
Migration at Scale: A Case Study
Sheila M. Morrissey

ITHAKA
100 Campus Drive, Suite 100

Princeton NJ 08540 USA
1-609-986-2221

sheila.morrissey@ithaka.org

Matthew Stoeffler
ITHAKA

301 East Liberty, Suite 250
Ann Arbor MI 48104 USA

1-734-887-7079

matthew.stoeffler@ithaka.org

Vinay Cheruku
ITHAKA

100 Campus Drive, Suite 100
Princeton NJ 08540 USA

1-609-986-2232

vinay.cheruku@ithaka.org

William J. Howard
ITHAKA

100 Campus Drive, Suite 100
Princeton NJ 08540 USA

1-609-986-2217

william.howard@ithaka.org

John Meyer
ITHAKA

100 Campus Drive, Suite 100
Princeton NJ 08540 USA

1-609-986-2220

john.meyer@ithaka.org

Suresh Kadirvel
ITHAKA

100 Campus Drive, Suite 100
Princeton NJ 08540 USA

1-609-986-2273

suresh.kadirvel@ithaka.org

ABSTRACT
Increasing experience in developing and maintaining large
repositories of digital objects suggests that changes in the large-
scale infrastructure of archives, their capabilities, and their
communities of use, will themselves necessitate the ability to
manage, manipulate, move, and migrate content at very large
scales.

Migration at scale of digital assets, whether those assets are
deposited with the archive, or are created as preservation system
artifacts by the archive, and whether migration is employed as a
strategy for managing the risk of format obsolescence, for
repository management, or for other reasons, is a challenge facing
many large-scale digital archives and repositories.

This paper explores the experience of Portico (www.portico.org),
a not-for-profit digital preservation service providing a permanent
archive of electronic journals, books, and other scholarly content,
as it undertook a migration of the XML files that document the
descriptive, technical, events, and structural metadata for
approximately 15 million e-journal articles in its archive. It
describes the purpose, planning, technical challenges, and quality
assurance demands associated with digital object migration at
very large scales.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Language Constructs and Features –
Collection, Standards, Dissemination, Systems issues.

General Terms
Management, Measurement, Documentation, Economics,
Reliability, Standardization, Verification.

Keywords
Digital preservation, archives management, format migration,
transformation, at scale, normalization.

1. BACKGROUND
1.1 Format migration
Increasing experience in developing and maintaining large
repositories of digital objects suggests that changes in the large-
scale infrastructure of archives, their capabilities, and their
communities of use, will themselves necessitate the ability to
manage, manipulate, move, and migrate content at very large
scales.

Migration at scale of digital assets (whether those assets are
deposited with, or created as preservation system artifacts by the
archive) is therefore a challenge facing many large-scale digital
archives and repositories. This is true whether migration (or,
alternatively, “transformation”, or “normalization”) occurs at the
point of ingest into the archive, at the point of delivery of a digital
artifact from the archive, or as part of ongoing archive
management.

There are many motivations for performing a format migration. It
might be undertaken as part of a repository’s preservation
strategy: to ensure access to a digital object in an obsolete or
obsolescing format, or in conformance with a repository’s policy
to support a fixed list of formats consider to be at a lesser risk of
obsolescence [5]. It might be undertaken to replace or
complement an archival master object with an instance in a more
compact format, either to save on storage costs, or to reduce
bandwidth and latency on a rendition version of the object [13]. It
might be undertaken to create a “normalized” view of archive
content, as an aid to search, discovery and management [1], or to
establish whether later migration (whether for delivery or other
reasons) is likely to encounter difficulties[2]. And it might be
motivated by new developments, both in technology and in the
requirements and expectations of (possibly new) communities of
use, that result in new, and originally unanticipated, uses of
content in repositories. Such, for example, would be the
extraction of “text content” from non-text format instances (for
example, constructing text content from instances of page image
formats such as PDF and TIFF) across all instances of those
formats in a repository, to facilitate large-scale content-mining of
digital corpora.

