
Conversion and Emulation-aware Dependency Reasoning
for Curation Services

Yannis Tzitzikas and Yannis Marketakis and Yannis Kargakis
Institute of Computer Science, FORTH-ICS

Computer Science Department, University of Crete, Greece
{tzitzik|marketak|kargakis}@ics.forth.gr

ABSTRACT
A quite general view of the digital preservation problem and
its associated tasks (e.g. intelligibility and task-performability
checking, risk detection, identification of missing resources
for performing a task) is to approach it from a dependency
management point of view. In this paper we extend past
rule-based approaches for dependency management for mod-
eling also converters and emulators and we demonstrate how
this modeling allows performing the desired reasoning and
thus enables offering more advanced digital preservation ser-
vices. Specifically these services can greatly reduce the hu-
man effort required for periodically checking (monitoring)
whether a task on a digital object is performable.

1. INTRODUCTION
In digital preservation there is a need for services that help
archivists in checking whether the archived digital artifacts
remain intelligible and functional, and in identifying the
consequences of probable losses (obsolescence risks). To
tackle the aforementioned requirements [14] showed how the
needed services can be reduced to dependency management
services, and how a semantic registry (compatible with OAIS1)
can be used for offering a plethora of curation services. Sub-
sequently, [15] extended that model with disjunctive depen-
dencies. The key notions of these works is the notion of
module, dependency and profile. In a nutshell, a module can
be a software/hardware component or even a knowledge base
expressed either formally or informally, explicitly or tacitly,
that we want to preserve. A module may require the avail-
ability of other modules in order to function, be understood
or managed. We can denote such dependency relationships
as t > t′ meaning that module t depends on module t′. A
profile is the set of modules that are assumed to be known
(available or intelligible) by a user (or community of users),
and this notion allows controlling the number of dependen-
cies that have to be recorded formally (or packaged in the
context of an encapsulation preservation strategy). Subse-

1Open Archival Information System (ISO 14721:2003).

quently, and since there is not any objective method to spec-
ify exactly which are the dependencies of a particular digital
object, [10] extended the model with task-based dependen-
cies where the notion of task is used for determining the
dependencies of an object. That work actually introduced
an extensible object-oriented modeling of dependency graphs
expressed in Semantic Web (SW) languages (RDF/S). Based
on that model, a number of services have been defined for
checking whether a module is intelligible by a community
(or for computing the corresponding intelligibility gap), or
for checking the performability of a task. These dependency
management services were realized over the available SW
query languages. For instance, GapMgr2 and PreScan3 [9]
are two systems that have been developed based on this
model, and have been applied successfully in the context
of the EU project CASPAR4. Subsequently, [16] introduced
a rule-based model which also supports task-based depen-
dencies, and (a) simplifies the disjunctive dependencies of
[15], and (b) is more expressive and flexible than [10] as
it allows expressing the various properties of dependencies
(e.g. transitivity, symmetry) straightforwardly. That work
actually reduced the problem of dependency management to
Datalog-based modeling and query answering.

However, the aforementioned works did not capture con-
verters and emulators. Since conversion (or migration) and
emulation are quite important preservation strategies, a de-
pendency management approach should allow modeling ex-
plicitly converters and emulators (and analyze them from a
dependency point of view, since they have to be preserved
too), and exploit them during the offered preservation ser-
vices. For example, a sequence of conversions can be enough
for vanishing an intelligibility gap, or for allowing performing
a task. Since there is a plethora of emulation and migration
approaches that concern various layers of a computer system
(from hardware to software) or various source/target for-
mats (e.g. see [3] for an overview), it is beneficial to use ad-
vanced knowledge management techniques for aiding the ex-
ploitation of all possibilities that the existing and emerging
emulators/converters enable, and assist preservation plan-
ning (e.g. [1]). This is crucial since the scale and complex-
ity of information assets and systems evolve towards over-
whelming the capability of human archivists and curators
(either system administrators, programmers and designers).

2http://athena.ics.forth.gr:9090/Applications/GapManager/
3http://www.ics.forth.gr/isl/PreScan
4http://www.casparpreserves.eu/

Page 38

sestakiv
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. iPRESS2012, Oct 1-5, 2011, Toronto, ON, Canada. Copyright 2012, Digital Curation Institute, iSchool, University of Toronto.

In a nutshell, the main contributions of this paper are: (a)
we extend the rule-based approach of [16] for modeling ex-
plicitly converters and emulators, (b) we demonstrate how
this modeling apart from capturing the preservability of con-
verters and emulators, enables the desired reasoning regard-
ing intelligibility gaps, task performability, risk detection
etc, (c) we introduce an algorithm for visualizing the intel-
ligibility gaps and thus assisting their treatment, and (d)
shows how the approach can be implemented using recently
emerged Semantic Web tools. The rest of this paper is or-
ganized as follows. Section 2 discusses the motivation and
the context of our work. Section 3 introduces the rule based
modeling and Section 4 discusses the corresponding infer-
ence services. Section 5 shows how the approach can be
implemented using Semantic Web tools. Finally Section 6
summarizes, discusses related issues and identifies issues for
further research.

