). Thus, the regulatory domains of Rok- and Raf-1  
are similarly effective in regulating Rok- activity in vivo, sup-
porting a model in which activated Raf-1 modulates Rok- 

Raf-1reg once activation has occurred. A computational model 
of the Rok- CRD, based on the structure of the autoinhibi-
tory CRD of Raf-1 (Mott et al., 1996), is compatible with this 
idea (Fig. 5 A). More importantly, both Rok-reg and Raf-1reg 
inhibit the activity of cotransfected Rok-–K in vivo, reducing the 
phosphorylation of Rok- downstream targets by a comparable 

Figure 3.  Raf-1reg interacts with Rok- and 
inhibits its kinase activity. (A and B) CRD but not 
RBD mutation disrupts the binding of Raf-1reg 
to Rok-. HA immunoprecipitates (IP) were ana
lyzed as in Fig. 1. The mean ± SD of at least 
three experiments is shown. **, P < 0.01.  
(C) Rok-–K interacts in vitro with Raf-1reg WT 
but not with Raf-1reg CC/SS. 2 µg GST, GST–
Raf-1reg WT, or GST–Raf-1reg CC/SS on 
glutathione Sepharose beads were incubated 
with 25 ng His-tagged Rok-–K. Rok-–K and 
GST proteins were detected by immunoblot-
ting with His and GST antibody. 3.125–25 ng  
recombinant Rok-–K was loaded as a refer-
ence on the same gel. One representative 
experiment out of three is shown. Black lines 
indicate that intervening lanes have been 
spliced out. (D) Dose-dependent inhibition of 
Rok-–K by purified Raf-1reg. 0.29–9.3 µM 
Raf-1reg was incubated with 100 ng Rok-–K 
(0.05 µM) before a Rok kinase assay with  
7 µM recombinant MLC2 (recMLC2) as a sub-
strate. The mean ± SD of three experiments is 

shown. (E) Raf-1reg inhibits Rok- activity in vivo. The activity of endogenous Rok- (eRok-), immunoprecipitated from WT and KO MEFs, and from KO 
MEFs transfected with Raf-1reg WT or Raf-1reg CC/SS was assessed as in D. Rok- activity, expressed as pMLC/MLC ratio and normalized by the amount 
of Rok- present in the assay, is indicated below each lane. Rok- activity of Raf-1 KO MEFs is set to 100%.

Figure 4.  Raf-1reg colocalizes with Rok- 
and rescues all phenotypes of Raf-1 KO MEFs. 
(A) Raf-1 KO MEFs expressing Raf-1reg were 
identified by staining with antibodies against 
Raf-1. The localization of Raf-1 and Rok- in 
migrating MEFs was determined by immuno
fluorescence. (B–D) Raf-1reg improves cytoskel-
etal organization and migration. (B) Raf-1reg 
rescues vimentin cytoskeleton collapse in Raf-1 
KO MEFs. Raf-1 KO MEFs cotransfected with 
pEGFP and pCMV (V) or pCMV Raf-1reg were 
stained with vimentin antibodies and analyzed 
by confocal microscopy. UT, untransfected 
cells. (C) Migration of Raf-1 KO MEFs trans-
fected with the indicated pEGFP constructs  
was assessed using 10% FCS as a chemo
attractant. The percentage of transfected cells 
migrating to the lower compartment of a Boyden 
chamber in 2.5 h is plotted. (D and E) Raf-1 
KO MEFs were cotransfected with pEGFP and 
the indicated pCMV constructs, stained with 
phalloidin to visualize filamentous actin (D) or 
with anti-ezrinpT567 (E), and analyzed by con
focal microscopy. The number of cells display-
ing cortical actin bundles (CAB) or prominent 
ezrin phosphorylation is plotted on the right. 
Arrowheads indicate EGFP-expressing cells. 
Error bars indicate SD of three experiments. 
**, P < 0.01. Bars, 20 µm.
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Thus far, we don’t have any evidence that Rok- mod-
ulates Raf-1 activity. The Raf-1 kinase domain does not bind 
to Rok-, and the regulatory domain is not a Rok- substrate 
in vitro (unpublished data). It is possible that Rok- regulates 
Raf-1 by promoting its localization to intermediate filaments, 
thereby bringing it in the proximity of specific substrates. Fur-
ther studies will be needed to clarify this issue.