This paper explores the experience of Portico as it undertook a
migration of the XML files that document the descriptive,

Page 97

sestakiv
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. iPRESS2012, Oct 1-5, 2011, Toronto, ON, Canada. Copyright 2012, Digital Curation Institute, iSchool, University of Toronto.

technical, events, and structural metadata for approximately 15
million e-journal articles in its archive. It describes the migration
purpose, planning, technical challenges, and quality assurance
demands associated with digital object migration at very large
scales.

1.2 Portico Preservation Workflow and
Metadata

Portico is a digital preservation service for electronic journals,
books, and other content. Portico is a service of ITHAKA, a not-
for-profit organization dedicated to helping the academic
community use digital technologies to preserve the scholarly
record and to advance research and teaching in sustainable ways.
As of May 2012, Portico is preserving more than 19.4 million
journal articles, e-books, and other items from digitized historical
collections (for example digitized newspapers of the 18th
century).

Content comes to Portico in approximately 300 different XML
and SGML vocabularies. These XML and SGML documents are
accompanied by page image (PDF, TIF, and JPG) and other
supporting files such as still and moving images, spreadsheets,
audio files, and others. Typically content providers do not have
any sort of manifest or other explicit description of how files are
related (which ones make up an article, an issue of a journal, a
chapter of a book). This content is batched and fed into a Java
workflow, called the “Content Preparation” (ConPrep) system, for
assembly into what the Open Archival Information System
(OAIS) Reference Model terms “Submission Information
Packages” (SIPs) [3].

Figure 1 Portico ConPrep High-Level Workflow

The ConPrep workflow maps the publisher-provided miscellany
of files into bundles that comprise a single article or book or other
content item, which Portico terms an “archival unit” (AU). It
identifies the format of each of the AU’s component files, and,
where a format specification and validation tool is available,
validates each file against its format specification. Publisher-
provided XML and SGML journal article files are normalized to
the Portico profile of the National Library of Medicine’s Journal
Archiving and Interchange Tag Set; e-book files are normalized to
a profile of the NLM’s NCBI Book Tag Set. So ConPrep, which
has processed and packaged Portico’s archival units into SIPs, is
itself an instance of migration at scale, of both the (implicit)

package format and of files within the package, at the point of
receipt of content.

Some of the steps in this workflow are automated quality-
assurance checks of the XML content – both the content provided
by the publishers, and artifacts produced by Portico in the
workflow itself. This QA includes validation against XML and
SGML document type definitions (DTDs) and schemas. It also
includes the assertion, via Schematron (a rule-based validation
language for making assertions about the presence or absence
information in XML files [7]) of other constraints on content
values. Additionally, the workflow includes visual inspection of
sample content.

ConPrep generates preservation metadata for each AU. Modeled
on PREMIS [10] and METS [4], the generated information
includes descriptive, or bibliographic, metadata; structural
metadata specifying the relationships among the components of
the archival unit, technical metadata about files and their formats;
provenance and event metadata, detailing the tool chain, including
hardware and software information, used in processing the
content, and rights metadata stipulating Portico’s legal right to
preserve these digital objects. These metadata are instantiated as
XML, and are stored with the preserved digital object. Just like
the publisher-provided XML files, the preservation metadata is
schema-validated, and then further validated via Schematron.

2. THE MIGRATION
2.1 Motivation

2.1.1 Archive Life Cycle: Continual Review and
Revision

As with its preservation policies, practices, and procedures,
Portico’s preservation infrastructure – including its hardware,
software, and key data and metadata structures – has been subject
since inception to a continual process of review and revision.
This review and revision is intended to incorporate both lessons
learned from our own experience with content that has steadily
expanded both in volume and in type, and with the continually
developing understanding of best preservation practice in the
larger preservation community.
The first major refinement of the original Portico platform was
undertaken to scale up the capacity of the ConPrep system from
75,000 e-journal articles (and approximately 750,000 files) per
month (900,000 articles/9,000,000 files per year) to 10 million
articles and 100 million files per year – an order of magnitude
increase. The system was in fact increased to a capacity of 24
million articles and 240 million files per year, operating at 50-
75% of peak capacity. [11]

