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Statistical mining and integration of complex molecular
data including metabolites, proteins, and transcripts is
one of the critical goals of systems biology (Ideker, T.,
Galitski, T., and Hood, L. (2001) A new approach to decod-
ing life: systems biology. Annu. Rev. Genomics Hum.
Genet. 2, 343–372). A number of studies have demon-
strated the parallel analysis of metabolites and large scale
transcript expression. Protein analysis has been ignored
in these studies, although a clear correlation between
transcript and protein levels is shown only in rare cases,
necessitating that actual protein levels have to be deter-
mined for protein function analysis. Here, we present an
approach to investigate the combined covariance struc-
ture of metabolite and protein dynamics in a systemic
response to abiotic temperature stress in Arabidopsis
thaliana wild-type and a corresponding starch-deficient
mutant (phosphoglucomutase-deficient). Independent
component analysis revealed phenotype classification re-
solving genotype-dependent response effects to tempera-
ture treatment and genotype-independent general temper-
ature compensation mechanisms. An observation is the
stress-induced increase of raffinose-family-oligosaccha-
ride levels in the absence of transitory starch storage/mo-
bilization in temperature-treated phosphoglucomutase
plants indicating that sucrose synthesis and storage in
these mutant plants is sufficient to bypass the typical starch
storage/mobilization pathways under abiotic stress. Even-
tually, sample pattern recognition and correlation network
topology analysis allowed for the detection of specific me-
tabolite-protein co-regulation and assignment of a circa-
dian output regulated RNA-binding protein to these pro-
cesses. The whole concept of high-dimensional profiling
data integration from many replicates, subsequent multiva-

riate statistics for dimensionality reduction, and covariance
structure analysis is proposed to be a major strategy for
revealing central responses of the biological system under
study. Molecular & Cellular Proteomics 7:1725–1736,
2008.

Metabolomic technologies enable the very rapid non-tar-
geted analysis of metabolites and provide a diagnostic tool for
pattern recognition of biological samples (2–5). Typical pat-
tern recognition methods are variance discrimination algo-
rithms such as principal components analysis (PCA)1 or inde-
pendent component analysis (ICA) (2, 6–9). Independent
component analysis is an extension of covariance analysis by
looking for kurtosis thresholds or high entropy (8, 10) and thus
adds a further value for biological interpretation. Variance
discrimination of samples relies strongly on a high biological
variability of independent biological replicate analysis (4, 11,
12). Recently, we demonstrated that these covariance ma-
trixes of experimentally determined metabolite levels are con-
nected with the elasticities of pathway reaction networks (13).
Consequently, changes in the structure of these covariance
networks reveal biochemical regulations (4). This was con-
firmed by using topology studies of differential metabolite
correlation/covariance networks to investigate a silent pheno-
type sucrose synthase antisense plant and alterations in a
starch-deficient Arabidopsis thaliana mutant (9, 14). Further
we used a computational kinetic model of the Calvin cycle
coupled to sucrose biosynthesis in plant leaf metabolism to
demonstrate changes in metabolite correlation/covariance
networks as a response to protein phosphorylation and en-
zymatic regulation (15, 16). The statistical model implies that
variance discrimination analysis such as PCA will optimize
sample grouping according to differences in biochemical reg-
ulation, thus providing for the first time a fundamental rela-
tionship between large scale profiling methods such as
metabolomics combined with multivariate data analyses, bio-
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chemical regulation, and pattern recognition (4, 12) (see Fig.
1). However, although regulatory hubs can be identified in
differential metabolite correlation networks, causal relation-
ships in experimental systems are not derivable without inte-
gration of additional parameters such as external environmen-
tal perturbation and further molecular levels like protein
concentrations or RNA expression data (1, 4). Computer sim-
ulation of enzymatic activities of a biochemical network en-
ables calculation of corresponding metabolite correlation net-
works (4, 13, 15–17). This idea has been further substantiated
by recent calculations of metabolic networks (18, 19). In these
studies the authors identified high variances in gene expres-
sion and protein activity as causes for metabolite correlations.
Obviously, the model for metabolite correlations can be ex-
tended to systemic fluctuations in complex biochemical net-
works (20). Consequently, the integration of rapid sample
classification and metabolic network analysis using metabo-
lomic techniques with quantitative non-targeted protein pro-
filing will add a further dimension for protein function analysis
and systems biology. Furthermore, integrated metabolite and
protein measurements offer an improved method for distin-
guishing among phenotypes (i.e. causes for phenotypes) (4, 9,
12, 21). The systematic comparison of mRNA expression
levels, enzymatic activities, and protein levels revealed a low
correlation in most studies so far indicating that high through-
put microarrays are not sufficient to understand genome-wide
protein dynamics or biochemical regulation (22, 23). The sys-
tematic integration of transcript and metabolite profiling, thus,
necessitates time course resolution. A more direct interaction
can be expected for proteins and metabolites. However, only
a few examples are existing, consequently investigating
metabolomics and proteomics data integration. Recent ex-
amples demonstrate such an approach (9, 11, 24–26). These
studies clearly demonstrate the need for data integration,
however, show that several further obstacles have to be ad-
dressed: (i) data quality and comprehensiveness; (ii) sample
throughput; and (iii) algorithms and statistics to extract signif-
icant information and to cope with the high dimensionality
structure of the data. All these issues are directly related and
dominate the outcome of an integrative study. In the present
study a strategy for metabolomic and proteomic phenotype
integration is shown coping with these problems. The overall
strategy is based on recent work by us for the systematic
analysis of the combined covariance structure of metabo-
lites and proteins in a complex systemic response (see Fig.
1) (9, 11). Recent approaches were restricted to only low
numbers of individual proteins. In the present work we
improved protein identification and quantification rates
strongly without limiting the sample throughput, which is a
requirement to exploit biological variability for sample clas-
sification and biological interpretation as described above
(4, 9, 11).

