
Practical Floppy Disk Recovery Study

Digital Archeology on BTOS/CTOS Formatted Media

Dirk von Suchodoletz,
Richard Schneider

University Computer Center
Freiburg, Germany

Euan Cochrane
Archives New Zealand

Department of Internal Affairs
Wellington, New Zealand

David Schmidt
RetroFloppy

North Carolina, USA

ABSTRACT
This paper provides a practical example of digital archeol-
ogy and forensics to recover data from floppy disks origi-
nally used by CTOS, now an obsolete computer operating
system. The various floppy disks were created during the
period between the mid 1980s to the mid 1990s containing
different types of text, data and binary files. This paper
presents practical steps from two different approaches, the
tools and workflows involved which can help archivists and
digital preservation practitioners recover data from outdated
systems and media. While the floppy disk data recovery
was a full success, issues remain in filetype detection and
interpretation of non-ASCII data files of unknown or un-
supported types.

1. INTRODUCTION
Archives New Zealand and the University of Freiburg co-

operated on a data recovery project in 2011 and 2012. The
archive received a set of 66 5.25 inch floppy disks from the
early 1990s that contained records of a public organization
dating back to the mid 1980s. These floppies were not read-
able using any standard DOS-based personal computer with
a 5.25 inch floppy drive attached to it. There was very little
information available in the beginning about the contents or
technical structure of the floppy disks from the organisation
that owned them. Because of the age of the disks and this
lack of information about their contents the organisation was
eager to retrieve all files that could be read from the disks
and get all available information from those files. This is an
ideal use case for digital archeology workflows using forensic
methods [4, 2, 1] as archives may receive objects quite some
time after they have been created (20 years or more later).
To be able to recover raw bit streams from obsolete floppies,
the archive purchased a special hardware device with the
ability to make digital images of the floppy disks. The team
from Archives NZ and the University of Freiburg was joined
later by a digital archivist from RetroFloppy who had been
working on a similar challenge from the same system after

he discovered the discussion about their work on the Open
Planets Foundation (OPF) blog.1

2. STUDY ON DATA RECOVERY
The digital continuity team at Archives NZ thought it

would be a great opportunity to demonstrate the practical
use of the KryoFlux device, a generic floppy disk controller
for a range of original floppy drives offering a USB inter-
face to be connected to a modern computer. In addition,
more information on the work required to incorporate it into
archival processes was to be gathered and documented.

2.1 First Step – Bit Stream Recovery
The first step in the process after receiving the physical

media was to visually examine the disks to find out any
technical metadata that was available. The disks had labels
that identified them as DS QD 96 tpi disks, which refers to
Double Sided, Quad Density, with 96 tracks per inch. A
5.25 inch drive was attached to the KryoFlux which itself
was connected to a modern Windows PC using a USB con-
nection. The KryoFlux works by reading the state of the
magnetic flux on the disk and writing that signal into a file
on the host computer. Different output options are possi-
ble: A proprietary KryoFlux stream image formatted file,
a RAW formatted file, and an MFM sector (BTOS/CTOS)
formatted image file were all created from the disks.

A major component besides the hardware device is the
interpretation software to translate the recorded signal into
image files that are structured according to various floppy
disk-formatting standards. After recovering a few disks it
became clear that they were not following any known filesys-
tem standard supported by today’s operating systems. Thus
it was impossible to directly mount them into the host filesys-
tem and read the files from them. But nevertheless it was
possible to analyse the images with a hexidecimal editor. Vi-
sual inspection of the resulting data showed that the read-
ing process was producing some meaningful data. Several
”words” like sysImage.sys were repeated in all readable disk
images, thus seeming to represent some structural filesystem
data. By searching the internet for this string and others it
was possible to deduce that the disks were likely created
on a computer running the Burroughs Technologies Operat-
ing System (BTOS) or its successor the Convergent Tech-
nologies Operating System (CTOS) [5]. Fortunately more
in-depth information could still be found on various sites

1See the discussion on http://openplanetsfoundation.org/blo-
gs/2012-03-14-update-digital-archaeology-and-forensics.