2.1.2 New Requirements, New Knowledge: New
Content Model

As the Portico archive was extended to handle new content types
beyond electronic journal content, its content model and the
Portico metadata (PMETS) schema (which had key conceptual
dependencies on that content model), were subjected to review
and revision. The PMETS schema, whose design was based on
METS 1.4, and informed by early work on the then-uncompleted
PREMIS data dictionary, had undergone 6 minor, backwardly

Page 98

compatible revisions (typically to accommodate changes to
subsidiary schemas which specified descriptive and events
metadata) since it was designed and implemented in 2002-2003.
By late 2008, the review process indicated the data model
underlying the PMETS schema would be stressed by new
requirements for the Portico archive. These included

 new content types (such as books and digitized
collections), with richer and more complex relationships
among the components comprising a single digital
object

 new preservation activities, such as versioning, the
creation of access artifacts, and the export of metadata
in standard formats

 extended use cases in the ConPrep system, including the
ability to assign preservation level by business policy
rather than only by file format validity; to de-duplicate
content in the archive; to process externally updated
content (new versions of all or part of a content unit) as
well as internally updated content (such as new
technical metadata generated by newly available tools);
to capture “use” information (for example, that
information that one image file is a “thumbnail” of
another image file); to record and mange migration and
re-migration of content

The main components of the Portico content model (both the old
and new versions) are:

 Content Type (CT) – This allows Portico to group
content belonging to specific preservation services
together, and allows us to group “like” objects together.

 Content Set (CS) – This allows Portico to group
together archival units that belong together. For
example, all archival units for a single journal of a
particular publisher will be placed together within a
single content set.

 Archival Unit (AU) – The main digital object or
abstract intellectual object that is being archived. For
example an E-Journal Article.

 Content Unit (CU) – A complete version of the content
for an AU. In most cases, an AU will only contain a
single CU.

 Functional Unit (FU) – A container for grouping
together components that serve the same function
within a content unit. For example, the high-resolution,
web ready and thumbnail versions of an image for a
single equation or chemical formula would be grouped
together in a single FU.

 Storage Unit (SU) – A container for all the information
on a physical file making up a component of an FU.

In the original content model (see Figure 2), the distinction
between an Archival Unit and Content Unit was not well
articulated. As implemented, the ConPrep system generated
Content Units, which could be understood as a logical unit of
content made up of one or more content files and a metadata file
that captures all the relevant preservation metadata. As these
Content Units were ingested into the Archive, they were renamed
as “Archival Units”.
In the new content model, we refined the concepts as follows:

 Archival Unit: the abstract intellectual object

 Content Unit: a particular version (original, revision,
update etc.) of the content

In effect, the presence of multiple content units within an archival
unit means that the content has been sent to the archive in
multiple versions by the content provider.
These versions can represent changes to the intellectual content,
or technical changes such as repair of damaged files or migration
to new formats by the provider. This kind of versioning is not
under the control of, or initiated by, the archive, and requires
maximum flexibility about the granularity and purpose
(intellectual content, technical repair) of the change. In such a
scenario, all versions (CUs) of an archival unit (AU) are
preserved. Each version is represented by a different Content
Unit, as shown in Figure 3:

Figure 2 Portico PMETS 1.x Content Model

Figure 3 PMD 2.0 Content Model: Archival Unit with 2

Versions of Content Unit

Page 99

In the content model, we can describe groups of Storage Units
(SUs) that are "intellectually" identical but "technically" different
by grouping the SUs together in one Functional unit (FU). We
can use this grouping both to capture "use" information (see
Figure 4), and to indicate migrated content (see Figure 5).

