
Future-Proof Preservation of Complex Software
Environments

Klaus Rechert, Dirk von Suchodoletz and Isgandar Valizada
Department of Computer Science
University of Freiburg, Germany

ABSTRACT
Emulation evolves into a mature digital preservation strat-
egy providing authentic access to a wide range of digital
objects using their original creation environments. In con-
trast to migration, an emulation approach requires a num-
ber of additional components, namely the full software-stack
required to render a digital object, and its configuration.
Thus, independent of which emulator is chosen, contextual
information of the original computer environment is always
needed.

To overcome this knowledge gap, a formalization process
is required to identify the actual building blocks for an au-
thentic rendering environment of a given object. While the
information gathering workflow relies heavily on user knowl-
edge and manual interaction during ingest, the workflow is
coupled with a feedback loop so that both a complete em-
ulation environment and preservation of desired properties
for later access are ensured.

1. INTRODUCTION
In most cases the best way to render a certain digital

object is using its creating applications, since these cover
most of the object’s significant properties and hence, provide
an authentic and possibly an interactive user experience.
Therefore, emulation is a key strategy to provide a digital
object’s native environment and thus to maintain its original
”look” and ”feel” [7]. In some cases the existence of access
alternatives, e.g. format migration, is not guaranteed due to
the proprietary nature of the object’s file formats, or even
impossible due to the complex structure of the object (e.g.
digital art, computer games, etc.).

Recreating software environments using emulation requires
detailed knowledge about the objects’ dependencies (e.g. op-
erating systems, libraries, applications). Viewpaths (VP) [6]
represent an ordered list of such dependencies for a given
object, defining an order for the sequence in which these
dependencies are required. Hence, in combination with a
comprehensive and well-managed software archive any an-

cient computer environment could be rebuilt. Nevertheless
this topic is still largely neglected by practitioners and re-
search communities in the digital preservation domain.

If a digital object becomes subject to digital preservation,
a defined workflow is required to support the preservation
process of the object’s original context i.e. rendering envi-
ronment. The workflow makes use of the user’s knowledge
to identify necessary components of the object’s rendering
environment, to the effect that the rendering environment
is complete and there are no dependency conflicts, at least
for the chosen configuration and the digital object’s contex-
tual environment. For current computer environments and
applications plenty of user knowledge is available. Thus,
the project’s proposed workflows focus on users ”owning” a
system setup e.g. for performing business of scientific pro-
cesses. More specifically, owners of today’s digital objects
have good knowledge of the object’s properties, their desired
functions and utility, at least to extent of the objects’ orig-
inal purpose. Furthermore, preserving the knowledge of in-
stallation, configuration, and usage of software components
ensures the recreation process of past system environments.
By providing a preview of the emulated and recreated envi-
ronment during ingest the user is able to test if the chosen
setup meets the desired rendering quality and functionality.
Figure 1 shows the proposed workflow in an abstract way.

2. RELATED WORK
In order to preserve a digital object’s rendering environ-

ment, any dependencies from interactive applications to op-
erating system and hardware components need to be identi-
fied. A widely adopted method which is integrated as a ser-
vice in many digital repositories and institutional archives
is the file type database PRONOM [2]. But identifying files
and linking applications to them is only the first step. Sev-
eral tools were proposed to resolve software dependencies
from platform specific object-code binaries. E.g. DROID 1

makes use of ”file-magic” fingerprints in combination with a
database, others make use of system library resolving mech-
anisms [4]. While these tools and techniques provide useful
information and hints to the users, they do not guarantee the
generation of a suitable rendering environment, for instance,
regarding completeness, quality and conflicting dependen-
cies. In case of database dependent tools, appropriate data
for a specific digital object is required.

A significant challenge when dealing with outdated soft-
ware packages is the diminishing knowledge of how to han-

1DROID Project, http://droid.sourceforge.net/,
(5/28/2012).

Page 180

sestakiv
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission
 and/or a fee. iPRESS2012, Oct 1-5, 2011, Toronto, ON, Canada. Copyright 2012, Digital Curation Institute, iSchool, University of Toronto.