Page 184

sestakiv
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. iPRESS2012, Oct 1-5, 2011, Toronto, ON, Canada. Copyright 2012, Digital Curation Institute, iSchool, University of Toronto.

Figure 1: Hexdump image analysis revealing some
hints about the original platform

describing the file system. After more research it was con-
cluded that there is currently no software available to prop-
erly interpret disks or disk images formatted with this file
system aside from the original software and its (obsolete)
successors. As there are no emulators available for this sys-
tem, an emulation approach was not a viable option either.
At this point the image investigation was handed over to
the computer science department of the Freiburg University
to dig into the problem. An application was written to in-
terpret the file system on the disks using the information
available on the internet.

2.2 Second Step: Directory Reader
The preservation working group in Freiburg was able to

attract a bachelor student for the task to write an inter-
preter and file extractor for the image files. This is a nice
challenge for a computer scientist, as knowledge of operating
systems and filesystem concepts are required and could be
used practically. There is no demand for a whole filesystem
driver, as the image does not need to be mountable on mod-
ern operating systems and no new files need to be written.
Thus, a bitstream interpreter is sufficient. The Python pro-
gramming language was used to write a first prototype of
the interpreter as there were no performance requirements
and it is very well suited for rapid development. By the end
of the year a tool was produced that was able to read the
filesystem headers and produce directory listings from them
(Fig. 2).

In this example the volume header block (VHB) produces
a checksum failure, but with the correct File Header Block
the simple directory structure is readable. The listing seems
to be correct as it reproduces the filenames like sysImage.sys
which was readable in the hex editor. With this listing at
least some information might be read from the filenames it-
self. The next stage was the file extraction feature which
could extract single files from the image or dump all con-
tained files into a folder on the host system. These could
then be inspected further, to gather more knowledge of their
original purpose.

Figure 2: Python extractor file list output

2.3 Filesystem Interpretation
Of course it was possible to sneak a peek at the probable

file contents before, by opening the floppy image file in a
hex editor. But this made it very complicated, especially
for non-text files to distinguish between file boundaries. De-
pending on the filesystem used and if fragmentation occured
a single file is not necessarily contained in consecutive blocks
on the storage medium. For the preservation and access
needs of the Archive and the public institution donating the
data, it was not necessary to re-implement the filesystem
driver of the old platform for some recent one as most likely
nobody will want to write files on floppy disks for this archi-
tecture again. But nevertheless a thorough understanding
of the past filesystem is required to write a tool that can at
least perform some basic filesystem functionality like listing
the content of a directory and reading a specific file.

Fortunately the project was started early enough so that
all relevant information that was coming from one specific
site2 on the net was copied locally in time. This site went
offline and did not leave relevant traces either in the Inter-
net Archive nor in the publicly accessible cache of search
engines. This was a nice example of the challenges digital
archaeologists face. Collecting institutions are advised for
the future to store all relevant information on a past com-
puter architecture on-site and not to rely on the permanent
availability of online resources.

2.4 File Extraction
The extractor program knows the two possible base ad-

dresses of the volume header blocks (VHB), as there are
an active VHB and one backup VHB defined by the CTOS
specification. It selects by the checksum an intact VHB to
find the File Header Blocks (FHB). If there is no correct
checksum it looks at probable positions for suitable FHB
addresses. In the next step the FHB are traversed sequen-
tially to extract the contained file. It will also recover deleted
files, files with an inactive header or password secured files.
If there are several different, plausible file headers for a file,
both files will be saved under different names. After stor-
ing the file, its name, directory, password, date and size are
displayed as program output. If files cannot be properly

2The site http://www.ctosfaq.com went of-
fline permanently, but was replaced later by
work done by http://OoCities.org archivists at
http://www.oocities.org/siliconvalley/pines/4011.