Figure 4 PMD 2.0 Content Model: Multiple Storage Units for

Multiple Uses in Same Content Unit

Figure 5 PMD 2.0 Content Model: Content Versioned Within

Single Content Unit

Finally, in the new content model, we have extended this concept
of grouping with two new components: the Storage Unit Set and
the Storage Unit Pointer. These components allow us to describe,
in a fairly compressed way, two new kinds of structural
relationships: objects that simultaneously belong in more than one
group, and relationships between sets of objects. Both are
illustrated in Figure 6 below. In this example, a digitized book,
each page image exists in multiple resolutions (the dotted arrows)
and the entire set of high-res page images has been converted into
a single PDF file (the curved red arrow). These new relationships
can also be used to describe an XML text that consists of multiple
files (e.g., chapters of a book).

2.1.3 Goals and Context

The goals of the new preservation metadata project were to

 Support new requirements and processes described in
the previous section

 Incorporate the latest thinking from the preservation
community, including from the now mature PREMIS
model

Figure 6 PMD 2.0 Content Model: Complex Component

Relationships

 Develop a well-documented design for the new content
model, and implement that design cleanly and
consistently across all our applications. Design goals
included [12]

o Making explicit all data constraints not
currently explicitly expressed in our schemas

o Eliminating redundant information where
possible

o Establishing a clean base line for future
expansion of events metadata

o Clarifying what event goes with which object
and why

o Employing consistent editorial/coding
practices (capitalization, verb tenses, etc.)

The project was undertaken as the archive continued its normal
processes, including on-going incremental changes to the
ConPrep system itself (deployment of new tools, facilities, etc.).
It was undertaken as well in the context of a major institutional
transition, as Portico, which had originally moved from a proof-

Page 100

of-concept project of JSTOR to a free-standing “incubated entity”
of the newly created Ithaka Harbors, in 2003, became an
integrated service, along with JSTOR and Ithaka Strategy and
Research, of the newly created ITHAKA, in 2009.
An additional consideration is the key role that preservation
metadata plays in the archive. The archive’s preservation
activities are made manifest through the preservation metadata
generated and collected throughout the life cycle of a preserved
object. In Portico’s case, these data can be generated during
processing in ConPrep, at ingest to the archive, and as
preservation activities take place thereafter.
This meant that nearly every part of the system was likely to be
“touched” in some way by the metadata migration. It meant as
well, as indeed Portico’s experience in scaling up ConPrep had
demonstrated, that the migration would need to be carefully
thought through, documented, managed, and coordinated amongst
staff who would also be engaged in other work.

2.2 Planning
2.2.1 Requirements and Design: Metadata Review

Planning began with a thorough review of PMETS, including
variations from version to version, and of other candidate
vocabularies: METS, PREMIS, and DIDL [8].
The review of PMETS 1.x included extracting unique XPath
values in actual use in PMETS files, and comparing them with
possible XPaths that could be derived from the schemas, in order
to determine first, if any element and/or attribute contexts proved
to be unused (and possibly unnecessary), and, second, to
comprehend the complete list of unique contexts and
combinations of attribute/value pairs, so that all information
combinations could be accommodated in a new model, and a
lossless transformation accomplished.
The PMETS review enabled us to confirm an intuition of
redundancy of information in each metadata file. For example,
PMETS 1.x events elements included tool environment
information (such as operating system and Java version in which a
tool was executed). In the original design for ConPrep, we
envisioned that each tool could or would run on a different server.
The data model therefore provided support for capturing
environment information with each individual event. However, as
part of scaling up the system, we switched to embedded tool
processing to gain processing efficiencies. Since almost all tools
employed to process an AU are therefore run in the same
environment, nearly all of the tool information in the events of a
given ConPrep processing cycle will have exactly the same
environment information. Additionally, we found we could
flatten and simplify the structure that detailed the list of Portico
and third-party tools employed in processing at each step of the
workflow without loss of information.
With our new business requirements and use cases in hand, we
reviewed the then current versions of METS, the PREMIS data
dictionary, and DIDL. A key question to be answered was how a
good a fit we could find between our requirements (and the
emerging elaboration of our data model in support of them) and
the expressiveness of existing, publicly available specifications.
It was felt that METS was less expressive than we needed in
recording the life cycle of a digital object, whether of content or
of metadata. It would be difficult to record compactly the
migration of individual files, or groups of files. While it was felt