2. CONTEXT AND BACKGROUND
Migration (according to Wikipedia) is a set of organized
tasks designed to achieve the periodic transfer of digital
materials from one hardware/software configuration to an-
other, or from one generation of computer technology to a
subsequent generation. The purpose of migration is to pre-
serve the integrity of digital objects and to retain the ability
for clients to retrieve, display, and otherwise use them in
the face of constantly changing technology. Emulation (ac-
cording to Wikipedia) combines software and hardware to
reproduce in all essential characteristics the performance of
another computer of a different design, allowing programs or
media designed for a particular environment to operate in
a different, usually newer environment. Emulation requires
the creation of emulators, programs that translate code and
instructions from one computing environment so it can be
properly executed in another. Popular examples of em-
ulators include QEMU [2], Dioscuri [17], etc. There is cur-
rently a rising interest on emulators for the needs of digital
preservation [8]. Just indicatively, [18] overviews the emula-
tion strategies for digital preservation and discusses related
issues, and several recent projects have focused on the de-
velopment of emulators for the needs of digital preservation
(e.g. see [17] and [11]).

In brief, and from a dependency perspective, we could say
that the migration process changes the dependencies (e.g.
the original digital object depends on an old format, while
the migrated digital object now depends on a newer for-
mat). Regarding emulation we could say that the emulation
process does not change the dependencies of digital objects.
An emulator essentially makes available the behavior of an
old module (actually by emulating its behavior). It follows
that the availability of an emulator can “satisfy” the depen-
dencies of some digital objects, but we should note that the
emulator itself has its own dependencies that have to be pre-
served to ensure its performability. The same also holds for
converters.

Running Example
James has a laptop where he has installed the NotePad text
editor, the javac 1.6 compiler for compiling Java programs
and JRE1.5 for running Java programs (bytecodes). He is
learning to program in Java and C++ and to this end, and
through NotePad he has created two files, HelloWorld.java

and HelloWorld.cc, the first being the source code of a pro-
gram in java, the second of one in C++. Consider another
user, say Helen, who has installed in her laptop the Vi editor
and JRE1.5.
Suppose that we want to preserve these files, i.e. to ensure
that in future James and Helen will be able to edit, compile
and run these files. In general, to edit a file we need an ed-
itor, to compile a program we need a compiler, and to run
the bytecodes of a Java program we need a Java Virtual Ma-
chine. To ensure preservation we should be able to express
the above.
To this end we could use facts and rules. For example,
we could state: A file is editable if it is TextFile and a
TextEditor is available. Since James has two text files (Hel-
loWorld.java, HelloWorld.cc) and a text editor (NotePad),
we can conclude that these files are editable by him. By a
rule of the form: If a file is Editable then it is Readable too,
we can also infer that these two files are also readable. We
can define more rules in a similar manner to express more
task-based dependencies, such as compilability, runability
etc. For our running example we could use the following
facts and rules:

Facts and Rules James Hellen

Facts
NotePad is a TextEditor X
VI is a TextEditor X
HelloWorld.java is a JavaFile X
HelloWorld.cc is a C++File X
javac1.6 is a JavaCompiler X
JRE1.5 is a JVM X X
gcc is a C++Compiler X

Rules
A file is Editable if it is a TextFile and a TextE-
ditor is available
A file is JavaCombilable if it is a JavaFile and a
JavaCompiler is available
A file is C++Combilable if it is a C++File and a
C++Compiler is available
A file is Compilable if it is JavaCompilable or
C++Compilable
A file is a TextFile if it is JavaFile or C++File
If a file is Editable then it is Readable

Table 1: Modeling the running examples with Facts
and Rules

The last two columns indicate which facts are valid for James
and which for Helen. From these we can infer that James is
able to compile the file HelloWorld.java and that if James
sends his TextFiles to Helen then she can only edit them but
not compile them since she has no facts about Compilers.

Let us now extend our example with converters and emula-
tors. Suppose James has also an old source file in Pascal PL,
say game.pas, and he has found a converter from Pascal to
C++, say p2c++. Further suppose that he has just bought
a smart phone running Android OS and he has found an
emulator of WinOS over Android OS. It should follow that
James can run game.pas on his mobile phone (by first con-
verting it in C++, then compiling the outcome, and finally
by running over the emulator the executable yielded by the
compilation). ⋄
Regarding curation services, we have identified the following
key requirements

Task-Performability Checking. To perform a task we have to

Page 39

perform other subtasks and to fulfil associated requirements
for carrying out these tasks. Therefore, we need to be able
to decide whether a task can be performed by examining
all the necessary subtasks. For example, we might want to
ensure that a file is runnable, editable or compilable. This
should also exploit the possibilities offered by the availability
of converters. For example, the availability of a converter
from Pascal to C++, a compiler of C++ over Windows OS
and an emulator of Windows OS over Android OS should
allow inferring that the particular Pascal file is runnable over
Android OS.

Risk Detection. The loss or removal of a software module
could also affect the performability of other tasks that de-
pend on it and thus break a chain of task-based dependen-
cies. Therefore, we need to be able to identify which tasks
are affected by such removals.

Identification of missing resources to perform a task. When
a task cannot be carried out it is desirable to be able to com-
pute the resources that are missing. For example, if Helen
wants to compile the file HelloWorld.cc, her system cannot
perform this task since there is not any C++Compiler. He-
len should be informed that she should install a compiler for
C++ to perform this task.

