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1. Introduction

Two hundred years ago Thomas Young taught us that photons interfere. Nowadays also ex-
periments with very massive particles, like the fullerenes [1], have impressively demonstrated that
fundamental feature of quantum mechanics . It seems that there is no physical reason why not even
heavier particles should interfere except for technical ones. Then it was shown that the knowledge
of the path through the double slit is the reason why interference is lost, however, the gedanken
experiment of Scully and Drühl in 1982 [2] shocked the physics community: if the knowledge of
the path of the particle is erased, interference is brought back again!

Since that work many different types of quantum erasures have been analyzed and experiments
were performed with atom interferometers [3] and entangled photons [4, 5, 6, 7, 8, 9]. Generally,
the meter, the quantum system which carries the “mark” of the path taken, is a system spatially
separated from the interfering system called the object system. It turned out that the decisionto
erase or notthe mark of the meter system —and thereforeto observe or notinterference— can
be taken long after the measurement on the object system has been completed which is called an
eraser in the “delayed choice” mode and captures best the essence and the most subtle aspects of
the quantum eraser phenomenon. This was also nicely phrased by Aharonov and Zubairy in their
review article [10] as “erasing the past and impacting the future”.

Here we want to present four different types of quantum erasure concepts for neutral kaons,
proposed in Refs. [11, 12]. Two of them are analogous to erasure experiments performed with
entangled photons, e.g. Refs. [4, 5], sketched in Figs.1,2. In the first experiment with photons
the erasure operation is carried out “actively”, i.e., by exerting the free will of the experimenter,
whereas in the latter experiment the erasure operation is carried out “partially actively”, i.e., the
mark of the meter system is erased or not by a well known probabilistic law, e.g., by a beam splitter.
However, different to photons the kaons can be measured by anactiveor apassiveprocedure (see
Sect.2).

This offers new quantum erasure possibilities which can only be achieved with kaons, a nat-
urally interfering and decaying (marking) system. And in this way proves the very concept
of a quantum eraser, namely, sorting events to available information.

We believe that the upgraded KLOE-2 detector at the DAφNE machine offers the possibility for
an experimental demonstration of the here described “kaonic erasers”. Monte Carlo and design
studies are in progress.

2. Two measurement procedures

For neutral kaons there exist two physical alternative bases, accordingly we have two observ-
ables for the kaons, namely the projectors to the two bases. The first basis is the strangeness
eigenstate basis{|K0〉, |K̄0〉}, it can be measured by inserting along the kaon trajectory a piece of
ordinary matter, which corresponds to anactivemeasurement of strangeness. Due to strangeness
conservation of the strong interactions the incoming state is projected either ontoK0 byK0p→K+n
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Figure 1: Here the setup for an active eraser is sketched. A pump beam transverses twice a, e.g., type II
crystal. The pairs produced in the first passage through the crystal cross two times a quarter–wave plate
(QWP) which transforms an original horizontal polarized photon into a vertical one and vice versa. The
pairs produced in the second passage through the crystal is directly sent to the measurement devices. The
signal (object) photon is always measured after crossing a polarization analyzer aligned at+45◦. The idler
(meter) photon crosses a half–wave plate (HWP) oriented at0◦,90◦ (first setup) or±45◦ (second setup) and
is then analyzed by a polarization beam splitter. In the first setup —meter photon is measured in theH/V
basis— one has fullwhich wayinformation, namely if the pair was produced at the first or second passage.
In the second setup —meter photon is measured in the+45◦/−45◦ basis— the information on the first or
second passage is erased, one observes fringes or antifringes.

or ontoK̄0 by K̄0p→ Λπ+, K̄0n→ Λπ0 or K̄0n→ K−p. Here nucleonic matter plays the same
role as a two channel analyzer for polarized photon beams.