Page 185

identified because of age and wear of the disk images, it will
interpret the character encoding as ASCII-encoded strings,
which can be extracted easily.

Figure 3: Python extractor for CTOS files and
ASCII fragments

3. ALTERNATE APPROACH – FC5025
The RetroFloppy approach used the FC5025 floppy con-

troller, currently available from DeviceSide Data. The FC-
5025 is a USB-attached circuit board that interfaces to a
number of once-common 360 KByte and 1.2 MByte floppy
drives. Similar to the KryoFlux device, it reads flux tran-
sitions, but exposes much less detail to the user. Designed
as a self-contained hardware and software package, it can
read multiple disk formats from many different disk systems
using a single floppy drive, and includes capabilities to ex-
tract entire disk images. Individual files can be extracted
from a subset of the supported image formats of the FC5025
driver. In the CTOS case, though, there was no support
built in. Fortunately, the FC5025 comes with C-language
source code for the formats that are supported. Collaborat-
ing with DeviceSide and the other archivists, RetroFloppy
wrote code that enabled the FC5025 device to read and in-
terpret the CTOS filesystem, including extraction of indi-
vidual files (Fig. 4). That support has been contributed
back to the vendor for inclusion in future versions of their
software package.

As the teams collaborated on filesystem interpretation,
differences in strategies emerged and were shared. This ul-
timately strengthened both approaches. For example, one
team felt it was important to extract even deleted files;
the other team found significance in file timestamps and
passwords. The filesystem interpretation by both teams ul-
timately relied heavily on available documentation of the
CTOS system that would not be discernible by visual in-
spection. The timestamps, for example, were stored as an
offset from May 1, 1952 – presumably a date that was some-
how significant to the CTOS project itself, but was not dis-
coverable simply given the disk image data.

4. RESULTS AND EVALUATION

Figure 4: The user interface of the FC5025 solution,
showing integrated CTOS support

The first round of the recovery experiment was run on
62 disk images created by the team in New Zealand from
the received floppies. In three of those 62 images the File
Header Block was unreadable. Two of the failing images had
just half the size of the rest of them (320 KBytes instead
of 640 KBytes). This issue led to missing file information
like file address on the image and file length. For the third
failing case it is still unclear why the File Header Block is
unreadable. This comes to a total of 59 readable images with
a total of 1332 identifiable files in them. The text content
of the failing disk images was transferred to a single text file
per image. At the moment the issues are being investigated
together with the manufacturer of the reading device. It
might be possible to tweak the reading process and extract
more information to add the missing pieces for the failing
images. This might lead to some deeper insight into the
procedure and some best practice recommendations.

Filetype Number of Files
No further recognized data 1635
ASCII text 106
ASCII English text 15
ISO-8859 text 11
XPack DiskImage archive data 7
DBase 3 data file (error) 5
FORTRAN program 2
Lisp/Scheme program text 2
Non-ISO extended-ASCII text 2
8086 relocatable (Microsoft) 1
ASCII C program text 1
Emacs v18 byte-compiled Lisp data 1
MS Windows icon resource (error) 1

Figure 5: Types of the recovered files from the
floppy disks by file interpretation.

As the files of the New Zealand test set were mostly of
ASCII text, a second set of floppies from the US coast guard
was tested at RetroFloppy. This set spanned a longer period
and contained many more non-ASCII files. Finally, there
were 1889 files successfully extracted from the years 1983
through 1993. Of those, 1789 files with an active file header
and 100 deleted files were recovered. The file type detection
with the Linux file utility identified most files as ”unknown

Page 186

binary data” (1635). Eighty-two of them could be identified
as CTOS executables by the file extension ”run”. 838 could
be attributed as Word Processor files by extension or manual
inspection. Several files got categorized by the file utility (5),
some of the attributions were simply wrong. In general the
results were not widely cross-checked with other utilities as
this was not the focus of this study.