Support of Task Hierarchies. It is desirable to be able to de-
fine task-type hierarchies for gaining flexibility and reducing
the number of rules that have to be defined.

Properties of Dependencies. Some dependencies are transi-
tive, some are not. Therefore we should be able to define
the properties of each kind of dependency.

Background: Datalog
Datalog is a query and rule language for deductive databases
that syntactically is a subset of Prolog. As we will model our
approach in Datalog this section provides some background
material (the reader who is already familiar with Datalog
can skip this section).

The basic elements of Datalog are: variables (denoted by a
capital letter), constants (numbers or alphanumeric strings),
and predicates (alphanumeric strings). A term is either a
constant or a variable. A constant is called ground term and
the Herbrand Universe of a Datalog program is the set of
constants occurring in it. An atom p(t1, ..., tn) consists of an
n-ary predicate symbol p and a list of arguments (t1, ..., tn)
such that each ti is a term. A literal is an atom p(t1, ..., tn)
or a negated atom ¬p(t1, ..., tn). A clause is a finite list of
literals, and a ground clause is a clause which does not con-
tain any variables. Clauses containing only negative literals
are called negative clauses, while positive clauses are those
with only positive literals in it. A unit clause is a clause with
only one literal. Horn Clauses contain at most one positive
literal. There are three possible types of Horn clauses, for
which additional restrictions apply in Datalog:

• Facts are positive unit clauses, which also have to be
ground clauses.

• Rules are clauses with exactly one positive literal. The
positive literal is called the head, and the list of nega-
tive literals is called the body of the rule. In Datalog,
rules also must be safe, i.e. all variables occuring in

the head also must occur in the body of the rule.
• A goal clause is a negative clause which represents a

query to the Datalog program to be answered.

In Datalog, the set of predicates is partitioned into two dis-
joint sets, EPred and IPred. The elements of EPred de-
note extensionally defined predicates, i.e. predicates whose
extensions are given by the facts of the Datalog programs
(i.e. tuples of database tables), while the elements of IPred
denote intensionally defined predicates, where the extension
is defined by means of the rules of the Datalog program.

In our context, the proposed implementation is described at
Section 5.

3. THE RULE-BASED MODEL
In accordance to [16], digital files and profiles (as well as par-
ticular software archives or system settings) are represented
by facts (i.e. database tuples), while task-based dependen-
cies (and their properties) are represented as Datalog rules.
To assist understanding, Figure 1 depicts the basic notions in
the form of a rather informal concept map, in the sense that
a rule-based approach cannot be illustrated with a graph in
a manner both intuitive and precise.

Task
Performability

implies

Module Module Type

subTypeOf
has

Profile

consistsOf

Task
Dependencies

over

require

Conversion
Performability

Converter Emulator

Emulator
Performability

special
kind Of

Transformer

Figure 1: Informal concept map

Digital Files, Type Hierarchies, and Profiles
Digital files and their types are represented as EDB facts
using predicates that denote their types, e.g. for the three
files of our running example we can have the facts shown in
the left column of the following table. Software components
are described analogously (e.g. see right column).

Facts
for digital files for software components

JavaFile(HelloWorld.java). TextEditor(vi).
C++File(HelloWorld.cc). JVM(jre1.5win)
PascalFile(game.pas). JVM(jre1.6linux)

Each file can be associated with more than one type. In
general we could capture several features of the files (apart
from types) using predicates (not necessarily unary), e.g.
LastModifDate(HelloWorld.java, 2008-10-18).

The types of the digital files can be organized hierarchically,
and such taxonomies can be represented with rules, e.g. to
define that every JavaFile is also a UTF8File we must add
the rule UTF8File(X) :- JavaFile(X).

Page 40

A profile is a set of facts, describing the modules available
(or assumed to be known) to a user (or community). For
example, the profiles of James and Helen are the ticked facts
in the corresponding columns of Table 1.

Task-Dependencies and Task Hierarchies
We will also use (IPred) predicates to model tasks and their
dependencies. Specifically, for each real world task we de-
fine two intensional predicates: one (which is usually unary)
to denote the (performability of the) task, and another one
(with arity greater than one) for denoting the dependencies
of the task. For instance, Compile(HelloWorld.java) will
denote the compilability of HelloWorld.java. Since its com-
pilability depends on the availability of a compiler (specifi-
cally a compiler for the Java language), we can express this
dependency using a rule of the form: Compile(X) :- Com-

pilable(X,Y) where the binary predicate Compilable(X,

Y) is used for expressing the appropriateness of a Y for
compiling a X. For example, Compilable(HelloWorld.java,
javac 1.6) expresses that HelloWorld.java is compilable
by javac 1.6. It is beneficial to express such relationships
at the class level (not at the level of individuals), specifically
over the types (and other properties) of the digital objects
and software components, i.e. with rules of the form:

Compilable(X,Y) :- JavaFile(X), JavaCompiler(Y).

Compilable(X,Y) :- C++File(X), C++Compiler(Y).

Runable(X,Y) :- JavaClassFile(X), JVM(Y).

Editable(X,Y) :- JavaFile(X), TextEditor(Y).