SW-Archive

WF-SW-I

SW-Archive
INGEST WF

AIP
Software

Components

Software
Environment

Meta-Data

ViewPath
Context

Descriptive
Information

Usage
Knowledge

WF-SW-A

SW-Archive
ACCESS WF

Software
Environment

Emulation
Component

Splitting Environment into
individual Software Cmponents

Virtualized Environment

Emulation
Component

C
apturing

U
ser Interaction

U
se

r-c
en

tri
c

Q
ua

lit
y

As
su

ra
nc

e

Emulated Environment

R
ebuilding

SW
-Environm

ent

Figure 1: Preservation of complex software environments

dle the installation and configuration processes properly.
One method to leverage the effort and archive the required
knowledge is to automate the different installation steps for
each relevant package. A viable approach is illustrated by
Woods and Brown, who describe a software designed to min-
imize dependency on this knowledge by offering automated
configuration and execution within virtualized environments
[10]. This group demonstrated how to deploy automation
scripts, i.e. GUI automation in order to install applications
on demand. Their approach was successfully tested on dif-
ferent applications in several Windows versions. However,
the script language used requires programming skills and
in-depth knowledge of the operating system. Within earlier
work of the same focus Reichherzer and Brown addressed
the creation of emulator images suitable to render Microsoft
Office Documents [5].

3. PRESERVATION OF COMPLEX SOFT-
WARE ENVIRONMENTS

In contrast to a migration strategy, the emulation ap-
proach requires a number of additional components and con-
figurations to provide access to digital objects. Thus, inde-
pendent of which type of emulator is chosen, contextual in-
formation of the computer environment is always required.
To overcome this gap of missing knowledge, a formalization
process is required to compute the actual building blocks for
an authentic rendering environment of the digital object.

The VP model describes a system environment starting
from the rendering application of the digital object to the
description of required software and hardware requirements.
If one of these requirements is not met (e.g. hardware com-
ponents are not available), emulators can be used to bridge
the gap between the digital past and future contexts. VPs
define an abstract model which can be instantiated by an ap-
plicable workflow. To complete the process and compute de-
pendencies technical metadata on various layers is required
[3]. Descriptive information needs to be extended, for in-

stance by adding information on required applications, suit-
able operating systems, and emulators. Additionally, soft-
ware archiving is required to be able to reproduce complete
original environments. Software archives play a vital part in
an emulation-centric preservation approach as deprecated
software products, legacy hardware drivers, older font-sets,
codecs and handbooks for the various programs will become
more and more difficult to find.

3.1 Ingest Workflow
Software components need to be preserved and enriched

with additional information (meta-data), like operation man-
uals, license keys, setup how-to’s, and usage knowledge. Fur-
thermore, each software component defines its own soft- and
hardware dependencies. To ensure long-term access to dig-
ital objects through emulation, not only the availability of
technical meta-data (e.g. TOTEM entities [1]) are required,
but these VPs also need to be tested and evaluated by users
aware of the digital object’s environment properties and per-
formance. Hence, a defined workflow is required which al-
lows the user to (pre-)view and evaluate the rendering result
of each step of VP creation. This can be achieved by provid-
ing a framework to perform a structured installation process
of a reference workstation. Figure 2 presents a functional
flow diagram of the suggested workflow for the addition of
new software components to the software archive.

1. The ingest workflow starts with the import of a single
software component (WF-I-SW-0). This component
might be available through a reference to the digital
object already contained in a AIP/DIP container of
some digital archive. Otherwise the user is able to
upload the object from the local filesystem.

2. In a second step (WF-I-SW.1) the user is able to pro-
vide a detailed descriptive information of the object.
This description is used as archival meta-data for in-
dexing and search purposes.

Page 181

VP
Generation

WF-I-SW: SW-Archive Ingest Workflow

WF-I-SW.2

Select & Install
Dependencies

WF-I-SW.0

Import
SW-Object

WF-I-SW.3

Installation &
Rendering Test

WF-I-SW.4

Pack & Output
technical Meta-

Data

Tech.
Meta-Data

Meta-Data
Storage

WF-I-SW.5

SW-Storage

EXT-IF

Ext. Interface to
DO Storage

OR

Dig. Object

Dig. Object

WF-I-SW.1

Describe
SW-Object

WF-I-SW

OR

OR

Dig. Object

Figure 2: Ingest workflow of a single software package.