Molecular responses of temperature acclimation at 4 and
32 °C after 3 days were investigated in a sugar accumulating

starch-deficient A. thaliana plant mutant phosphoglucomutase
(PGM) and its corresponding wild-type (WT) ancestor. Metabo-
lites and proteins were identified and quantified from the same
tissue samples according to Weckwerth et al. (11). Typical me-
tabolite stress markers and novel members of the RNA-binding
protein family indicating involvement of post-transcriptional
mechanisms were identified with a significant impact on gen-
otype discrimination, temperature treatment, and cold accli-
mation, respectively. We propose the applicability of the
whole process to all kinds of biological systems revealing
systemic responses to environmental conditions and correla-
tive sets of biomarkers.

EXPERIMENTAL PROCEDURES

Reagents—Chemicals were purchased from Sigma (Taufkirchen,
Germany), except D-sorbitol-P13PCB6B, DL-leucine-2,3,3-dB3B, and
L-aspartic acid-2,3,3-dB3B, which were obtained from Isotech (Mi-
amisburg, OH). Acetonitrile was from J. T. Baker (Deventer, Nether-
lands), endoproteinase Lys-C from Roche Applied Science, and
PoroszymeP�P immobilized trypsin from Applied Biosystems (Foster
City, CA).

Plant Material and Harvest—A. thaliana plants Col-0 (wild-type) and
a plastidic PGM mutant (27) were cultivated simultaneously under
identical phytotron conditions set as follows: The light conditions
were 160 �E for 8 h followed by 16 h at 0 �E (darkness). Relative
humidity and temperature conditions were set to 70% and 20 °C
during the light and dark period, respectively.

Plants were harvested at the developmental stage 5.10 (28) after 3
days at 4, 20 (control), and 32 °C, with 12 different plants per treat-
ment and genetic background, respectively. Enzymatic activity was
quenched by immediately freezing the plants in liquid nitrogen. The
material of two plants per experiment was pooled to give six samples
per treatment and genetic background. Tissues were stored at
�80 °C until further analysis.

Extraction Procedure and Sample Preparation for Metabolite and
Protein Analysis from One Sample—Frozen leaf tissue was individu-
ally homogenized under liquid nitrogen using a pre-chilled mortar and
pestle. Approximately 50 mg of powdered material was used for
analysis. Simultaneous extraction of metabolites and proteins from
individual plants was performed as described in Weckwerth et al. (11,
29) with modifications. For metabolite extraction, 1 ml of the extrac-
tion mixture containing methanol:chloroform:water (2.5:1:0.5 v:v:v)
and 10 �l of an internal standard solution containing 2 mg/ml each
D-sorbitol-P13PCB6B, DL-leucine-2,3,3-dB3B, and L-aspartic acid-
2,3,3-dB3B was added. Soluble metabolites were extracted by mixing
the solution at 4 °C for 10 min. After centrifugation for 6 min at 20,000
rpm, the supernatant was separated into chloroform and water/meth-
anol phases. The aqueous phase was used for metabolite analysis.

