
Audio Quality Assurance: An Application of Cross
Correlation∗

Bolette Ammitzbøll Jurik
The State and University Library

Victor Albecks Vej 1
DK-8000 Aarhus C, Denmark
bam@statsbiblioteket.dk

Jesper Sindahl Nielsen
MADALGO1 and

The State and University Library
Victor Albecks Vej 1

DK-8000 Aarhus C, Denmark
jasn@madalgo.au.dk

ABSTRACT
We describe algorithms for automated quality assurance on
content of audio files in context of preservation actions and
access. The algorithms use cross correlation to compare the
sound waves. They are used to do overlap analysis in an
access scenario, where preserved radio broadcasts are used
in research and annotated. They have been applied in a mi-
gration scenario, where radio broadcasts are to be migrated
for long term preservation.

1. INTRODUCTION
As part of the SCAPE audio quality assurance work, we have
developed a tool called xcorrSound, which can be applied in
a number of scenarios. The SCAlable Preservation Environ-
ments (SCAPE) project aims to develop scalable services for
planning and execution of institutional preservation strate-
gies for large-scale, heterogeneous collections of complex dig-
ital objects. To drive the development and evaluation of a
number of key outputs from the SCAPE Project, specific
real life preservation scenarios have been defined [7].

In this paper we describe two audio preservation cases. The
first case is ’access to preserved radio broadcasts for research
purposes’. The broadcasts are transcoded for streaming, and
an overlap analysis is performed to provide a graphical user
interface with coherent radio programs.

In the second case the radio broadcasts are to be migrated
from MP3 to WAV for long time preservation purposes, and
we want to perform automated Quality Assurance (QA) on
the migrated files. We need to determine if the two audio
files (the original and the migrated one) are the same with

1Center for Massive Data Algorithmics, a Center of the Dan-
ish National Research Foundation.∗This work was partially supported by the SCAPE Project.
The SCAPE project is co-funded by the European Union un-
der FP7 ICT-2009.4.1 (Grant Agreement number 270137).

respect to their content. This scenario is the SCAPE LS-
DRT6 Migrate mp3 to wav scenario [5].

There are several ways of designing heuristics that can give
some assurance that the migration process went well such as
checking if the length is the same before and after the mi-
gration. But such ’trivial’ measures do not take into account
the possibility of just getting white noise as the migrated file,
which obviously is a flaw. We will use old and well known
techniques from signal processing to catch such errors and
report them. The methods we present are easily scalable as
well as reasonably reliable.

The algorithms presented in this paper have been imple-
mented in the xcorrSound tool package available at [8]. The
tool xcorrSound finds the overlap between two audio files.
soundMatch is a tool to find all occurrences of a shorter wav
within a larger wav. migrationQA is a tool that splits two
audio files into equal sized blocks and outputs the correlation
for each block (ai, bi), if a and b was the input. The tools
all make use of cross correlation, which can be computed
through the Fourier transform.

We first present the background for the algorithms in Section
2. Next the algorithms and their applications are described
in Section 3. The scenarios are then described in Section 4.
In Section 5 we present the experiments for the two scenarios
and give the results along with a discussion of these. The
non-technical reader should skip Section 2 and Section 3,
but for those interested in the implementation details they
can be found in those two sections.

2. PRELIMINARIES
The Fourier transform is used in many contexts within dig-
ital signal processing. Our algorithms rely on being able
to compute the cross correlation of two functions efficiently
which can be done using the Fourier transform. Cross Corre-
lation, as the name suggests, gives a measure of how similar
two waves are at all offsets (shifting one wave in time and
comparing for all time shifts). The peak in the cross corre-
lation is the offset at which the two waves have the highest
similarity. This is going to be useful for our algorithms,
hence we will recall the mathematical background of these.

Definition 1 (Discrete Fourier Transform). Given
a sequence of N values x0, x1, . . . , xN−1 the Discrete Fourier

Page 196

sestakiv
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission
 and/or a fee. iPRESS2012, Oct 1-5, 2011, Toronto, ON, Canada. Copyright 2012, Digital Curation Institute, iSchool, University of Toronto.