Relations of higher arity can be employed based on the re-
quirements, e.g.:

Run(X) :- Runnable(X,Y,Z)
Runnable(X,Y,Z) :- JavaFile(X), Compilable(X,Y), JVM(Z)

We can express hierarchies of tasks as we did for file type
hierarchies, for enabling deductions of the form: “if we can
do task A then certainly we can do task B”, e.g. “if we can
edit something then certainly we can read it too” expressed
as : Read(X) :- Edit(X).

We can also express general properties of task dependen-
cies, like transitivity. For example, from Runnable(a.class,

JVM) and Runnable(JVM, Windows) we might want to infer
that Runnable(a.class, Windows). Such inferences can be
specified by a rule of the form:
Runable(X,Y) :- Runnable(X,Z), Runnable(Z,Y).
As another example, IntelligibleBy(X,Y) :-

IntelligibleBy(X,Z), IntelligibleBy(Z,Y). This means
that if X is intelligible by Z and Z is intelligible by Y, then
X is intelligible by Y. This captures the assumptions of the
dependency model described in [14] (i.e. the transitivity of
dependencies).

Modeling Converters
Conversions are special kinds of tasks and are modeled dif-
ferently. In brief to model a converter and a correspond-
ing conversion we have to introduce one unary predicate for
modeling the converter (as we did for the types of digital
files) and one rule for each conversion that is possible with
that converter (specifically one for each supported type-to-
type conversion).

In our running example, consider the file game.pas (which
contains source code in Pascal PL), and the converter p2c++

from Pascal to C++. Recall that James has a compiler for
C++. It follows that James can compile game.pas since he
can first convert it in C++ (using the converter), then com-
pile it and finally run it. To capture the above scenario it is
enough to introduce a predicate for modeling the converters
from Pascal to C++, say ConverterPascal2C++, and adding
the following rule:

C++File(X) :- PascalFile(X), ConverterPascal2C++(Y).

Since the profile of James will contain the facts
PascalFile(game.pas) and ConverterPascal2C++(p2c++),
we will infer C++File(game.pas), and subsequently that this
file is compilable and runnable.

Finally we should not forget that a converter is itself a mod-
ule with its own dependencies, and for performing the in-
tended task the converter has to be runnable. Therefore, we
have to update the rule as follows:

C++File(X) :- PascalFile(X), ConverterPascal2C++(Y),

Run(Y).

Modeling Emulators
Emulation is again a special kind of task and is modeled
differently. Essentially we want to express the following: (i)
If we have a module X which is runnable over Y,
(ii) and an emulator E of Y over Z (hosting system=Z, target
system=Y,
(iii) and we have Z and E,
(iv) then X is runnable over Z. For example, consider the
case where:
X=a.exe (a file which is executable in Windows operating
system),
Y=WinOS (the Windows operating system),
Z=AndroidOS (the Android operating system), and
E=W4A (i.e. an emulator of WinOS over AndoidOS).

In brief, for each available emulator (between a pair of sys-
tems) we can introduce a unary predicate for modeling the
emulator (as we did for the types of digital files, as well as
for the converters), and writing one rule for the emulation.

For example, suppose we have a file named a.exe which is
executable over WinOS. For this case we would have written:

Run(X) :- Runnable(X,Y)
Runnable(X,Y) :- WinExecutable(X), WinOS(Y)

and the profile of a user that has this file and runs WinOS
would contain the facts WinExecutable(a.exe) and
WinOS(mycomputer), and by putting them together it follows
that Run(a.exe) holds. Now consider a different user who
has the file a.exe but runs AndroidOS. However suppose that
he has the emulator W4A (i.e. an emulator of WinOS over
AndoidOS). The profile of that user would contain:

WinExecutable(a.exe)
AndroidOS(mycomputer) // instead of WinOS(mycomputer)
EmulatorWinAndroid(W4A)

To achieve our goal (i.e. to infer that a.exe is runnable),
we have to add one rule for the emulation. We can follow
two approaches. The first is to write a rule that concerns
the runnable predicate, while the second is to write a rule
for classifying the system that is equipped with the emulator
to the type of the emulated system:

A. Additional rule for Runnable
This relies on adding the following rule:

Page 41

Runnable(X,Y,Z):- WinExecutable(X),
EmulatorWinAndroid(Y), AndroidOS(Z)

Note that since the profile of the user contains the fact
EmulatorWinAndroid(W4A) the body of the rule is satisfied
(for X=a.exe, Y=W4A, Z=myComputer), i.e. the rule will yield
the desired inferred tuple Runnable(a.exe,W4A,mycomputer).

Note that here we added a rule for the runnable which has
3 variables signifying the ternary relationship between exe-
cutable, emulator and hosting environment.

B. Additional type rule (w.r.t. the emulated Behav-
ior)
An alternative modeling approach is to consider that if a
system is equipped with one emulator then it can also op-
erate as the emulated system. In our example this can be
expressed by the following rule:

WinOS(X):- AndroidOS(X), EmulatorWinAndroid(Y).

It follows that if the profile of the user has an emulator of
type EmulatorWinAndroid (here W4A) and mycomputer is of
type AndroidOS, then that rule will infer that WinOS(mycomputer),
implying that the file a.exe will be inferred to be runnable

due to the basic rule of runnable which is independent of
emulators (i.e. due to the rule
Runnable(X,Y) :- WinExecutable(X), WinOS(Y)).