5. CONCLUSION
The floppy disk recovery of physically intact media was a

full success for both test sets, as it was possible to properly
read files from outdated media without any original hard-
ware available. Each disk took approximately five minutes
to image and the research and initial forensic work added
some additional hours to make up a total of one week of
full time work for the initial imaging phase. Less than a
month was required for a junior developer to write and test
the Python code and less than a week for a seasoned C de-
veloper to produce the FC5025 driver code. The future per
disk effort should now be very small with the tools available.
The most troublesome part of the study was that the only
way to understand the file system was to use documentation
that has subsequently disappeared from where it was orig-
inally found on the internet. This highlights the need for
some ”body” to independently – not just on some site on the
internet – preserve and make available all the system and
software documentation for old digital technologies. With-
out that documentation this kind of work would be much
more difficult if not impossible, and at least for the consid-
ered platform the documentation is rapidly disappearing.

There are at least two hardware solutions available today,
providing an interface between outdated hardware and to-
day’s platforms. The KryoFlux device is shipped with pro-
prietary software helping to fine-tune the image extraction.
The Device Side USB floppy disk controller is priced very
well below $ 100 and offers the source code of driver.3 This
is definitely a big plus in long-term access. A new controller
is currently being developed4 that will do similar work to
both KryoFlux and DeviceSide FC5025, but is fully open
source. So there is clearly interest in the industry in keep-
ing a bridge to older devices open. Both approaches include
the ability to extract entire disk images or browse disk di-
rectory contents. The two different hardware and software
approaches taken here helped to validate and improve the
results of both – primarily due to the fact that there were
two independent teams working towards the same goal. In
the end, the steps taken were the same and would need to
be taken by anyone undertaking a project to decode disks
of unknown origin:

1. Deduce whatever is possible by visual inspection of the
pyhsical media (identifying marks on the disks them-
selves – bit density, sided-ness, even handwritten clues)

2. Employ a hardware solution to read the bits – Kry-
oflux is better at configuration ”on the fly”, DeviceSide
FC5025 is simpler to use but requires a priori knowl-
edge of and preparation for the format

3The driver page, http://www.deviceside.com/drivers.html,
gives a list of supported host operating systems and original
environments.
4The DiscFerret controller, currently under development:
http://discferret.com/wiki/DiscFerret.

3. Decode the resultant image and retrieve files by fol-
lowing the filesystem conventions of the system that
created it.

Figure 6: Interpretation of an ASCII text document
in OpenOffice

The filetype detection test once again demonstrated the short-
comings of some of the existing tools. It would be great to
add some of those files as well as some reference floppy im-
ages to a test set of files [3] as especially very old filetypes
are under-represented in the existing detection libraries.5

The study was brought to a point where some of the files
– the ASCII text documents and fragments – could be in-
terpreted, but the content and meaning of the binary data
files remains mostly opaque. Another major challenge is the
unavailability of software to properly run or render some of
the extracted files. Emulation would have been the proper
strategy to handle them, but neither a functional emulator
nor the required additional software components are avail-
able for this computer architecture.

6. REFERENCES
[1] Florian Buchholz and Eugene Spafford. On the role of

file system metadata in digital forensics. Digital
Investigation, 1(4):298–309, 2004.

[2] Brian Carrier. File System Forensic Analysis. Addison
Wesley Professional, 2005.

[3] Andrew Fetherston and Tim Gollins. Towards the
development of a test corpus of digital objects for the
evaluation of file format identification tools and
signatures. International Journal of Digital Curation,
7(1), 2012.

[4] Matthew G. Kirschenbaum, Richard Ovenden, and
Gabriela Redwine. Digital Forensics and Born-Digital
Content in Cultural Heritage Collections. Council on
Library and Information Resources, Washington, D.C.,
2010.

[5] Edna I. Miller, Jim Croock, and June Loy. Exploring
CTOS. Prentice Hall, 1991.

5The Archive ran a couple of filetype detection experiments
on their holdings showing a high failure rate for files dating
before the mid 1990ies.

Page 187