Samples were derivatized by dissolving the dried metabolite pellet
in 20 �l of methoxyamine hydrochloride (40 mg/ml pyridine) and
shaking the mixture for 90 min at 30 °C. After the addition of 180 �l of
N-methyl-N-trimethylsilyltrifluoroacetamid, the mixture was incu-
bated at 37 °C for 30 min with vigorous shaking. A solution of even
numbered fatty acid methylesters, methylcaprylate (C8-ME), methyl-
caprate (C10-ME), methyllaurate (C12-ME), methylmyristate (C14-
ME), methylpalmitate (C16-ME), methylstearate (C18-ME), methylei-
cosanoate (C20-ME), methyldocosanoate (C22-ME), lignoceric acid
methylester (C24-ME), methylhexacosanoate (C26-ME), methylocta-
cosanoate (C28-ME), and triacontanoic acid methylester (C30-ME)
(each 0.8 mg/ml CHClB3B) was spiked into the derivatized sample
prior to injection into the gas chromatography (GC). The remaining
proteins pellets were dissolved in 200 �l of protein extraction buffer
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(50 mM HEPES-KOH, 40% sucrose (w/v), 1% �-mercaptoethanol, pH
7.5) per 50 mg of fresh weight. 600 �l of (3 volumes) TE-buffer (10 mM

Tris, 1 mM EDTA-Na2)-equilibrated phenol were added and shaken for
30 min at 4 °C. After centrifugation at 4,000 � g and 4 °C for 8 min,
the soluble proteins were dissolved in the upper phenolic phase (the
high sucrose concentration causes a phase inversion). The phenolic
phase was separated and the proteins precipitated out of the phe-
nolic phase overnight in 5 volumes of ice-cold acetone. After centrif-
ugation at 4,000 � g and 4 °C for 8 min the pellets were washed 3
times with ice-cold methanol and stored at �80 °C until further use.
The dried protein pellets were then digested in two steps using
endoproteinase Lys-C (1:100) first and then PoroszymeP�P immobi-
lized trypsin according to the manufacturer’s instructions (buffer 1:
Lys-C digestion buffer (50 mM Tris, 8 M urea, 100 mM methylamine, pH
7.5); buffer 2: trypsin digestion buffer (50 mM Tris, 10% acetonitrile, 10
mM CaCl2, pH 7.5), after Lys-C digestion the sample is 1:4 diluted to
have an end concentration of 2 M urea). Protein content was deter-
mined using the Bradford assay employing ovalbumin as the standard
protein. The protein digest was desalted with SPECP�P C18 columns.
After lyophilization the pellet was stored at �20 °C until use.

GC-TOF-MS Analysis—The GC-TOF-MS analysis was performed
on an HP 5890 gas chromatograph with deactivated standard spit/
splitless liners containing glasswool (Agilent, Böblingen, Germany).
One-�l sample was injected in the splitless mode at 230 °C injector
temperature. GC was operated on an MDN-35 capillary, 30 m � 0.32
mm inner diameter, 25-�m film (SUPELCO, Bellefonte, PA), at con-
stant flow of 2-ml/min helium. The temperature program started with
2 min isocratic at 85 °C, followed by temperature ramping at 15 °C/
min to a final temperature of 360 °C, which was held for 8 min. Data
acquisition was performed on a Pegasus II TOF mass spectrometer
(LECO, St. Joseph, MI) with an acquisition rate of 20 scans sP�1P in
the mass range of m/z � 85–600.

The obtained data were analyzed at first by defining a reference
chromatogram with the maximum number of detected peaks over a
signal/noise threshold of 50. Afterward all chromatograms were
matched against the reference with a minimum match factor of 800.
Compounds were annotated by retention index and mass spectra
comparison to a user defined spectra library. Selected unique
fragment ions specific for each individual metabolite were used for
quantification.

LC-MS Shotgun Protein Analysis—Prior to MS analysis, pellets of
protein digests were dissolved in 5% formic acid. 10 �g per sample
were concentrated on a pre-column and subsequently loaded onto a
50 cm silica-based C18 RP monolithic column (50 �m inner diameter)
(30). Elution of the peptides was performed using a 4 h gradient from
100% solvent A (5% acetonitrile, 0.1% formic acid in water) to 100%
solvent B (90% acetonitrile, 0.1% formic acid in water) using the
Agilent nano high pressure liquid chromatography (HPLC) system
(Agilent, Böblingen, Germany) with a flow rate of 400 nL per min.
Eluting peptides were analyzed with a linear ion trap mass spectrom-
eter (Thermo Electron, San Jose, CA) operated in a data-dependent
mode. Each full MS scan was followed by three MS/MS scans in
which the three most abundant peptide molecular ions were dynam-
ically selected for collision-induced dissociation using a normalized
collision energy of 35%. The temperature of the heated capillary and
electrospray voltage was 150 °C and 1.9 kV, respectively. After MS
analysis, DTA files were created from raw files and searched against
a database using Bioworks 3.1. With DTASelect, a list of identified
proteins was obtained using the following criteria: Xcorr: �1 2.0, �2
2.0, �3 3.3 (31) for hits with at least 2 different peptides. For quan-
titative analysis, Contrast was used to compare and align identified
proteins and peptides from different runs and to determine the ion
count per protein (32). Only proteins were included in the list, which at
least appeared in five of the six independent replicates of one exper-

imental treatment thereby ensuring reproducibility of the analysis.
According to Liu et al. (2004) (33) the cumulative sum of recorded
peptides per protein called spectral count was applied as a quanti-
tative measure (33). All the identified peptide product ion spectra can
be downloaded from ProMEX to reveal identification criteria and to
judge the quality of the spectra. ProMEX is a mass spectral reference
library for plant proteomics and can be searched also with unknown
samples (34).