3. At workflow step WF-I-SW.2 the user is able to select
the software component’s hard- and software depen-
dencies. The possible choices are assembled based on
already existing knowledge of the software archive or
by using external sources.If all required dependencies
of the object already exist, the user is able to proceed
to workflow step WF-I-SW.3. If the required depen-
dency is not known or not available in the software
archive, it must first be ingested into the software
archive by using a recursive invocation of the ingest
workflow for this missing dependency software compo-
nent.

4. The options of workflow step WF-I-SW.3 depend on
the type of the software component. If it is an oper-
ating system, it is run by means of emulation and the
user is able to interact with the corresponding environ-
ment. If the type of the software component is instal-
lable software suitable for a certain operating system
(e.g. library, driver, application), it is injected into
the system and its installation (either by manual in-
teraction or in an unattended manner) is performed.
After the installation is finished, the user is able either
to confirm a successful installation or to reject it in
case of failure. A successful installation implies auto-
matic extension of the VP for this software component
with a new dependency object. Thus after each depen-
dency object is confirmed to have been successfully in-
stalled, the VP is extended accordingly until no more
dependencies are required for this software component.
The resulting VP then represents a suitable manually
tested and confirmed rendering environment. If the
installation fails due to missing software or hardware
dependencies the user has to change the VP accord-
ingly. A repetition of tasks at step WF-I-SW.2 may
be required for this.

5. If the user reached step WF-I-SW.4 of the workflow, a
suitable VP has been built and a technical meta-data
(VP) has been generated. The generated meta-data

information might consist not only of the VP but also
of user feedback about the quality and/or costs of the
produced technical metadata.

6. In a final step the software component is submitted for
further processing as SIP to a software archive.

The proposed workflow requires significant manual user
interaction and seems costly and time consuming at first
sight. However, regarding preservation of current digital
objects, the basic rendering environment is quite stable con-
cerning software and hardware dependencies. Usually the
main differences can be found on the top layer of the VP de-
scription, i.e. only a few additional steps are required if the
software archive already contains suitable VP descriptions of
today’s common digital objects. The ingest workflow could
be further accelerated by employing caching strategies on
created software images and by automation of installation
tasks.

In order to automate such processes, unattended user in-
teractions with an operating system have led to an inter-
esting possibility of performing automatic dependency in-
stallations. So called interactive session recorders are able
to record user interactions such as mouse clicks/movements
and keystrokes performed by the user during the interaction
with an operating system and save them to an interactive
workflow description (IWD) file. The interactive session re-
players on the other hand are able to read the IWD files
and reproduce these actions. Applying this technique to the
ingest workflow of the software archive implies recording of
all input actions performed by the user during the installa-
tion of a software component and saving this information for
future purposes. The attractiveness of this approach is that
no additional programming must be done in order to au-
tomate the installation process, which makes this approach
available to a wide range of users and computer systems.
Furthermore, the IWD approach is independent of the GUI
system used and the underlying operating system [9]. Thus
for any successful run of the proposed ingest workflow meta-

Page 182

data (VP) is generated as

V P0 = < emulator,OS >

. . .

V Pn = < V Pn−1, IWDn, SWn >

starting with an emulator / operating system combination
which is successively extended by a software component (ref-
erenced as TOTEM entity) and the associated installation
and configuration routine.

The combination of base images made for a certain em-
ulator plus a software archive of all required VP software
components enriched with knowledge of how to produce a
certain original environment (on demand) provides the nec-
essary base layer for the future access of original artifacts.
The additional costs in terms of manual interaction during
object ingest are able to reduce the long-term preservation
planning costs, since only the bottom layer (i.e. emulator)
of the VP needs to be taken into account.

3.2 Access Workflow – Rendering of Software
Environments

Having a complete VP description for an object is cer-
tainly not sufficient for it to be accessed, i.e. rendered. A
suitable environment is to be recreated first. In this paper
we refer to the process of recreating such an environment by
using the term viewpath instantiation. A VP is considered
as instantiated if the operating system contained in the VP
description is started, successfully booted and available for
external interaction through the emulated input/output de-
vices. Furthermore, all remaining dependencies defined in
the VP for the object need to be installed.