Both (A and B) approaches require the introduction of a new
unary predicate about the corresponding pair of systems,
here EmulatorWinAndroid. Approach (A) requires intro-
ducing a rule for making the predicate runnable “emulator-
aware”, while approach (B) requires a rule for classifying
the system to the type of the emulated system. Since em-
ulators are modules that can have their own dependencies,
they should be runnable in the hosting system. To require
their runnability during an emulation we have to update the
above rules as follows (notice that last atom in the bodies
of the rules):

A’: Runnable(X,Y,Z):- |B’: WinOS(X):-

WinExecutable(X), | AndroidOS(X),

EmulatorWinAndroid(Y),| EmulatorWinAndroid(Y),

AndroidOS(Z), | Runnable(Y,X)

Runnable(Y,Z) |

Synopsis To synopsize, methodologically for each real world
task we define two intensional predicates: one (which is usu-
ally unary) to denote the performability of the task, and
another one (which is usually binary) for denoting the de-
pendencies of task (e.g. Read and Readable). To model a
converter and a corresponding conversion we have to intro-
duce one unary predicate for modeling the converter (as we
did for the types of digital files) and one rule for each con-
version that is possible with that converter (specifically one
for each supported type-to-type conversion). To model an
emulator (between a pair of systems) we introduce a unary
predicate for modeling the emulator and writing one rule for
the emulation. Regarding the latter we can either write a
rule that concerns the runnable predicate, or write a rule
for classifying the system that is equipped with the emula-
tor to the type of the emulated system. Finally, and since
converters and emulators are themselves modules, they have
their own dependencies, and thus their performability and
dependencies (actually their runnability) should be modeled
too (as in ordinary tasks).

4. REASONING SERVICES
In general, Datalog query answering and methods of logi-
cal inference (i.e. deductive and abductive reasoning) are
exploited for enabling the required inference services (per-
formability, risk detection, etc). Here we describe how the
reasoning services described at Section 2 can be realized in
the proposed framework.

Task-Performability. This service aims at answering if a
task can be performed by a user/system. It relies on query
answering over the Profiles of the user. E.g. to check if
HelloWorld.cc is compilable we have to check if HelloWorld.cc
is in the answer of the query Compile(X). As we described
earlier, converters and emulators will be taken into account,
meaning that a positive answer may be based on a complex
sequence of conversions and emulations. This is the essential
benefit from the proposed modeling. Furthermore, classical
automated planning, e.g. the STRIPS planning method [6],
could be applied for returning one of the possible ways to
achieve (perform) a tack. This is useful in case there are
several ways to achieve the task.

Risk-Detection. Suppose that we want to identify the conse-
quences on editability after removing a module, say NotePad.
To do so: (a) we compute the answer of the query Edit(X),
let A be the returned set of elements, (b) we delete NotePad
from the database and we do the same, let B be the re-
turned set of elements5, and (c) we compute and return the
elements in A \B (they are the ones that will be affected).

Computation of Gaps (Missing Modules). The gap is actu-
ally the set of facts that are missing and are needed to per-
form a task. There can be more than one way to fill a gap
due to the disjunctive nature of dependencies since the same
predicate can be the head of more than one rules (e.g. the
predicate TextEditor in the example earlier). One method
for informing the curator about the possible ways to fill it is
to construct and visualize a graph that contains information
about only the related facts and rules. We propose a graph
which is actually a form of AND-OR graph. The user can
specify the desired depth of that graph, or interactively de-
cide to increase the depth gradually. The graph is actually
a compact method for presenting the (possibly numerous)
ways to fill a gap. The construction of the graph resem-
bles the way planning algorithms (in particular backwards
search-based planners) operate. The algorithm starts from
the goal and shows the corresponding rules for achieving that
goal. Those atoms of the rules which have a grounding that
belongs to (or can be inferred from) the facts of the profile
at hand, are visualized differently (e.g. colored in green, or
enclosed in squares) so that the user can discriminate the
missing from the available facts. Figure 2 shows some in-
dicative examples. In all cases the goal is a grounded atom,
i.e. A(1), however the rules and the recorded facts are dif-
ferent in each case. In case (I) the graph shows that the gap
is a grounded atom (i.e. C(1)), while in case (II) the graph
shows that the gap is a non grounded atom (i.e. C(var)).
Case (III) demonstrates a case where more than one rules
with the same head are involved, and the depth of the graph
is greater than one. The graph makes evident that there are
two possible ways to fill the gap; according to the first the

5In an implementation over Prolog, we could use the retract
feature to delete a fact from the database.

Page 42

gap comprises two non grounded atoms (i.e. D(var) and
E(var)), while according to the second it consists of one
non grounded atom (i.e. D(var)).