Implications for transformation
Ras, Rho, and their downstream effectors are implicated in 
tumorigenesis. A good example of Ras–Rho cross talk is the 
suppression of Rho signaling by Ras/ERK in transformed cells, 
leading to increased motility. This is achieved either at the level 
of integrin-mediated Rho activation, which is impaired by the 
product of the ERK target gene fra-1 (Vial et al., 2003) or, more 
specifically, by uncoupling Rho activation from its downstream 
effector Rok. In particular, Rok expression can be reduced by 
ERK activation in Ras-transformed cells with high levels of ac-
tive Rho (Sahai et al., 2001; Pawlak and Helfman, 2002b) and 
in v-src–transformed cells (Pawlak and Helfman, 2002a).

Our data identify a novel, ERK-independent mechanism 
by which Ras selectively regulates Rho signaling by promoting 
interaction between the top-tier kinases Raf-1 and Rok-. We 
have recently shown the significance of this interaction in a model 
of Ras-driven epidermal tumorigenesis (Ehrenreiter et al., 2009) 
in which Ras causes transformation by inducing proliferation 
and survival (Sibilia et al., 2000) and by selectively blocking 
differentiation. We found that Ras mediates this block by pro-
moting Raf-1–Rok- interaction and the inhibition of Rok- 
activity. If Raf-1 is ablated, both development and maintenance 
of the Ras-driven tumors are abrogated (Ehrenreiter et al., 2009). 
Understanding the mechanisms underlying the interaction be-
tween Raf-1 and Rok- may hold promise for the design of novel, 
specific inhibitors for therapeutic treatments.

Materials and methods
Plasmids
The following plasmids were used in transient expression experiments: 
pXJ40-HA-FL Rok-, PH/CRD, Rok-–K, Rok-reg (Leung et al., 1996), 
pEFmyc FL Raf-1, pCMV5 FL Raf-1, Raf-1reg, Raf-1reg R89L (provided by 
W. Kolch, System Biology Institute, Dublin, Ireland; Kubicek et al., 2002; 
O’Neill et al., 2004), pEXV FL Raf-1, R89L, CC/SS, CAAX (provided by 
J.F. Hancock, University of Texas Medical School, Houston, TX; Roy et al., 
1997), pEGFP Raf-1reg (provided by R.M. Lafrenie, Northern Ontario 
School of Medicine, Sudbury, Ontario, Canada; Zhang et al., 2002), 
pRSV FL Raf-1, Raf-1reg, and Raf-1–K (Bruder et al., 1992). For expres-
sion in bacteria, pGEX Raf-1reg (aa 1–187) was subcloned from pGEX  
Raf-1reg (aa 1–258; O’Neill et al., 2004) by PCR amplification and liga-
tion. All CC/SS mutations were generated by site-directed mutagenesis and 
verified by sequencing. Monomeric RFP1 (mRFP1)–Rok- constructs were 
generated by PCR amplification of pXJ40-HA–Rok- and subcloned into the 
pcDNA mRFP1 vector. pGEX KG MLC2 and RhoA V14 Flag tagged were 
provided by E. Sahai (Cancer Research UK, London, England, UK) and  
A. Ridley (King’s College London, London, England, UK), respectively.