Transform are the complex coefficients

Xk =

N−1∑
n=0

xje
−2iπkn/N (1)

for all k ∈ {0, 1, . . . , N − 1}. We will denote the Fourier
Transform of X = {xn}N−1

n=0 as F(X).

Straight forward computation of the Fourier transform re-
quires O(N2) arithmetic operations, but using the FFT al-
gorithm [11] we can compute it using only O(N logN) arith-
metic operations.

Definition 2 (Discrete Cross Correlation). Let f
and gp be two discrete complex valued functions, the Cross
Correlation is then defined as

(f ? g)(t) =

∞∑
n=−∞

f(n) · g(n + t) (2)

where f(n) denotes the complex conjugate of f(n)

Definition 3 (Discrete Convolution). Let f and g
be two discrete complex valued functions, the convolution is
then defined as

(f ∗ g)(t) =

∞∑
n=−∞

f(t− n) · g(n) (3)

Due to the convolution theorem we can efficiently compute
the convolution of two waves if we can efficiently compute
the Fourier Transform.

Theorem 1 (Convolution Theorem). Let f and g
be two discrete complex valued functions, then we have

F(f ∗ g) = (F(f) · F(g)) (4)

Proofs of this theorem can be found in any book on Fourier
Transforms or signal processing.

We want to compute the Cross Correlation between two
wav files. We know that for any real valued function f ,
F(f)(n) = F(f)(−n). Let f and g be the two wav files we
want to compute the cross correlation of, and h(x) = f(−x).
Note that f and g are wav files thus they can be considered
as real valued functions. The Cross Correlation can effi-
ciently be computed:

(f ? g)(t) =

∞∑
n=−∞

f(n− t) · g(n) =

∞∑
n=−∞

f(n− t) · g(n)

=

∞∑
n=−∞

h(t− n) · g(n) = (h ∗ g)(t)

Now we apply the Convolution Theorem by taking the Fourier
Transform and inverse transform on both sides.

(f ? g) = F−1(F(f ? g)) = F−1(F(h ∗ g))

= F−1(F(h)F(g)) = F−1(F(f)F(g))

One can think of Cross Correlation as taking one of the wave
files and sliding it over the other and remember what the
best position was so far. Doing it in this way corresponds
to computing the Cross Correlation directly from the defini-
tion which was O(N2) arithmetic operations. Intuitively we
are searching for the shift that will minimize the euclidean
distance between the two wav files.

3. ALGORITHMS
We have slightly different algorithms for handling the differ-
ent scenarios but they all rely on efficiently computing the
cross correlation of two audio clips. In our implementations
of the algorithms we have used the FFTW library [13] for
computing the Fast Fourier Transform.

3.1 Computing the Cross Correlation
The input to the Cross Correlation is two periodic functions
f and g. When providing a discrete representation of a
function as f(0) = x0, f(1) = x1, . . . f(N − 1) = xN−1, it is
assumed that xN = x0. Because of this, we need to zero-pad
the wav files with N zeroes, such that the part that has been
shifted “outside” does not contribute anything to the cross
correlation value at that particular offset. See Figure 1

f(n)

g(n+ t)
t

N − 1 2N − 1

Figure 1: The function g has been shifted t steps in
time, and both f and g have been zero padded. Note
that from N−t and onwards there is no contribution
to the cross correlation, because g(n) = 0 for n ≥
N − t.

If we have two functions f and g given as a sequence of N
values indexed by 0 to N − 1 then we will zero-pad them
such that f(n) = g(n) = 0 for n ≥ N . Now we can compute
the Cross Correlation as was described in Section 2 because
we have a black box (FFTW library [13]) for computing the
Fourier Transform.

The Cross Correlation in itself does not provide a measure
between [0, 1] describing how much two wav files are alike.
We want to normalize it to a value between [0, 1]. To do this

we divide by (f ? g)(t) by 1
2

∑N−t
n=0 g(n + t)2 + f(n)2. The

resulting value is always less than or equal to 1. The term
we divide by can be found efficiently by storing two arrays,

Page 197

one for each function. The j’th entry in the array is the sum
of the first j values squared. The two prefix sums require
only a few arithmetic operations to compute pr entry so this
will not slow down the computation significantly.