A recursive algorithm for producing such graphs is given (in
pseudocode) at Figure 3. The algorithm takes as input a
goal (an atom grounded or not), a depth (a positive integer
≥ 1) and a prevNode (the previous node, it is used only for
the recursive calls). Initially, the algorithm is called with the
goal of the user (which is a grounded atom) plus the desired
depth, and an empty (null) prevNode. The algorithm con-
structs and returns the corresponding tree graph (like those
of Figure 2), whose layout can be derived by adopting one
of the several hierarchical graph drawing algorithms.

g: A(1)
facts: {B(1)}

R: A(X):-B(X), C(X)

g: A(1)
facts: {B(1)}

R: A(X):-B(X), C(Y)

g: A(1)
facts: {B(1),F(2)}

R: A(X):-B(X), C(Y)
C(X):- D(X), E(Y)
C(X):- D(X), F(Y)

A(1)
B(1)
C(1)

A(1)
B(1)
C(var)

A(1)
B(1)

C(var)

D(var)
E(var)
D(var)
F(2)

(I)

(II)

(III)

Figure 2: Three examples of gap graphs
Figure 4 shows a small example of a graph of depth equal
to 2 where conversion is involved. The graph corresponds
to a case where a file a.pas is not compilable. The graph
makes evident that to turn a.pas compilable either a Pas-
calCompiler is required or a runnable Pascal2Java converter.
Note that if we had a greater depth, then the expansion
of Pascal2Java(var1) and Run(var), would not necessarily
use the same grounding for var1 and var2, although that
would be desired. This and other ways to “inject reasoning”
in the graph construction is a subject for further research.

Note that the algorithm returns always a tree and it does not
do any arbitrary grounding; it is only the original grounded
atom (i.e. the original goal) that is propagated based on
the rules. Of course if there are rules whose body contain
grounded atoms, the latter appear as such in the graph. The
algorithm also does not expand a ground atom if inferred.

Complexity. If |R| denotes the number of rules, d the depth,
and Q denotes the cost to check whether a fact exists or is
inferred (i.e. the cost of query answering), then the time
complexity of the algorithm is in O(d ∗Q ∗ |R|). Since |R| is
usually low, d is an input parameter which again cannot be
very big, we can say that the complexity is low.

5. IMPLEMENTATION
There are several possible implementation approaches. Be-
low we describe one Semantic Web-based implementation
using RDF/S and OpenLink Virtuoso which is a general
purpose RDF triple store with extensive SPARQL and RDF
support [5]. Its internal storage method is relational, i.e.
RDF triples are stored in tables in the form of quads (g, s, p, o)
where g represents the graph, s the subject, p the predi-
cate and o the object. We decided to use this system be-

Algorithm GapGraph (goal:Atom, depth:Integer, prevNode:Node):Node
(01) If (prevNode=null) then
(02) gNode = Create node(goal)
(03) else
(04) gNode = prevNode
(05) hrs = all rules having the predicate of the goal as head
(06) If (|hrs| = 0) then { // the goal predicate is not head in any rule
(07) headNode = gNode
(08) return headNode
(09) }
(10) For each hr in hrs
(11) If (|hrs| > 1) then { // there are > 1 rules having the same head
(12) ORnode = create node(ORnode)
(13) create link(gNode→ORnode)
(14) headNode = ORnode
(15) } else
(16) headNode = gNode
(17) If (IsGrounded(goal)) then { // e.g. consider the goal A(1)
(18) Ground the corresponding variable in all atoms of the
(19) body of the rule hr that contain that variable
(20) }
(21) Let BodyAtoms be the resulting set of body atoms
(22) // if the previous step did not ground anything,

// then BodyAtoms contains the original body atoms
(23)
(24) for each atom in BodyAtoms {
(25) atomNode = Create node(atom)
(26) Create link(headNode → atomNode)
(27) If ((IsGrounded(atom)) and

(exists in the fact set (or it can be inferred)) then
(28) Square(atomNode)
(29) }
(30) If (depth > 1) then
(31) For each atom in BodyAtoms
(32) If (Square(atomNode)=False) then {

//atomNode corresponds to atom
(33) newNode = GapGraph(atom, depth − 1, atomNode)
(34) Create link(atomNode → newNode)
(35) }
(36) }
(37) }
(38) Return headNode

Figure 3: The algorithm that produces gap graphs

Compilable(a.pas)

PascalFile(a.pas)
PascalCompiler(var1)

JavaFile(a.pas)

JavaCompiler(javac) PascalFile(a.pas)
Pascal2Java(var1)
Runnable(var1)

Figure 4: A visualization of a gap graph that in-
volves a converter

Page 43

cause of its inference capabilities, namely backward chain-
ing reasoning, meaning that it does not materialize all in-
ferred facts, but computes them at query level. Its reasoner
covers the related entailment rules of rdfs:subClassOf and
rdfs:subPropertyOf, while user defined custom inference
rules can be expressed using rule sets. Practically this means
that transitive relations (i.e. subClassof, subPropertyOf, etc.)
are not physically stored in the knowledge base, but they
are added to the result set at query answering. Transitiv-
ity is also supported in two different ways. Given a RDF
schema and a rule associated with that schema, the predi-
cates rdfs:subClassOf and rdfs:subPropertyOf are recog-
nized and the inferred triples are derived when needed. In
case of another predicate, the option for transitivity has to
be declared in the query.

For our case, we have to “translate” our facts and rules to
quads of the form (g, s, p, o) which are actually RDF triples
contained in a graph g. The support of different graphs is
very useful for the cases of profiles; we can use a different
graph for each profile. We will start by showing how facts
can be “translated” to RDF quads and later we will show
how inference rules can be expressed using ASK and CON-
STRUCT or INSERT SPARQL queries. Note that if we use
INSERT instead of CONSTRUCT then the new inferred
triples will be stored in the triple store (materialization of
inferred triples). Hereafter we will use only CONSTRUCT.
For better readability of the SPARQL statements below we
omit namespace declarations.