Alternatively, the strangeness content of neutral kaons can be determined by observing their
semileptonic decay modes. The strange quarksdecays weakly:
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Due to their quark content the kaonK0(s̄d) and the anti–kaon̄K0(sd̄) have the following
different decays:

K0(ds̄) −→ π−(dū) l+ νl where s̄ −→ ū l+ νl

K̄0(d̄s) −→ π+(d̄u) l− ν̄l where s −→ u l− ν̄l , (2.1)

with l either muon or electron,l = µ,e. When studying the leptonic charge asymmetry

δ =
Γ(KL → π−l+νl )−Γ(KL → π+l−ν̄l )
Γ(KL → π−l+νl )+Γ(KL → π+l−ν̄l )

, (2.2)

we notice thatl+ andl− tagK0 andK̄0, respectively, in theKL state, and the leptonic asymmetry
(2.2) is expressed by the probabilities|p|2 and|q|2 of finding aK0 and aK̄0, respectively, in theKL

state

δ =
|p|2−|q|2
|p|2 + |q|2 . (2.3)
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The experimenter has no control of the kaon decay, neither of the mode nor of the time. The
experimenter can only sort all observed events in proper decay modes and time intervals. We
call this procedure opposite to theactive measurement described above apassivemeasurement
procedure of strangeness.

The second basis{KS,KL} consists of the short– and long–lived states having well defined
massesmS(L) and decay widthsΓS(L). It is the appropriate basis to discuss the kaon propagation in
free space, because these states preserve their own identity in time. Due to the huge difference in
the decay widths theKS’s decay much faster than theKL’s. Thus in order to observe if a propagating
kaon is aKS or KL at timet, one has to detect at which time it subsequently decays. Kaons which
are observed to decay before' t +4.8τS are identified asKS’s, while those surviving after this time
are assumed to beKL’s. The number4.8τS is obtained by setting the probability to observe aKS

equal to the probability that aKL state does not decay, i.e.e−ΓSt = 1−e−ΓLt −→ t ≈ 4.8τS. This
means that we equalized the contamination of both samples, that is a few parts per mil (see also
Refs. [11, 12]). Note that the experimenter doesn’t care about the specific decay mode, he records
only a decay event at a certain time. We call this procedure anactivemeasurement of lifetime.

Since the neutral kaon system violates theCP symmetry the mass eigenstates are not strictly
orthogonal,〈KS|KL〉 6= 0. However, neglectingCP violation —of the order of10−3— theKS’s are
identified by a2π final state andKL’s by a 3π final state. We call this procedure apassivemea-
surement of lifetime, since the kaon decay times and decay channels used in the measurement are
entirely determined by the quantum nature of kaons and cannot be influenced by the experimenter.

Summarizing, we have the following two measurement procedures for the strangeness and the
mass–eigenstate bases:

Strangeness basis〈K0|K̄0〉= 0

Activemeasurements(strong interactions) Passivemeasurements(semileptonic decays)

K0 + p−→ K+ +n K̄0(d̄s) −→ π+(d̄u) l− ν̄l

K̄0 + p−→ Λ+π+ K0(ds̄) −→ π−(dū) l+ νl

K̄0 +n−→ K−+ p,Λ+π0

Mass eigenstate basis〈KS|KL〉= 2Re{ε}
1+|ε|2 ≈ 3·10−3

Activemeasurements(free propagation) Passivemeasurements(2 or 3 π decay modes)

→ any decay mode observed before → 2 π ’s are identified asKS’s

4.8τS are identified asKS’s → 3 π ’s are identified asKL’s

Misidentification: few parts in10−3! Misidentification: few parts in10−3!
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Figure 2: Here the setup of a partially active eraser is sketched. An entangled photon pair can be produced
either in regionA or in regionB. If either detectorD1 or D4 clicks, one knows the production regionA or B,
i.e. one has fullwhich wayinformation. Clicks of the detectorsD2 or D3 erase the information, interference
is observed. It is a partially active eraser, because the mark is erased by a probabilistic law, however, the
experimenter has still partially control over the erasure, she/he can choose the ratio of transmittivity to
reflectivity of the beam splitterBSAandBSB.

3. The active eraser withactivemeasurements

S, tl
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S, tr
0
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0
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Figure 3: The figure shows the two setups for an eraser with active marking andactivemeasurements. On
the object system (left hand side) strangeness isactivelymeasured while on the meter system (right hand
side) the experimenter measuresactivelythe strangeness or lifetime by inserting or not the piece of matter.