3.2 Overlap algorithm
The input is two wav files where there might be an overlap
between the end of the first wav file and the beginning of
the second. We are guaranteed that if there is an overlap, it
is not longer than a fixed amount of time (2 minutes). We
look at the last few minutes of the first wav file and the first
few minutes of the second wav file and we compute the cross
correlation of these two smaller files. If there is a significant
peak, we find it and report that there is an overlap, otherwise
we report where the highest peak was, but that it was not
very significant. The measure of significance is a value in
[0, 1], which is a normalisation of the cross correlation values.

This algorithm was implemented as the xcorrSound tool.

3.3 Quality Assurance algorithm
We have two waves and we want to determine whether they
are equal or not. Let X = {xn}N−1

n=0 , Y = {yn}N−1
n=0 be the

two audio files. We Split these into smaller equal size pieces:
X0 = {xn}B−1

n=0 , X1 = {xn}2B−1
n=B , . . . , XN/B = {xn}N−1

n=N−B
(assuming B divides N) and likewise Y0 = {yn}B−1

n=0 , Y1 =
{yn}2B−1

n=B , . . . , YN/B = {yn}N−1
n=N−B . Now we compute the

cross correlation for each (Xj , Yj) pair for j = 0, . . . , N/B
and find the peaks. We remember the first peak, and if any
of the following blocks’ peak position differs by more than
500 samples from the first block’s peak we conclude that the
files are not similar, otherwise they are similar. We chose B
to be 5 seconds worth of samples.

Why is it important to split the files into blocks? The in-
tuition is that if we cross correlate the two files as is, then
their similarity may be quite high even if some small parts
have very bad correlation which could happen if an error oc-
curred such that there was pure noise for a couple of seconds
somewhere in the wav file.

3.4 Analysis
The quality assurance algorithm runs in O(N logB) time
since we split the N samples into N/B blocks of size B then
each cross correlation will take O(B logB) time to compute,
hence the execution time follows. We, however, care a great
deal about the constants. For every block we need to per-
form three Fourier transforms and roughly 4B multiplica-
tions and divisions. Notice that the unit for N and B is
samples. One way to speed up the tools is to simply have
lower sample rates and then there will be a trade-off between
the quality of the results and the sample rate. The intuition
is that radio broadcasts probably do not need 48kHz sample
rate and if we have two wave files that are very similar then
down sampling should not change the similarity significantly.

We are also interested in the robustness of the migration
algorithm. The primary question is, how degraded is the
material allowed to become when migrating? Cross Corre-
lation is quite robust wrt. artifacts (eg. extra noise in the
background) appearing in addition to what was supposed
to be in the result file. By robust, we mean that the algo-

rithm will likely still find the correct offset, but the value of
the match decreases as more noise is present. One way to
solve degradations like this is either to output some of the
blocks that had a low match value for later manual checking
or do experiments on degraded signals and fix a parameter
that can decide whether the migrated file has an acceptable
quality. The last method has the disadvantage that when
migrating the same file through a number of intermediate
steps it will (maybe) be unrecognizable in the end, though
every intermediate step was within the acceptable parame-
ters. Think of this as making a copy of a copy of a . . . of a
copy of a newspaper article.

4. SCENARIOS
Both the access scenario and the migration scenario are well
known in relation to digital preservation [19]. Transcoding
or migrating audio and video for access is done as the ’preser-
vation master’ is usually too big a file to share with users,
maybe it cannot be streamed online, and the “popular” on-
line access formats change [12]. The overlap analysis is rele-
vant in our context as audio broadcasts were recorded in two
hour chunks with a few minutes of overlap, and we want to
find the exact overlap to make an interface to the broadcasts
without strange repetitions every two hours. Migration of
audio from MP3 to WAV is done primarily as the WAV is the
IASA (International Association of Sound and Audiovisual
Archives) recommended preservation format [10].

4.1 Finding Overlap
In connection with the LARM project WP2, the overlap
analysis issue arose. The LARM project [4] is a collabora-
tion between a number of research and cultural institutions
in Denmark. The project provides research data and meta
data to a digital infrastructure facilitating researchers’ ac-
cess to the Danish radio-phonic cultural heritage.