Modules: Module types are modeled using RDF classes
while the actual modules are instances of these classes. Mod-
ule type hierarchies can be defined using the rdfs:subclassof
relationship. For example the fact JavaFile(’HelloWorld.java’)
and the rule for defining the module type hierarchy TextFile(X)
:- JavaFile(X) will be expressed using the following quads:

g, <JavaFile>, rdf:type, rdfs:Class

g, <TextFile>, rdf:type, rdfs:Class

g, <JavaFile>, rdfs:subclassof, <TextFile>

g, <HelloWorld.java>, rdf:type, <JavaFile>

Profiles: We exploit the availability of graphs to model
different profiles, e.g. we can model the profiles of James and
Helen (including only some indicative modules), as follows:

<jGrph>, <NotePad>, rdf:type, <TextEditor>

<jGrph>, <HelloWorld.java>, rdf:type, <JavaFile>

<jGrph>, <javac_1_6>, rdf:type, <JavaCompiler>

<hGrph>, <VI>, rdf:type, <TextEditor>

<hGrph>, <jre_1_5>, rdf:type, <JavaVirtualMachine>

Dependencies: The rules regarding the performability of
tasks and their dependencies are transformed to appropri-
ate SPARQL CONSTRUCT statements which produce the
required inferred triples. For example, the rule about the
compilability of Java files
(Compilable(X,Y) :- JavaFile(X),JavaCompiler(Y)) is ex-
pressed as:

CONSTRUCT{?x <compilable> ?y}

WHERE{?x rdf:type <JavaFile>.

?y rdf:type <JavaCompiler>}

To capture the compilability of other kinds of source files
(i.e. C++, pascal etc.) we extend the previous statement

using the UNION keyword (this is in accordance with the
Datalog-based rules; multiple rules with the same head have
union semantics). For example the case of Java and C++ is
captured by:
CONSTRUCT{?x <compilable> ?y}

WHERE{

{?x rdf:type <JavaFile>.

?y rdf:type <JavaCompiler>}

UNION

{?x rdf:type <C++File>.

?y rdf:type <C++Compiler>}

}

Finally the unary predicate for the performability of task,
here Compile, is expressed as:

CONSTRUCT{?x rdf:type <Compile>}

WHERE{ {?x <compilable> ?y} }

Converters: The rules regarding conversion are modeled
analogously, e.g. for the case of a converter from Pascal to
C++ we produce:

CONSTRUCT{?x rdf:type <C++File>}

WHERE{?x rdf:type <PascalFile>.

?y rdf:type <ConverterPascal2C++>.

?y rdf:type <Run>}

Note the last condition refers is an inferred type triple (Run).
If there are more than one converters that change modules
to a specific module type then the construct statement is ex-
tended using several WHERE clauses separated by UNIONs,
as shown previously.

Emulators: Consider the scenario described in section 3,
i.e. a user wanting to run a.exe upon his Android operating
system. The approach B (which does not require expressing
any predicate with three variables), can be expressed by:

CONSTRUCT{?x rdf:type <WindowsOS>}

WHERE{?x rdf:type <AndroidOS>.

?y rdf:type <EmulatorWin4Android>.

?y <runnable> ?x}

Services: To realize the reasoning services (e.g. task per-
formability, risk detection, etc), we rely on SPARQL queries.
For example to answer if the file HelloWorld.java can be
compiled we can send the INSERT query about the compi-
lability of the files (as shown previously) and then perform
the following ASK query on the entailed triples:

ASK{<HelloWorld.java> <compilable> ?y}

If this query returns true then there is at least one appro-
priate module for compiling the file.

The risk-detection service requires SELECT and DELETE
SPARQL queries (as discussed at section 4). For example
to find those modules whose editability will be affected if we
remove the module Notepad, we have to perform

SELECT ?x

WHERE {?x rdf:type <Edit>}

DELETE <Notepad> rdf:type <TextEditor>

From the select query we get a set A containing all mod-
ules which are editable. Then we remove the triple about

Page 44

Notepad and perform again the select query, getting a new
set B. The set difference A \B will reveal the modules that
will be affected. If empty this means that there will be no
risk in deleting the Notepad.

Based on the above approach we have implemented a pro-
totype system. Its repository containing the facts and rules
of the examples of this paper, and behaving as specified
by the theory is accessible through a SPARQL endpoint
http://139.91.183.78:8890/sparql.

6. CONCLUDING REMARKS
In this paper we have extended past rule-based approaches
for dependency management for capturing converters and
emulators, and we have demonstrated that the proposed
modeling enables the desired reasoning regarding task per-
formability, which in turn can greatly reduce the human ef-
fort required for periodically checking or monitoring whether
a task on an archived digital object is performable.