The proposed workflow delegates the task of VP instan-
tiation to a separate abstract service: the emulation com-
ponent. In order to allow a large, non-technical user-group
to interact with emulators an abstract emulation component
has been developed to standardize usage and hide individ-
ual system complexity. Each Web service endpoint provides
a ready-made emulator instance with a remote accessible
user interface (currently VNC and HTML5 web output are
supported). Furthermore, standard system interaction is
available, such as attaching/detaching removable drives (e.g.
floppies, CD/DVDs) and attaching hard-drives and images
to an emulator. A full description of a distributed emulation
setup was presented in earlier work [8].

4. CONCLUSION & OUTLOOK
Emulation becomes a more and more accepted and ma-

ture digital preservation strategy to provide access to a wide
range of different objects. As it does not demand any mod-
ification of the objects over time, the objects do not need to
be touched unless requested.

The proposed approach defines a user-centric workflow,
which makes use of current user knowledge and thus is able
to provide certain guarantees regarding completeness, ren-
dering quality, and non-conflicting dependencies. Further-
more, through a defined framework all interactions between
user and computer environment could be observed and recor-
ded. Thereby, not only a more efficient VP instantiation is
possible but also knowledge on the usage of certain computer
environments and their software components can be pre-
served. While an emulation approach has technical limita-
tions (e.g. due to external (network) dependencies, DRM, li-

cense dongles, etc.), the proposed workflow is able to uncover
such issues and indicates risks w.r.t. to long-term preserva-
tion.

With the development of a defined work process and as-
sociated workflows the groundwork for system integration
and automation has been made. With more user experience
and feedback, workflow-components suitable for automation
could be identified, designed and implemented.

Acknowledgments
The work presented in this publication is a part of the bwFLA
– Functional Long-Term Access 2 project sponsored by the
federal state of Baden-Württemberg, Germany.

5. REFERENCES
[1] D. Anderson, J. Delve, and D. Pinchbeck. Towards a

workable, emulation-based preservation strategy:
rationale and technical metadata. New review of
information networking, (15):110–131, 2010.

[2] T. Brody, L. Carr, J. M. Hey, and A. Brown.
Pronom-roar: Adding format profiles to a repository
registry to inform preservation services. International
Journal of Digital Curation, 2(2), 2007.

[3] R. Guenther and R. Wolfe. Integrating metadata
standards to support long-term preservation of digital
assets: Developing best practices for expressing
preservation metadata in a container format. In
Proceedings of the 6th International Conference on
Preservation of Digital Objects (iPRES2009), pages
83–89, 2009.

[4] A. N. Jackson. Using automated dependency analysis
to generate representation information. In Proceedings
of the 8th International Conference on Preservation of
Digital Objects (iPRES2011), pages 89–92, 2011.

[5] T. Reichherzer and G. Brown. Quantifying software
requirements for supporting archived office documents
using emulation. In Digital Libraries, 2006. JCDL ’06.
Proceedings of the 6th ACM/IEEE-CS Joint
Conference on, pages 86–94, june 2006.

[6] J. van der Hoeven and D. von Suchodoletz.
Emulation: From digital artefact to remotely rendered
environments. International Journal of Digital
Curation, 4(3), 2009.

[7] R. Verdegem and J. van der Hoeven. Emulation: To
be or not to be. In IS&T Conference on Archiving
2006, Ottawa, Canada, May 23-26, pages 55–60, 2006.

[8] D. von Suchodoletz, K. Rechert, and I. Valizada.
Remote emulation for migration services in a
distributed preservation framework. In Proceedings of
the 8th International Conference on Preservation of
Digital Objects (iPRES2011), pages 158–166, 2011.

[9] D. von Suchodoletz, K. Rechert, R. Welte, M. van den
Dobbelsteen, B. Roberts, J. van der Hoeven, and
J. Schroder. Automation of flexible migration
workflows. International Journal of Digital Curation,
2(2), 2010.

[10] K. Woods and G. Brown. Assisted emulation for
legacy executables. International Journal of Digital
Curation, 5(1), 2010.

2bwFLA – Functional Long-Term Access, http://bw-fla.
uni-freiburg.de.

Page 183