Statistical Data Analysis—All data were normalized to mg fresh
weight and stable isotope-labeled standard compounds. Statistical
tests were performed in Matlab� 7.0 (Mathworks, Natick, MA) on the
basis of log-transformed data.

For ICA an in-house Matlab script was used (10). The covariance of
the data was first analyzed by PCA giving a restricted set of principal
components covering 95% of variance. ICA was then applied to these
new components, and new independent components were ranked by
the kurtosis measure. The contributions of each metabolite/protein to
an independent component can be obtained by combining the trans-
formation matrix W of PCA with the transformation matrix V of ICA to
a direct transformation U � W*V. The elements of the i-th vector in U
represent the individual contributions; the loading (see Fig. 3A) to the
i-th independent component. For more details see Scholz and Selbig
(10). The ICA algorithm used in this study is CuBICA4 (35).

To test for differences in the median concentrations of metabolites
and proteins between stressed and unstressed plants we used
Kruskal-Wallis one-way analysis (ANOVA) by ranks implemented in
Matlab� 7.0. Differences were considered statistically significant at
p � 0.05.

RESULTS AND DISCUSSION

Parallel Metabolite and Protein Analysis by Combining an
Integrative Extraction Protocol with GC-TOF-MS and LC-Ion
Trap-MS Analysis—Plant material was extracted using an ex-
traction protocol for sequential isolation of metabolites and
proteins from one sample to minimize technical standard
deviation, increase sample throughput, and exploit metabo-
lite-protein covariance for sample classification (9, 11, 29)
(see Fig. 1). The data matrix consists of 36 independent
biological replicates of different experiments with 332 vari-
ables for each experiment in the form of relative levels of
proteins (160) and metabolites (172). In contrast to the former
extraction protocol protein recovery was improved 2-fold by
adding 40% sucrose into the protein extraction buffer and
reducing degradation because of high temperature and long
extraction times (29). For metabolite analysis a standard op-
eration protocol consisting of chemical derivatization and
subsequent analysis with gas chromatography coupled to
time-of-flight mass spectrometry (GC-TOF-MS) was per-
formed (9, 11, 14, 36). GC-TOF-MS metabolite profiling re-
sulted in a list of 172 reproducible identifiable mass spectra
including known carbohydrates, amino acids, and organic
acids (for a complete list of identified metabolites, see sup-
plemental Table S1). For protein analysis we used a label-free
non-gel-based approach analyzing tryptic peptides of the
complex protein sample on reversed phase liquid chromatog-
raphy coupled to ion trap mass spectrometry (LC/MS) (9, 11,
30, 37, 38). Recently, it was demonstrated that the cumulative
sum of recorded peptides called spectral count in such data-
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dependent LC/MS analyses correlates with protein abun-
dance in the samples (33, 39, 40). This was also proven in a
combination with stable isotope labeling (39). In a recent
study we compared spectral count and peak integration from
complex total ion chromatograms of a complex protein sam-
ple in combination with multivariate data mining (41). Dynamic
range and limits of detection were studied by spiking a protein
with known concentrations into the complex protein matrix.
Both methods gave similar sample pattern recognition; how-
ever, spectral count was advantageous with respect to the
total number of identified and quantified proteins. A typical
protein analysis using peak integration showed high abun-
dance proteins such as Calvin cycle enzymes and protein of
the photosystem I and II (9, 11, 30). Using spectral counts the
list of identified proteins exceeded significantly these func-
tional protein classes (for a complete list see supplemental
Table S2). Low abundance proteins as well as proteins known
to be involved in temperature adaptation (At5g15970 and
At5g52310) were observed.

All the identified proteins and their corresponding peptide
product ion spectra can be downloaded from ProMEX site, a
mass spectral reference library for plant proteomics (34). This
library can also be used to search with unknown samples for
protein identification. All the entries in the data base indicate
the experimental conditions under which the protein was de-
tected (34).