We should clarify that we do not focus on modeling, logging
or reasoning over composite tasks in general (as for example
it is done in [4]). We focus on the requirements for ensur-
ing the performability of simple (even atomic) tasks, since
this is more aligned with the objectives of long term digital
preservation. Neither we focus on modeling or logging the
particular workflows or derivation chains of the digital arti-
facts, e.g. using provenance models like OPM or CRM Dig
[13]. We focus only the dependencies for carrying out the
desired tasks. Obviously this view is less space consuming,
e.g. in our running example we do not have to record the
particular compiler that was used for the derivation of an
executable (and its compilation time), we just care to have
at our disposal an appropriate compiler for future use. How-
ever, if a detailed model of the process is available, then the
dependency model can be considered as a read-only view of
that model.

As regards applicability, note that some tasks and their de-
pendencies can be extracted automatically as it has been
demonstrated in [9, 7]. As regards available datasets, [12] de-
scribes the P2 registry, which uses Semantic Web technolo-
gies to combine the content of the PRONOM Technical Reg-
istry, represented as RDF, with additional facts from DB-
pedia, currently containing about 44,000 RDF statements
about file formats and preservation tools.

In the near future we plan to further elaborate on gap vi-
sualization methods, while issues for future research include
composite objects (e.g. software components, systems), up-
date requirements, and quality-aware reasoning for enabling
quality-aware preservation planning.

Acknowledgements
Work done in the context of NoE APARSEN (Alliance Perma-
nent Access to the Records of Science in Europe, FP7, Proj.
No 269977), and SCIDIP-ES (SCIence Data Infrastructure for
Preservation - Earth Science, FP7).

7. REFERENCES
[1] C. Becker and A. Rauber. Decision criteria in digital

preservation: What to measure and how. JASIST,
62(6):1009–1028, 2011.

[2] F. Bellard. QEMU, a fast and portable dynamic translator.
In Procs of the USENIX Annual Technical Conference,

FREENIX Track, pages 41–46, 2005.
[3] David Giaretta (Editor). Advanced Digital Preservation.

Springer, 2010.
[4] D. Elenius, D. Martin, R. Ford, and G. Denker. Reasoning

about Resources and Hierarchical Tasks Using OWL and
SWRL. In Procs of the 8th International Semantic Web
Conference (ISWC’2009), 2009.

[5] O. Erling and I. Mikhailov. RDF Support in the Virtuoso
DBMS. In Procs of 1st Conference on Social Semantic
Web, 2007.

[6] R.E. Fikes and N.J. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving.
Artificial intelligence, 2(3-4):189–208, 1972.

[7] A.N. Jackson. Using automated dependency analysis to
generate representation information. In Procs of the 8th
International Conference on Preservation of Digital
Objects (iPres’2011), 2011.

[8] B. Lohman, B. Kiers, D. Michel, and van der J. Hoeven.
Emulation as a Business Solution: the Emulation
Framework. In Procs of the 8th International Conference
on Preservation of Digital Objects (iPres’2011), 2011.

[9] Y. Marketakis, M. Tzanakis, and Y. Tzitzikas. PreScan:
Towards Automating the Preservation of Digital Objects.
In Procs of the International Conference on Management
of Emergent Digital Ecosystems MEDES’2009, Lyon,
France, October, 2009.

[10] Y. Marketakis and Y. Tzitzikas. Dependency Management
for Digital Preservation using Semantic Web technologies.
International Journal on Digital Libraries, 10(4), 2009.

[11] K. Rechert, D. von Suchodoletz, and R. Welte. Emulation
based services in digital preservation. In Procs of the 10th
annual joint conference on Digital libraries, pages 365–368.
ACM, 2010.

[12] D. Tarrant, S. Hitchcock, and L. Carr. Where the Semantic
Web and Web 2.0 meet format risk management: P2
registry. In In Procs of the 6th Intern. Conf. on
Preservation of Digital Objects (iPres 2009), 2009.

[13] M. Theodoridou, Y. Tzitzikas, M. Doerr, Y. Marketakis,
and V. Melessanakis. Modeling and Querying Provenance
by Extending CIDOC CRM. J. Distributed and Parallel
Databases (Special Issue: Provenance in Scientific
Databases), 2010.

[14] Y. Tzitzikas. “Dependency Management for the
Preservation of Digital Information”. In Procs of the 18th
Intern. Conf. on Database and Expert Systems
Applications, DEXA’2007, Regensburg, Germany,
September 2007.

[15] Y. Tzitzikas and G. Flouris. “Mind the (Intelligibily) Gap”.
In Procs of the 11th European Conference on Research and
Advanced Technology for Digital Libraries, ECDL’07,
Budapest, Hungary, September 2007. Springer-Verlag.

[16] Y. Tzitzikas, Y. Marketakis, and G. Antoniou. Task-based
Dependency Management for the Preservation of Digital
Objects using Rules. In Procs of 6th Hellenic Conf. on
Artificial Intelligence, SETN-2010, Athens, Greece, 2010.

[17] J. Van der Hoeven, B. Lohman, and R. Verdegem.
Emulation for digital preservation in practice: The results.
International Journal of Digital Curation, 2(2), 2008.

[18] D. von Suchodoletz, K. Rechert, J. van der Hoeven, and
J. Schroder. Seven steps for reliable emulation
strategies–solved problems and open issues. In 7th Intern.
Conf. on Preservation of Digital Objects (iPRES2010),
pages 19–24, 2010.

Page 45