The addressed and problematic collection is Danish radio
broadcast from 1989 till 2005 from four different radio chan-
nels. The recordings were made in two hour chunks on Dig-
ital Audio Tapes (DAT), and were recently digitized. Our
library got MP3 (and not WAV) copies of these files primar-
ily due to storage limitations. High resolution WAV-files
also exist within the broadcasting company. The MP3 files
have sampling rate 48 kHz and bit depth 16. The collection
is roughly 20 Tbytes, 180000 files and 360000 hours.

In order not to loose content originally, one tape was put in
one recorder and a few minutes before it reached the end,
another recorder was started with another tape. The two
tapes thus have a short overlap of unknown duration, as do
the digitized files.

The task is to find the precise overlaps, such that the files
can be cut and put together into 24 hour blocks or other
relevant chunks correctly.

4.2 Migration QA
The Danish radio broadcast MP3 files are also addressed in
the SCAPE LSDRT6 Migrate mp3 to wav scenario [5]. They
are part of the Danish cultural heritage the Danish State and
University Library preserves. They are used as examples of
a very large MP3-collection well knowing that original WAV

Page 198

files actually exist for this collection. We have other collec-
tions in both MP3 and other compressed and/or older audio
formats that could and should be migrated to WAV at some
point in time but chose to work with the same collection for
the two scenarios to ease the work. This means that the li-
brary would like to migrate the files to WAV (BWF) master
files, as is the IASA recommendation [10]. This format has
been chosen as the preferred preservation format as this is
a raw format, which needs less interpretation to be under-
stood by humans, and is also a robust format. The actual
migration is done using FFmpeg [1]. The decompression
presents a preservation risk in itself, which is why keeping
the original MP3s and performing quality assurance (QA)
on the migrated files is recommended.

The QA is done in a number of steps. The first step is
validation that the migrated file is a correct file in the target
format. We currently use JHOVE2 [3] for this validation.

The second step is extraction of simple properties of the orig-
inal and the migrated files, and comparing these properties
to see if they are ’close enough’. We currently use FFprobe
to extract properties. FFprobe is a multimedia streams ana-
lyzer integrated in FFmpeg. The properties that are checked
are sampling rate, number of channels, bit depth and bit
rate.

We could add a third step of extracting more advanced prop-
erties using a tool such as e.g. Cube-Tec Quadriga Audiofile-
Inspector [15] and comparing these properties. Note how-
ever that tools such as Cube-Tec Quadriga Audiofile-Inspector
do not compare content of audio files, but rather provides
an analysis of a single audio file. We are evaluating signif-
icant properties, property formats, property extractors and
comparators for possible addition to the workflow.

We have run the migration, validation and property compar-
ison workflow on some of the Danish radio broadcast MP3
files creating a small test set for further QA. The workflow
is written as a Taverna [9] workflow and is available on my-
Experiment [16]. The workflow used SCAPE web services
which are set up locally. The used SCAPE web services are
the FFmpeg, JHOVE2 and FFprobe web services defined
in the scape GitHub repository [6]. Comparison of the ex-
tracted properties is done with a Taverna bean shell. The
workflow input value is a fileURL containing a list of in-
put MP3 URLs. The output is a list of Wav fileURLs, a
list of validation outputs (valid / not valid) and a list of
comparison outputs (properties alike / not alike).

The test set contains 70 Danish radio broadcast MP3 files.
The workflow was run on a test machine with an Intel(R)
Xeon(R) CPU X5660 @ 2.80GHz processor and 8GB RAM
running Linux 2.6.18 (CentOS). The workflow finished in
approximately 5 hours and 45 minutes. This means we have
a performance of almost 5 minutes pr file. Earlier tests have
shown that the most expensive components in the workflow
is the FFmpeg migration and the JHOVE2 validation, while
FFprobe characterisation and property comparison is rela-
tively cheap [18].

We note that the Danish Radio broadcasts mp3 collection
is 20 TB and around 180000 files. This means that running

the basic workflow migrations sequentially on the test ma-
chine would take more than 600 days. We do however plan
to improve that significantly by using the Scape execution
platform instead of doing the migrations sequentially on just
one server.