Correlation Network Topology Analysis and Sample Pattern
Recognition Reveal the Structure of the Metabolite-Protein
Covariance Matrix—In recent studies we have proposed that
the differential correlation between two components of a data
matrix, say a specific metabolite and a protein, reflects the

underlying biochemical regulation (4, 9, 14, 15). Following this
line we analyzed the correlation network topology of the
starch-deficient mutant PGM versus the corresponding wild-
type under different temperature regimes 4, 20, and 32 °C
(see Fig. 2). Correlation networks and their visualization using
multidimensional scaling was generated with Pajek. PGM
showed within the complete data set of all temperature treat-
ment, a total of 1990 correlations, and after Bonferroni cor-
rection 1020 significant correlations. The wild-type plants ex-
hibited 1535 correlations and 1101 significant correlations
after Bonferroni correction. As expected both genotypes ex-
hibited different network topologies (see Fig. 2). A refined
analysis revealed that a component of the circadian regula-
tion, named AtGRP7 (At2g21660), was strongly up-regulated
under cold and had a strong correlation with proline and
glutamine but not with raffinose and galactinol. To further
reveal the covariance/correlation structure of the variables,
the metabolites and proteins, and to rank the major informa-
tion content of the data we applied ICA according to Mor-
genthal et al. and Scholz and Selbig (9, 10) (see Fig. 1). The
chemometric analysis of the covariance/correlation structure
of a complex data matrix is typically performed with PCA.
PCA is applied to the high-dimensional data set first to extract
the variables with the highest variance and to reduce data
dimensionality. Subsequently, the principal components are
used for independent component analysis (for detailed expla-
nation, see Ref. 10). ICA is optimized to detect the inherent
differences and ignore differences introduced globally by
placing more emphasis on the independence of variables than
their variances. The primary feature of the independent com-
ponents is their kurtosis measure, a negative value indicating

FIG. 1. Strategy to analyze the com-
bined covariance/correlation matrix
of metabolites and proteins using in-
tegrative extraction from a multitude
of biological replicates versus differ-
ent experiments. By data integration it
is possible to enhance the interpretation
of the extracted independent compo-
nents and assign specific biomarkers. In
parallel pathway mapping, correlation
network analysis and stochastic meta-
bolic modeling can be linked to the
whole process in an iterative manner to
improve metabolic models and their pre-
dictive power (15, 42).
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flatter or more uniform distribution throughout the data set
and so a strong factor for data separation. Furthermore, ICA is
an unsupervised statistical method, thereby guaranteeing that
no bias for sample pattern recognition is introduced. Based
on sample discrimination it is possible to assign the covari-
ance/correlation structure of the metabolites and proteins to
specific biological processes and to identify a ranked list of
corresponding correlative biomarkers.

ICA of the metabolites alone gave almost complete sepa-
ration of sample groups (data not shown). The extracted
transformation vectors IC1–IC3 indicated the occurrence of
specific metabolites giving similar relative metabolite level
responses for different processes because of a time-lag effect
or analogous biochemical regulation. This was indeed re-
cently demonstrated in an analysis of temperature-treated

plants (43) and the diurnal rhythm of a plant (9). In contrast,
the sample pattern of the proteins in ICA revealed a sample
pattern according to the performed experiment, showing the
genotype separation on the one hand and the temperature
gradient on the other. No further biological characteristics
were observed using the protein data alone. In Fig. 1 the
strategy for the combined analysis of the metabolite-protein
covariance matrix is shown. Following this strategy and de-
composing the combined metabolite and protein data matrix
into independent components revealed additional informa-
tion, especially for protein marker identification. First, the
mutation (PGM) and the WT plants (WT) were separated on
IC1 (see Fig. 3A). The second component (IC2) depicts the
temperature gradient response in both the mutant and the
wild-type plants (see Fig. 3A) and the third component (IC3)

FIG. 2. Correlation network analysis of an integrated metabolite-protein data set. Responses to 4, 20, and 32 °C treatment are
combined in a data matrix for a genotype-dependent correlation analysis. Differential correlation networks for topology analysis were generated
according to recent studies (4, 9, 14). The correlation network of the starch-deficient mutant PGM and the corresponding wild-type show
different network topologies according to our stochastic metabolic modeling approach based on different data covariance structures and thus
different biochemical regulation (4, 13, 15, 18). In the figure enlargement below, a sub-fraction of the correlations is shown between the
RNA-binding protein ATGRP7 and temperature marker proline, glutamine, raffinose, and galactinol. A positive correlation is observed with
proline and glutamine but not with galactinol and raffinose suggesting that galactinol and raffinose respond differently to temperature stress.
For further discussion, see the text and Fig. 4.
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shows temperature stress responses similar in 4 °C and 32 °C
treatments, respectively (see Fig. 3B). Eventually, by plotting
IC2 and IC3 only differences of temperature treatment were
resolved independent from the genotype (see Fig. 3C). Thus,
response effects of different genotypes to temperature treat-
ment and general temperature acclimation mechanisms were
completely resolved by combining the distinct features of
metabolite and protein data.