to be essential to harmonize the Portico data model with key
preservation information articulated in PREMIS, its data model
was not entirely homomorphic with Portico’s. While the
PREMIS “intellectual object” maps easily to either an AU or CU,
the next level in the PREMIS model, the “representation object”,
is in contrast to the Portico data model, which assumes a
collection of components, some of which might constitute a
complete rendition (e.g., a PDF file) of the object, and others of
which might only be components from which a rendition can be
created (e.g., an XML full text plus embedded images). DIDL,
extended with Portico-specific attributes, looked easily extensible,
but was not widely supported in a preservation context, and, with
Portico attributes, would in effect be an internal format [12].
The decision was taken to develop our own schema, conformant
with our data model, whose design would be optimized for the use
we made of it in Java, relational database, and XML
instantiations. It would be PREMIS-compliant; it could be
mapped to METS; but it would be optimized for size and speed,
enabling full relational normalization for use in our management
database. It would make use of inheritable metadata. It would
introduce a new concept: the Processing Record. This would be
a block of metadata that describes all of the information common
to an entire processing pass and its resulting events. One or more
of these would be attached at the AU level, and could be
referenced (by identifier) by subsequent objects in any CU (see
Figure 7).

Figure 7: New Data Model: Processing Record(s) and AU,

CU, and SU level Events

Page 101

2.2.2 Requirements and Design: Events Review

A key component of PMETS 1.x and its underlying data model
was the Portico event model. When the migration project was
initiated, approximately one billion events had already been
recorded in the processing of the approximately 15 million
archival units and their 150 million component files. These
events were associated with items in the PMETS file at both the
CU and the SU level.
The event model was instantiated in the Portico Events schema.
It was primarily modifications to (i.e. new versions of) the Events
schema that necessitated new versions of the PMETS schema.
These modifications were made incrementally, as new use cases
were created by new workflow steps or other changes to the
system. The event schemas defined each event separately, with
different attributes and sub-elements for each event. A new design
would simplify the existing data structures into a generic event
that is typed with properties not specified in the schema itself,
thereby allowing extensions without new versions. This in turn
would obviate the need for regenerating the corresponding JAXB
classes for marshalling and unmarshalling files in ConPrep.

Figure 8 Mapping New Event Model to PREMIS

We reviewed each version of the Events schema, developing
tables indicating, for each activity in the ConPrep workflow, what
events could result, and the element and attribute values assigned
by the system. Informed by the analysis of key components of
the PREMIS event model (see Figure 8), we abstracted out simple
event types that describe the event itself. Those basic event types
would then be qualified or sub-classed by assigning values the
Rationale attribute. The controlled list of those values, however,
would not be defined in the schema, thus allowing for extension
without a new version of the schema.

2.2.3 Information Architecture

The data model having been constructed, the next steps were to
review the ConPrep and archive server management Java code,
and the relational database used to store and manage data object
and event information during the ConPrep workflow, to determine
what changes would be required to employ the new data model,
and create and manage instances of the new PMD 2.0 XML
format for preservation metadata. Changes included:

 New relational schema for the relational database,
conforming to the new information model (see Figure 9)

Figure 9 New Relational Schema

 New code to create, read, and write PMD 2.0 files

 New workflow step to create AU-level, Dublin Core
descriptive metadata that could be employed across all
content types (each CU would have content-type
appropriated descriptive metadata as well)

 New code for creating instances of the new event types,
with the appropriate new attribute values in managed
lists, including new validator code at event creation
time

 New code for the Portico delivery and audit sites for
handling the new metadata files

 New tool wrapper code to employ new streamlined
schema for preserving tool information