Another related scenario is that The Danish State and Uni-
versity Library have a very small collection of Real Audio
(200 files) that are planned to be migrated to wav. The ac-
tual FFmpeg migration needs adjustment and we need to
find another independent implementation of a Real Audio
decoder, but the rest of the workflow as well as the algo-
rithms presented in this paper can be applied to this issue
directly.

5. EXPERIMENTS
5.1 Overlap Analysis Tool Use
We have already used the overlap tool on real data sets. The
xcorrSound tool is used to find the overlaps. The solution
must consider

• Some recordings (files) may be missing.

• Noise at both ends of the sound files. Can be both
silence and changing to a different station.

• The sound recording may have been started up to 23
minutes early.

• There must be a quality assurance to show that the
transformation was successful. The tool used for this
QA is also the xcorrSound tool. The success criteria
are:

– Good overlap measurement. QA check match
value of at least 0.2

– Length of resulting file is not checked, as above
check also catches these cases.

The overlap match is done by a script, which first cuts a
short interval (1 second) of either end of the files, as this
is often noise related to the start or finish of recording, see
Fig. 2. Then a time interval of 10 seconds in the second file
is cut for later QA analysis. The xcorrSound tool is now run
on 6 minutes of the end of the first file and the beginning of
the second file. The output is a best match position and best
match value. Using the best match position, the xcorrSound
tool is run a second time on the 10 second time interval cut
for QA. If the best match value is acceptable, the files are
cut and concatenated at the best match position.

The results were initially all checked manually to estimate
the acceptable values for the best match. The results where
the best match value is not acceptable, are checked manually
and the script is tweaked to hopefully provide matches.

5.1.1 Results
Our data set consisted of one month of radio broadcasts
recorded in 2 hour chunks. The goal was to cut them into
24 hour chunks instead. The xcorrSound tool worked very
well. We found that when doing the QA check, if the value
produced was below 0.1 there was an error and if the value

Page 199

noise
1 second

noise
1 second

10 seconds QA

6 minutes
overlap analysis

Figure 2: Overlap Analysis

was above 0.2 it was safe to assume the process went correct.
We found several actual errors in the content using this tool.
Examples include that one file simply contained a wrong
radio show (may have happened if a channel was changed),
several files in a row were identical, hence they would not
overlap in the end and an error would be produced or there
was a lot more overlap than the promised few minutes - up
to 25 actually. All these errors in the data set was caught
and reported. The tool of course only tells when two files
do not overlap and the actual reasons have to be manually
found. QA values that lie in the range 0.1 - 0.2 are the
ones that we are not quite sure of and we would do manual
quality assurance on these. However It is rare that the QA
values lie in that range and most commonly the QA match
is above 0.7.

5.1.2 Discussion
The xcorrSound tool has been used and the results were
quite good. We found several errors in the collection that
we can now correct. As can be seen we have a nice structure
on the values of the QA match. We have found that by doing
experiments and trying to listen to the broadcasts and com-
paring with the QA match values we can now run through a
large collection and do automatic quality assurance because
we have determined the different intervals we can trust for
the QA values. We know that when a QA value is below
0.1 there is almost surely an error and when the QA value
is above 0.2 there is not an error.

5.2 Migration QA Tests
In order to test the migrationQA tool we needed a data set.
The test data set contains 70 two-hour radio broadcast files
which were migrated using FFmpeg[1], see Section 4.2. The
average file size of the original mp3 files is only 118Mb, but
the migrated wav files are approximately 1.4Gb. Three of
them were replaced by a randomly generated file with a ’cor-
rect’ wav-header, such that the migrationQA tool was able to
process them. We assume that checks such as correct header
information are performed before invoking the migrationQA

tool. Five of the remaining 67 files were kept intact except
for a few seconds a few places within the file which were re-
placed by randomly generated bytes. The other 62 files were
kept as they were after migrating through FFmpeg. We have
an inherent problem using this data set because it is quite
artificial. We imagine that the data set contains errors that
might occur during a migration, but we have no basis for
this as we have never seen any erroneous migrations. To use
the migrationQA tool we need to ’play’ or interpret the files,
just as a human needs to ’play’ or interpret an mp3 file to

hear the sound. We currently use MPG321[2] to ’play’ the
original mp3 files. MPG321 is an independent implemen-
tation of an mp3-decoder, thus independent from FFmpeg,
which was used to migrate the files. The migrated files are
already in wav format and are used directly.