Biomarker Identification Based on Combined Metabolite-
Protein Covariance Analysis—Because of a clear sample dis-
crimination by ICA in Fig. 3 it is possible to assign roles to the
detected proteins, which are correlated with a network of
significant metabolite marker. This process is based on the
biological interpretation of the transformation vectors IC1-
IC3, the new independent components IC1 to IC3, allowing
for a ranked assignment of metabolite and protein sets in-
volved in the observed phenomena.

In Fig. 4A the loadings of different independent compo-
nents IC1, IC2, and IC3 are visualized in a biclustering dia-
gram. The loadings of ICA are proportional to the influence of
a corresponding metabolite or protein on the observed sam-
ple discrimination along the transformation vectors (IC). If the
transformation vectors (or independent components) can rea-
sonably be interpreted, the loadings of the different metabo-

lites and proteins are directly related to their importance on
this biological phenomenon. It becomes clear that specific
metabolites and proteins have different response effects to
IC1, IC2, and IC3. Low temperature (IC2) strongly triggers
osmolyte biosynthesis including proline, glutamine, and raffi-
nose family oligosaccharides (RFO) like raffinose and galaci-
nol. These compounds are accumulated during cold acclima-
tion (43–45). However, from studies with galactinol synthase
mutants, it has been shown that raffinose is not essential for
basic freezing tolerance or for cold acclimation of A. thaliana
(46). Furthermore, a comparison of heat- and cold-shock
response patterns revealed that the majority of heat-shock
responses on the metabolite level were shared with cold-
shock responses (43, 47). These observations coincide with
our study visible by IC3 in Fig. 3, which extracts effects similar
in cold and heat adaptation. Here, raffinose and galactinol
have the highest weights for 4 °C and 32 °C samples in the
PGM and the wild-type and have similar mutant/WT ratios in
4 °C and 32 °C samples (see Fig. 4A and supplemental Table
S1). Thus, there is evidence that these intermediates were
involved in general temperature stress in contrast to proline
and glutamine, which showed different loadings on IC2 for 4,
20, and 32 °C (see Fig. 4A; IC2) whereas having conserved
levels in PGM and WT (see boxplot for proline in Fig. 4B).
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1 and 2 (IC1 and IC2); B, visualization of independent components 1 and 3 (IC1 and IC3); C, visualization of independent components 2 and
3 (IC2 and IC3). The following biological information was extracted from these plots: (i) IC1 separates WT and PGM (see A); (ii) IC2 separates
the temperature gradient shared by both genotypes WT and PGM; thus distinguishes 4, 20, and 32 °C (see A and B); (iii) IC3 separates
temperature effects similar in 4C and 32 °C, shared by both genotypes WT and PGM (see B and C). By plotting IC2 and IC3 (see C) only
temperature effects are observed, completely resolved from the genotype influence.
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Unexpectedly, the primary effect of starch deficiency and
channeling of triosephosphate into sucrose, glucose, and
fructose in the PGM mutant has no strong impact on typical
metabolite marker for cold acclimation processes. The obser-
vation is a stress-induced increase of RFO levels in temper-
ature-treated PGM plants. Thus, starch storage and mobiliza-
tion is not essential for the typical accumulation of these
stress marker metabolites. This indicates that sucrose accu-
mulation and storage in the starch-deficient mutant plants are
sufficient to bypass the typical starch storage/mobilization
pathways under abiotic stress (48). Furthermore the increase
of RFO is not directly correlated with ATGRP7, proline, gluta-
mine, and sucrose (see Fig. 2) for 20, 4, and 32 °C conditions
in both the mutant and the wild-type plants indicating that

those processes might work independently. This suggests a
very complex up/down-regulation of several pathways and
metabolic storage pools simultaneously and a high potential
of metabolic flexibility (14, 49). However, these processes
remain elusive and whether the increased RFO levels origin
from storage pools or from de novo synthesis will be tested
in future with stable isotope labeling techniques and meta-
bolic flux measurements.

Fructose is highly accumulated in PGM (see supplemental
Table S1), thus PGM and WT separate based on the loadings
for fructose (see Fig. 4A). However, allantoin, asparagine, and
an oxidative derivative of urea parabanic acid, all involved in
the urea cycle metabolism, are more discriminatory for PGM
and WT based on the loadings for IC1 (see Fig. 4A). The