Let us first discuss the photon analogy, e.g., the two experimental setups in Ref. [4]. In the
first setup two interfering two–photon amplitudes are prepared by forcing a pump beam to cross
twice the same nonlinear crystal. Idler (meter) and signal (object) photons1 from the first down
conversion are marked by rotating their polarization by90◦ and then superposed to the idler (i) and
signal (s) photons emerging from the second passage of the beam through the crystal. If type–II
spontaneous parametric down conversion were used, we had the state2

|ψ〉 =
1√
2

{
|V〉i⊗|H〉s︸ ︷︷ ︸
second passage

−ei∆φ |H〉i⊗|V〉s︸ ︷︷ ︸
first passage

}
, (3.1)

where the relative phase∆φ is under control by the experimenter. The signal photon, the object
system, is always measured after crossing a polarization analyzer aligned at+450, see Fig.1. Due
to entanglement, the vertical or horizontal idler polarization supplies fullwhich wayinformation
for the signal (object) system, i.e., whether it was produced at the first or second passage. No

1For historical reasons for photons idler/signal is used rather than meter/object.
2The authors of Ref. [4] used type–I crystals in their experiment.
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interference can be observed in the signal–idler joint detections. To erase this information, the idler
photon has to be detected in the+45◦/−45◦ basis.

In case of entangled kaons the state is described by

|ψ(t = 0)〉 =
1√
2

{|K0〉l ⊗|K̄0〉r −|K̄0〉l ⊗|K0〉r
}

,

=
1√
2
{|KS〉l ⊗|KL〉r −|KL〉l ⊗|KS〉r} , (3.2)

the last equality is obtained by neglecting theC P violation. The analogy with Eq. (3.1) is quite
obvious, however, kaons evolve in time, such that the state depends on the two time measurements
on the left hand side,tl , and on the right hand side,tr , or more precisely on∆t = tl − tr , when
normalized3 to surviving kaon pairs (⊗ is from now on suppressed)

|ψ(∆t)〉 =
1√

1+e∆Γ∆t

{
|KL〉l |KS〉r −ei∆m∆te

1
2∆Γ∆t |KS〉l |KL〉r

}

=
1

2
√

1+e∆Γ∆t

{(
1−ei∆m∆te

1
2∆Γ∆t){|K0〉l |K0〉r −|K̄0〉l |K̄0〉r}

+
(
1+ei∆m∆te

1
2∆Γ∆t){|K0〉l |K̄0〉r −|K̄0〉l |K0〉r}

}
. (3.3)

We notice that the phase∆m∆t introduces automatically a time dependent relative phase between
the two amplitudes. The marking and erasure operations can be performed on entangled kaon pairs
as in the optical case discussed above. The object kaon flying to the left hand side is measured
alwaysactively in the strangeness basis, see Fig.3. As in the optical version the kaon flying to
the right hand side, the meter kaon, is measuredactivelyeither in the strangeness basis by placing
a piece of matter in the beam or in the lifetime basis by removing the piece of matter. Both
measurements areactivelyperformed. In the latter case we obtain information about the lifetime,
namelywhich widththe object kaon has, and clearly no interference in the joint detections can be
observed.

3Thanks to this normalization, we work with bipartite two–level quantum systems like polarization entangled pho-
tons or entangled spin–1/2 particles. For an accurate description of the time evolution of kaons and its implementation
consult Ref. [13, 14].
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4. The partially passive quantum eraser withactivemeasurements

S, tl

Source

S, tr
0

T

object system
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Figure 4: The figure shows the setup for a partially passive quantum marking andactivemeasurements on
both sides. On the object system (left hand side) strangeness isactivelymeasured while on the meter system
(right hand side) the strangeness or lifetime isactivelymeasured. The meter system “decides” whether the
“wave–like” property or the “particle–like” property is observed.

In Fig. 2, a setup is sketched where either at position A or B an entangled photon pair is
produced, which was realized in Ref. [5]. “Clicks” on detectorD1 or D4 provide “which way”
information. “Clicks” on detectorD2 and D3 give no information about the position A or B,
interference is observed in the joint events of the two photons, see Fig.2.