 New code for the ConPrep GUI for viewing new
metadata formats, and to adapt user-defined reports to
the new AU/CU hierarchy

Page 102

 New Schematron validator for the new PMD 2.0 format,
to enforce, among other things, controlled lists of values
for event attributes

 New archive server management code to handle new
PMD 2.0 format

There were other tasks associated with performing the actual
migration and validation of existing PMETS files.
The first task was to create a detailed information map of the
elements and attributes in the new schema (see Figure 10). This
map provided a definition of the meaning of each element or
attribute; its data type and constraints on values, with an indicator
as to whether the constraint was to be enforced by the schema or
by the Schematron validator; and its place in the relational
database, in the new schema, and the corresponding element or
attribute, if one existed, in the PMETS file to be migrated.

Figure 10 Information Mapping

The next task was to develop the transformation and validation
pipeline for the existing 15 million PMETS files. This entailed

 Extracting a copy of the files from the Portico archive

 Developing an XSL transformation from PMETS to
PMD, using the information mapping table

 Developing the Schematron assertions to test the data
types and constraints in the information mapping table
(this is the same Schematron that would be used in
ConPrep, going forward, to validate new PMD files)

The pipeline was to be run via an application called
“ConprepLite.” ConprepLite is a light-weight façade over the
Conprep workflow and tool wrapper classes. It was devised to
enable the Portico Data Team to test their transformation and
validation tools against thousands of files, while using the same
code invoked by the ConPrep runtime to run those tools. Because
we were scaling up the use of ConprepLite from thousands to
millions of files, it was also necessary to refactor the ConprepLite
software to be multithreaded, and to streamline the reading and
processing of the XML configuration files (which listed input
files, and the workflow steps to be executed) from a document
object model to a streaming model.

Finally, we would require one set of scripts to extract samples of
the newly created AU-level descriptive metadata, for review and
approval by the Portico Archive Service Product Manager, and
another set of scripts to import the new PMD 2.0 files into the
archive, and update the archive management database to reflect
the presence of these new assets, and their relationship to the
existing content and metadata files.

2.3 Execution
2.3.1 Technical Challenges

One of the lessons learned from scaling up the ConPrep system
was to “expect surprises” [11]. That expectation was amply met
when we revved up the pipeline. We found that processing such a
large number of (often very) large XML files stressed both
hardware and almost every layer of software in the pipeline stack.
Tuning of all sorts was an issue. With multiple threads running
on multiple machines, it took some tuning to settle on reasonable
batch sizes, so that any failure of a single batch would not result
in the waste of days or even weeks of run time. It took some
trials to determine the optimum thread count to employ on each
instance of ConprepLite that was running on multiple, and
different, hardware and operating systems configurations.
Both the PMETS files and the XSL files designed to transform
them were quite large and complex (the transform files run to
approximately 3000 lines of code). The PMETS files also
contained segments from many different namespaces: the PMETS
namespaces, Dublin Core, three namespaces in the JHOVE
technical metadata, and so on. These namespaces appear
scattered throughout the XML document tree, which could often
be quite deep. At times, this broke the name pool limit in the
version of the Saxon XSL transform engine we were using. We
had to upgrade and test our transform with a later version.
Additionally, even with the newer version, files with very deep
technical metadata trees resulted in stack overflow. We had to
tune our memory allocation to handle this (eventually ending up
with a 30 gigabyte heap size).
Handling large-scale numbers of very large files resulted in many
different kinds of memory tuning. Having moved first from 32-bit
to 64-bit Java Virtual Machines (JVM), we found it necessary to
increase the JVM permgen space in setting the JVM environment
at run time. We then found we had to tune the size of the pool
allocated for interned strings, as we were overrunning standard
limits for that as well.
ConprepLite creates many directories and files as intermediate
artifacts of conversion and validation. Some of the ConprepLite
instances were running on machines with older versions of UNIX.
These instances ran into difficulties when the number of
directories exceeded the maximum limit for child inodes on these
systems.
Part of the PMETS-to-PMD2 transformation included the creation
of an Archival Resource Key [9], used as an object identifier for
nearly every element in the schema. We found that the NOID
minter was not able to keep up with the number of requests being
made by multiple ConprepLite instances. We established a
separate NOID minter server per process to handle this.
The ConprepLite pipeline consisted of three steps: transformation
from PMETS to PMD2, validation of the PMD2 file against the
PMD2 schema, and further validation of the PMD2 file with
Schematron. The pipeline was running quite slowly at first. We