FIG. 4. Clustering of the ICA load-
ings. A, in the graph the weight distribu-
tion on IC1–IC3 for the metabolites and
proteins based on the combined covari-
ance data matrix are shown. The weights
(also called “loadings”) are proportional
to the importance or significance of a
metabolite/protein for a corresponding
independent component, in other words,
the observed biological phenomenon.
The interpretations of IC1, IC2, and IC3
correspond to Fig. 3 (see also text for
more details). For this diagram the
weights are normalized and visualized in
a biclustering diagram. Only the first 50
ranked loadings for the corresponding
IC1, IC2, and IC3 were selected for clar-
ity of visual inspection. B, boxplots of
identified cold stress biomarkers for IC2.
Based on the inspection of the loadings
for IC2, ATGRP7, and proline show a
similar pattern dependent on the tem-
perature treatment and independent on
the genotype.
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reason is that fructose has also strong influence in tempera-
ture adaptation in the plants, thus has high loadings also on
IC2. Urea and asparagine metabolism, in contrast, are
strongly impaired in the PGM mutant plant compared with the
WT plants according to studies analyzing global transcrip-
tional activity in the PGM mutant plant (50). Consequently,
intermediates of urea metabolism are unique biomarkers for
the PGM mutation probably because of severely retarded
growth (see also our recent study (9)). This interaction of
metabolic mutation and temperature response is nicely visible
in the presented work here, thereby indicating that the pro-
posed integration of different genotypes, experimental condi-
tions, and molecular levels reveal novel insights on the sys-
temic behavior, eventually leading to a new route of functional
studies (see Fig. 1).

Because of an improved recognition of sample pattern,
which is demonstrated with “proof of concept-metabolite
markers” like proline, raffinose, and galactinol (see above), it is
possible to assign specific proteins to these processes. In a
recent study we investigated the proteins separating PGM
and WT (9). The loadings of proteins with respect to their
differentiating capability can be seen in the biclustering dia-
gram in Fig. 4A. The ranking is found to be the same for
chloroplastidic GAPDH (At3g26650) and cytosolic GAPDH
(At1g13440) indicating that the chloroplastidic isoform has a
stronger impact on PGM-WT discrimination (see also (9).
However, in this study, we considerably increased the number
of quantified proteins. Consequently, new protein markers
were identified with higher rankings than GAPDH. Interest-
ingly, proteins involved in redox-stress At3g49110 and
At1g19570 have high loadings for IC1 in separating the PGM
mutant and the WT.

High protein loadings for IC3, general temperature re-
sponse similar for 4 and 32 °C, is observed for At2g44650
(see Fig. 4A and supplemental Table S1), a novel chloroplast
chaperonin (CPn10) with unknown function (51–53). Recently,
a homolog of CPn10 was implicated as having a very specific
role in temperature stress adaptation in other species (54, 55).
CPn10 shows a mixed-type behavior and is consequently
found with high loadings for components, IC2 (temperature
gradient marker) and IC3 (general temperature stress marker).
Other proteins with high loadings for IC3 are typical temper-
ature stress markers, like cyclophilins or proteins involved in
oxidative stress (At3g01480 and At1g65980, respectively).

IC2 encodes differences between 4 and 32 °C temperature
acclimation (see Fig. 3A). Accordingly, proteins identified as
having high loadings for this component belong to the cold
responsive proteins such as At5g52310 low temperature-in-
duced protein 78 (sp Q06738) and At5g15970 cold-regulated
protein COR6.6 (KIN2) (see Fig. 3A). At2g37220 and
At3g53460 are nuclear encoded, targeted to the chloroplast,
and have a consensus sequence-type RNA-binding domain
originally isolated in tobacco (56). In our study, these proteins
have slightly higher loadings for component IC2 than the

cold-regulated proteins. In supplemental Table S2 the PGM
mutant and WT ratios to the 20 °C control samples are shown.
The ratios of these two RNA-binding proteins decrease
strongly under higher temperature. In contrast, the ratios of
the cold-regulated proteins increase under 4 °C treatment.
Thus, it is very important that biomarkers identified by covari-
ance analysis (multivariate statistics) have to be further com-
pared on their median levels (univariate statistics, multiple
means testing, analysis of variance (ANOVA)) (see supple-
mental Tables S1 and S2).

Other protein markers with very high loadings on IC2 were
also RNA-binding proteins, which is also in agreement with
recent studies (53, 57–70). Kim et al. (71) demonstrated that
over-expression of a glycine-rich RNA-binding protein re-
sulted in enhanced cold-shock resistance in Escherichia coli.
A novel candidate At2g21660 (ATGRP7) is a homologue of
this protein family. It was identified in our study as the strong-
est cold treatment marker increasing under cold and decreas-
ing under heat (highest loadings on IC2; see Fig. 4, A and
boxplot in B). At2g21660 (ATGRP7) was subjected to genetic
analysis and suggested to be stress-related (72, 73) and a
circadian output gene (74). In a recent whole-genome analysis
of transcript levels under cold stress this gene showed in-
creasing expression after 2 days, which correlates with our
experimental conditions and quantitative protein data. How-
ever, the direct correlation of RNA expression and protein
levels has to be further studied. In a recent investigation of
circadian clock-regulated gene expression a feedback loop
between ATGRP7 gene and protein abundance was pro-
posed (75). In a very recent study ATGRP7 was shown to
complement cold-sensitive E. coli mutants lacking cold-
shock proteins (76). ATGRP7 is also a homologue of so-called
cold-inducible RNA-binding proteins identified in human,
mouse, and rat (77) mediating cold-induced growth suppres-
sion. Last, a strong covariance of ATGRP7 is found with the
cold-acclimation marker proline (see Figs. 2 and 4A and box-
plots in Fig. 4B). The relations of the different biomarkers are
summarized in Fig. 5. Biochemical building blocks represent
the different metabolic compartments in which the individual
marker is involved. Based on the parallel analysis of the
starch-deficient mutant versus wild type and the analysis of
the metabolite-protein covariance structure a decoupling of
starch synthesis and mobilization from temperature compen-
sation mechanisms driven by circadian genes/proteins are
observed. These observations together support a functional
role of ATGRP7, other RNA-binding proteins, and post-tran-
scriptional control in plant cold adaptation indicating that
these processes in plants are closely related and share mech-
anisms with the mammalian system (77–79).