In the kaon case, a piece of matter is permanently inserted into both beams where the one for
the meter system at the right hand side is fixed at timet0

r , see Fig.4. The experiment observes
the region from the source to the piece of matter at the right hand side. In this way the kaon
moving to the right —the meter system— takes the choice to show “which width” information by
its decay during its free propagation untilt0

r or not by being absorbed in the piece of matter. Again
strangeness or lifetime is measuredactively. The choice whether the “wave–like” property or the
“particle–like” property is observed is naturally given by the instability of the kaons. It is “partially
active”, because the experimenter can choose at which fixed timet0

r the piece of matter is inserted.
This is analogous to the optical case where the experimenter can choose the transmittivity of the
two beam–splittersBSAandBSBin Fig. 2.

Furthermore, note that it is not necessary to identifyKS versusKL for demonstrating the quan-
tum marking and eraser principle.

5. The passive eraser with “passive” measurements on the meter

S, tl

Source

T

object system

meter system
TS

Figure 5: The figure shows a setup of a quantum eraser which has no photon analog. On the object system
(left hand side) strangeness isactivelymeasured while on the meter system (right hand side) the strangeness
or lifetime is observed by its decay (passivemeasurement). The experimenter has no control whether the
lifetime mark is read out or not.
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Next we consider the setup in Fig.5. We take advantage —and this is specific for kaons— of
the passivemeasurement. Again the strangeness content of the object system —kaon moving to
the left hand side— isactivelymeasured by inserting a piece of matter into the beam. In the beam
of the meter no matter is placed in, the kaon moving to the right propagates freely in space. This
corresponds to apassivemeasurement of either strangeness or lifetime on the meter by recording
the different decay modes of neutral kaons. If a semileptonic decay mode is found, the strangeness
content is measured. In the joint events interference is observed. If a two or threeπ decay is
observed, the lifetime is measured and thus “which width” information of the object system is
obtained, no interference is seen in the joint events. Clearly we have a completely passive erasing
operation on the meter, the experimenter has no control whether the lifetime mark is read out or
not.

This experiment has no analog to any other considered two–level quantum system.

6. The passive eraser with “passive” measurements

Source

T TS S

Figure 6: For this type of quantum eraser, it is not clear which side plays the meter/object role as it is totally
symmetric and it involves onlypassivemeasurements. This clearly has no analog to photon experiments.

Finally we mention the setup in Fig.6, where both kaons evolve freely in space and the ex-
perimenter observespassivelytheir decay modes and times. The experimenter has no control over
individual pairs neither on which of the two complementary observables at each kaon is measured
nor when it is measured. This setup is totally symmetric, thus it is not clear which side plays the
role of the meter. In this sense, one could claim that this experiment should not be considered as
a quantum eraser. But one could also claim that this experiment reveals the true essence of the
erasure phenomenon: Until the two measurements (one in each side) are completed, the factual
situation is undefined; once one has the measurement results on both sides, the whole set of joint
events can be classified in two subsets according to the kind of information (on strangeness or on
lifetime) that has been obtained. The lifetime subset shows no interference, whereas fringes and
antifringes appear when sorting the strangeness subset events according to the outcome,K0 or K̄0,
of the meter kaon.

Summarizing, it is remarkable that for all four presented setups combiningactiveandpassive
measurement procedures lead to the same observable probabilities! And this is even true regardless
of the temporal ordering of the measurements!

7. Conclusions

We have discussed the possibilities offered by neutral kaon states, such as those copiously
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produced byΦ–resonance decays at the DAΦNE machine, to investigate fundamental issues of
quantum mechanics: the quantum eraser phenomena. Neutral kaons seem to be the natural system
to study these phenomena because it allows for a clear conceptual simplification and one obtains
the relevant formulae in a transparent and non–controversial way.

Moreover, the possibility of performing passive measurements, a specific feature of neutral
kaons not shared by other systems, has been shown to open new options for the quantum eraser.
Demonstrating the very concept of a quantum eraser: sorting events according to the information
available.

The CPLEAR experiment [15] did only part of the job (activestrangeness–strangeness mea-
surements) with every limited statistics and absorber positions. The KLOE-2 experiment could do
the full program: Monte Carlo studies for both active and passive measurements are in progress,
and concrete designs for positioning thin absorbers close to the interaction point - requiring a mod-
ification of the beam pipe - are under investigations.
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