Page 103

looked to see if it was IO-bound or process-bound. It turned out
to be the latter, with resources being consumed largely by the user
rather than the kernel. The ConprepLite instances were then
moved to heavier-duty machines with an NFS mount to the file
system with the extracted PMETS files.
Additionally, inspecting the logs, we saw that nearly two-thirds of
the time was being spent on the Schematron validation. Our first
thought was that the heavy use of regular expressions was
consuming a lot of processing time. This however proved not to
be the case. We then recollected that Schematron essentially is a
code generator, taking as input user assertions, and transforming
them against a “skeleton” to generate an XSL transform actually
run against the file being validated. We had already optimized
Conprep and ConprepLite to cache compiled XSL
transformations, including the XSL transform generated “on the
fly” by Schematron the first time it is invoked in the workflow.
Outside the ConprepLite workflow, we serialized the XSL
transform generated by Schematron, so that we could inspect the
generated code to see what actually was being run. What we
found was that Schematron’s generated code was using a
technique (XSL “modes”) which resulted in over 128 passes
through each of the (very large) PMD2 files. We tuned the code
to minimize passes through the PMD2 files.

2.3.2 Quality Assurance
Although the transformation was tested against many sample files
as it was developed, we expected to encounter, in a
transformation of such complexity, dealing with input of such
complexity, errors of one sort or another, as we in fact did. Key
to catching such errors was the capability for large-scale
automated validation, both via schema validation and
Schematron.
We also performed extracts of the newly generated descriptive
metadata for manual review, to verify the correctness of the
newly created metadata.
As a matter of policy, Portico retains the original PMETS file
along with the new PMD file (which references the now-inactive
earlier version) associated with the archival unit. This enables us
to re-run the transform as needed, should we discover, at a later
time, any errors in our transformation process.

3. REFLECTIONS
It is important to consider the process of migration, not just from
the perspective of issues raised by specific file formats, but also in
the larger context of the life cycles of systems and software
themselves, and in the new use cases for repository content that
emerge from ever-evolving expectations of an archive’s
community of use. As Portico’s experience with its preservation
metadata would seem to indicate, it is reasonable to expect over
the long term that changes in the large-scale infrastructure of
archives, their capabilities, and their communities of use, will
themselves necessitate the ability to manage, manipulate, move,
and migrate content at very large scales.
Archives and repositories will need to make their own
assessments of the necessity, feasibility, and usefulness of such
large-scale asset migrations as Portico undertook. They will need
to balance the tradeoffs between just-in-time versus large scale
pre-emptive migration. And they will need to make these
assessments not only about both assets conventionally understood
as “content”, but about system-generated artifacts such as

preservation metadata, which also constitute content, albeit of a
less conventional kind, in need of stewardship and preservation.
Preservation institutions will need to assess the likely “lossiness”
of such migrations. It is comparatively easy to determine the
significant properties [6] to be tracked in an XML-to-XML
migration such as the one described in this paper. Nevertheless, it
is important to articulate that mapping in advance of the
transformation, so that the success of the transformation can be
tested. This is crucial for the construction of automated tests of
the correctness of the transformation – another key capability for
migration at scale.
Fifteen million of anything is a lot. It is no surprise that it takes a
lot of work to manipulate content at that scale, whether that
manipulation is a migration, or some other operation. In this case,
in terms of elapsed time, Portico spent approximately three to four
months planning the migration, and another nine months in its
development and execution.
Given the scale at which this was happening, the importance of
the content itself, and the many other activities of the staff
involved in accomplishing a migration or any similar large-scale,
cross-corpus manipulation of content, it is crucially important
carefully to analyze, document, plan, and track such efforts. An
important part of the planning will be to expect – and to allow
time and resources for --the unexpected.