CONCLUSION

A method is presented combining high throughput metab-
olite and protein profiling for the investigation of systemic
responses of A. thaliana to abiotic stress. The integration
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clearly benefits from the heterogeneity of the data, thus, im-
proves sample pattern recognition and therefore biological
interpretation and identification of potential correlative metab-
olite-protein biomarker. However, a principle drawback of the
presented profiling methods is its unbiased nature. For in-
stance, the coverage of metabolic enzymes is comparatively
low, as is the overlap between metabolites and their corre-
sponding enzymes. This agrees with the observation that
sample pattern recognition is indeed complementary for both
of the molecular fractions, metabolites, and proteins (9, 80).
Consequently, the integration of metabolite and protein data
adds a further level of complementary information resulting in
a better sample pattern recognition. However, for a detailed
analysis of the interaction between metabolic enzymes and
their corresponding metabolites, targeted approaches are

much more feasible (81–84). Also, the quantitative pathway
activity information captured in the metabolic network can be
compared at the system level with metabolic fluxes estimated
by metabolic flux analysis that uses only the metabolic data
set (85). In future work system responses to abiotic temper-
ature stress can be compared based on such modeling ap-
proaches and by the integration of metabolic and proteomic
data sets.

In summary, metabolite profiling using GC-TOF-MS pro-
vides a very rapid and comprehensive technique for charac-
terizing biological samples based on identification and quan-
tification of hundreds of compounds. However, sample
classification generally relies on covariance between metab-
olites. Integration of proteomics data from the same sample
introduces a further level of causality and reveals an increased
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FIG. 5. Proposed interaction of biochemical modules as a response to cold/heat. A cold-induced increase in ATGRP7 and a
down-regulation at moderate heat correlates with the increase/decrease of the metabolite markers proline and glutamine (see also supple-
mental Tables S1 and S2), whereas the raffinose and galactinol of RFO show increase in both temperature treatments, 4 °C and 32 °C. This
effect is also observed in the starch-deficient mutant thereby indicating that starch deficiency and resulting changes in starch mobilization and
raffinose/galactinol synthesis are not necessarily linked in response to temperature stress and ATGPP7 as long as the sucrose synthesis
pathway is functioning. However, these observations have to be investigated in further detail, also according to a recent discussion on plant
temperature stress and metabolic effects by Guy et al. (47). A clear correlation of sucrose with RFO is not observed. Here, other methods like
conditional correlation analysis are planned in future. In summary, the parallel investigation of the starch-deficient mutant and the correspond-
ing WT and the identification of correlative metabolite-protein biomarkers uncover the separation of starch storage/mobilization and other
metabolic processes such as the raffinose/galactinol pathway, proline/glutamine pathways, and cold temperature compensation mechanisms
driven by circadian output genes like the RNA-binding protein At2g21660 (ATGRP7).
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information extraction based on complementary sample pat-
terns. Consequently, correlated metabolites and proteins can
be assigned to distinct biological processes, thereby gener-
ating new hypothesis about the interaction of different bio-
chemical building blocks. Besides transcript profiling the in-
tegration of enzyme activities represents an important
complement to the described mass spectrometry-based pro-
tein profiling method. Especially, high throughput platforms
for measuring many different enzymatic activities at the same
time are very useful (86). Another very important aspect is flux
measurement. Especially in the case of abiotic stress it will be
interesting to reveal metabolic fluxes between central sugar
metabolism and the RFO because these RFO were identified
in our study as rather independent general stress markers.
The whole concept of high-dimensional data integration from
many replicates and multivariate statistics for covariance
structure analysis is proposed to be a unique way to reveal
systemic responses of the biological system under study,
which is a prerequisite for gene/protein function discovery in
the genome/systems biology era.
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