Cell culture and transfection
3T3-like MEFs derived from c–Raf-1/ and WT embryos (Mikula et al., 
2001), COS-1, MCF-7, and MDA-MB-468 cells (which express a high 
amount of EGF receptor; Filmus et al., 1985) were maintained in DME with 
10% FCS and transiently transfected using Lipofectamine reagents (Invitro-
gen) according to the manufacturer’s instructions.

by providing inhibition in trans (Fig. 5 D). Another GTPase- 
activated kinase, Pak1, is inhibited in trans in its basal state in 
the context of a homodimer in which the regulatory domain of 
one molecule inhibits the kinase domain of the other. However, 
although disruption of the dimer by activated GTPases allows 
Pak1 activation (Parrini et al., 2002), GTPase binding to both 
Raf-1 and Rok- promotes the formation of complexes within 
which Rok- activity is restrained by Raf-1.

Figure 5.  The regulatory domains of Raf-1 and Rok- act as inhibitors 
of Rok- kinase activity in vivo. (A) Comparison of the experimental solu-
tion structure of Raf-1 CRD (left) and the computational model of the Rok- 
CRD (middle). Zinc cations are shown as spheres, and the side chains of 
the residues coordinating the cations are shown as lines: red in one metal 
biosite and blue in the other. (right) Superposition of the Raf-1 and Rok- 
CRDs. (B and C) COS-1 cells (B) and MEFs (C) were transfected with the 
indicated constructs. 24 h after transfection, cells were lysed and analyzed 
by immunoblotting. KO, Raf-1 KO MEFs; *, unspecific band. (D) Model of 
the regulation of Rok- by Raf-1. GTPase binding disrupts intramolecular 
interaction between the regulatory and kinase domains of Raf-1 and Rok-, 
upon which Raf-1reg binds to the kinase domain of Rok-, restraining Rho-
induced Rok- kinase activity. Inhibition in trans limits the phosphorylation 
of Rok- downstream targets, regulating cell motility and differentiation.
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and control is the GFP–Raf-1 lifetime measured in the absence of an accep-
tor. Because ≤100-ps time resolution is achieved with our instrumentation, 
for a control value of 2.35 ns, FRET efficiencies as low as 3% can be deter-
mined accurately. Pixel by pixel lifetime determination was achieved using 
a modified Levenberg–Marquardt fitting technique (Barber et al., 2005). 
The error in fitting the monoexponential decay model for fluorescence lifetime 
determination is <0.4% for signals with a peak of ≥500 photon counts. Also, 
in general, the lifetime of the interacting population (FRET species) can only 
be accurately determined with a peak photon count of ≥500 (Barber et al., 
2009). We have therefore routinely excluded cells that have insufficient pho-
ton counts (<500 photons at the peak) from lifetime analysis.

Computational analysis of Raf-1 and Rok- CRD
Rok- CRD was modeled on the basis of the experimental structure of  
Raf-1 CRD (Protein Data Bank accession no. 1FAR; Mott et al., 1996) using 
Modeller (http://salilab.org/modeller/; Martí-Renom et al., 2000) and 
refined with Jackal (full atom Amber force field; http://wiki.c2b2.columbia 
.edu/honiglab_public/index.php/Software:Jackal; Petrey et al., 2003) 
in the absence of the two zinc ions. The presence of two metal-binding 
sites was confirmed by two independent approaches, CheD (Babor et al., 
2008) and MetSite (http://bioinf.cs.ucl.ac.uk/MetSite/MetSite.html;  
Sodhi et al., 2004).

Statistical analysis
All values are expressed as mean ± SD of at least three independent ex-
periments unless indicated otherwise. P-values were calculated using 
the unpaired, two-tailed Student’s t test. P ≤ 0.05 is considered statisti-
cally significant.

Online supplemental material
Fig. S1 shows that FL Raf-1 and Raf-1reg, but not the Raf-1 kinase do-
main, interact with FL Rok- and PH/CRD Rok-. Fig. S2 shows that Raf-
1reg, but not Raf-1reg CC/SS, inhibits the kinase activity of Rok- in vitro.  
Fig. S3 shows that expression of Raf-1reg prevents the formation of Fas 
clusters at the cell surface of Raf-1 KO cells and reduces their sensitivity 
to Fas-induced cell death. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200906178/DC1.
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