4. ACKNOWLEDGEMENTS
The authors would like to acknowledge Evan P. Owens, formerly
CTO of Portico, and Vice President for Content Management,
ITHAKA, who directed the migration project, the project
documents of which were key source materials for this paper.

5. REFERENCES
[1] Beck, Jeff. Report from the Field: PubMed Central, an XML-

based Archive of Life Sciences Journal Articles. Presented
at International Symposium on XML for the Long Haul:
Issues in the Long-term Preservation of XML, Montréal,
Canada, August 2, 2010. In Proceedings of the International
Symposium on XML for the Long Haul: Issues in the Long-
term Preservation of XML. Balisage Series on Markup
Technologies, vol. 6 (2010).
DOI=10.4242/BalisageVol6.Beck01.

[2] Caplan, Priscilla. The Florida Digital Archive and DAITSS:
a Working Preservation Repository Based on Format
Migration. International Journal on Digital Libraries 6.4
(2007): 305–311.

[3] CCSDS. Reference Model for an Open Archival Information
System (OAIS). CCDS 650.0-B-1 Blue Book Issue 1 (2002)

[4] Digital Library Federation. Metadata Encoding and
Transmission Standard (METS) Version 1.7. 2008 Web 06
June 2012 from
http://www.loc.gov/standards/mets/version17/mets.xsd

[5] Heslop, H., Davis, S. & Wilson, A. An approach to the
preservation of digital records (2002) Web 08 June, 2012,
from
http://web.archive.org/web/20031217152126/http://www.naa
.gov.au/recordkeeping/er/digital_preservation/Green_Paper.p
df

Page 104

[6] Hedstrom, M., and C. A. Lee. Significant Properties of
Digital Objects: Definitions, Applications, Implications.
Proceedings of the DLM-Forum. 2002.

[7] ISO/IEC 19757-3:2006 Information technology -- Document
Schema Definition Language (DSDL) -- Part 3: Rule-based
validation – Schematron ISO/IEC 2006

[8] Declaration ISO/IEC JTC 1/SC 29 N 3971 Information
Technology — Multimedia Framework — Part 2: Digital
Item

[9] Kunze, J. and Rodgers, R. The ARK Identifier Scheme. 22
May 2008. Web 06 June 2012 from
https://confluence.ucop.edu/download/attachments/16744455
/arkspec.pdf?version=1&modificationDate=1261036800000

[10] PREMIS Editorial Committee. PREMIS Data Dictionary,
Version 2. Library of Congress March 2008 Web 06 June
2012 from http://www.loc.gov/standards/premis/v2/premis-
dd-2-0.pdf

[11] Owens, Evan, Cheruku , Vinay, Meyer, John, and Morrissey,

Sheila. Digital Content Management at Scale: A Case Study
from Portico. Presented at DLF Spring Forum, Minneapolis,
April 28-30, 2008. Web 06 June 2012 from
http://www.diglib.org/forums/spring2008/presentations/Owe
ns.pdf

[12] Owens, Evan. ITHAKA Preservation Metadata 2.0:
Revising the Event Model. Presented at PREMIS
Implementation Fair 2009. Web 06 June 2012 from
http://www.loc.gov/standards/premis/pif-
presentations/Portico PREMIS Workshop.ppt

[13] Van Wijk, Caroline. “KB and Migration Test Plan”.
National Library of the Netherlands (KB), Digital
Preservation Department. 6 November 2006. Web 29 May
2012, from
http://www.kb.nl/hrd/dd/dd_projecten/KB%20and%20Migra
tion%20Test%20Plan.pdf

Page 105