The migrationQA SCAPE Web Service including MPG321
decoding Workflow [17] on myExperiment takes an mp3 file
and a wav file as input. The mp3 file is then played into a
temporary wav file using MPG321, and the temporary file
and the input wav file are compared using the migrationQA

tool. This workflow however only works on one pair of files.

We have tested the tool on a list of 70 pairs of mp3 and mi-
grated wav test files using a bash script. The migrationQA
including MPG321 workflow bash script was run on a test
machine with an Intel(R) Xeon(R) CPU X5660 @ 2.80GHz
processor and 8GB RAM.

5.2.1 Results
The script ran for 4 hours and 45 minutes. This gives us a
performance of just over 4 minutes pr. file. This is roughly
equally divided between the MPG321 migration and the mi-

grationQA comparison.

In total there were 12 reported errors, which is 4 more than
we expected. All the files that were supposed to be found
during this QA check were found, so we only have some false
positives left (or false negatives depending on your view).
We investigated the additionally reported errors. The ’limit’
of 500 samples difference from the first block may in fact be
too low. On one pair of files the best offset was 1152 samples
during the first 6850 seconds of the file (00:00:00-01:54:10)
but during the remaining part of the file it changed to having
the best offset at 3456 samples and a cross correlation match
value of nearly 1 (0.999-1.0).

5.2.2 Discussion
The fact that partly through the file the best offset changed
suggests that either one of the converters has a bug or there
were some artifacts in the original mp3 file that is not follow-
ing the standard and thus they simply do not recover from
this in the same manner. Of course when there are 48000
samples/second we cannot hear the difference between an
offset on 3456 and 1152 (4.8 milliseconds). Now the ques-
tion is as much political as it is implementational. Was the
migration correct or was it not? Obviously one can argue
that since we cannot hear any difference between the two
files, the migration went as it should. On the other hand,
one of the files we ran the migrationQA program on must
have had some errors, if we accept that one of the files must
be a correct migration. Ultimately the question is up to the
definition of a correct migration, which is a subject we have
carefully avoided in this paper. One solution is to let the
migrationQA program take a parameter that decides how
much difference from the first block is allowed, rather than
fixing a magic constant of 500 samples. Another solution is
to try to identify what exactly is happening inside the mi-
gration tools (FFmpeg and MPG321) to find out why they
differ and check if one of them has a bug or if it was in fact
the original mp3 file that did not follow the standard.

One might argue that the migrationQA program is as much

Page 200

a validation tool of other programs that migrate audio files
to wav to check if they agree as it is a Quality Assurance
tool for migrated files. This happens when we accept one
migration tool to be correct and then try migrating a lot of
files using that tool and another we want to test correctness
of. If they agree on the output, then we can have some
confidence the other migration tool is correct as well.

In this paper we had two ways of migrating an mp3 file to
wav, but we were unsure whether any of them were cor-
rect. If we assume that the migration tools are independent
implementations this should intuitively provide some assur-
ance that they do not have the same error (if they have any).
Hence, if they agree on the output we have some confidence
that the migration went as it should. The question is, if it is
a reasonable assumption that they do not have the same er-
ror if they are independent implementations. They are after
all implementing the same algorithm, which likely has some
parts that are non trivial to implement and others that are
trivial.

We care a great deal about efficiency, and just over 4 minutes
per file is at the moment acceptable. The algorithm is not
easy to make parallel but it is easy to have several instances
of the same algorithm running. This is a feasible solution
because the algorithm can be implemented to use a limited
amount of memory. All that needs to be in memory at any
point is the match value and offset of the first block, the
current block being processed and some buffers for speeding
up the I/O. Our implementation uses roughly 50mb memory
when running. If we have a machine that can run multiple
instances of the program, it might be the I/O operations
that become the bottle neck of the program.

6. CONCLUSION AND FURTHER WORK
We presented algorithms for doing Quality Assurance on au-
dio when migrating from one file format to another. We also
gave an algorithm to eliminate overlap between audio files
such that potential listeners do not need to hear the same bit
twice. The experiment for QA showed that the tool works
well on the constructed input. Since we do not have any data
where the migration goes bad we cannot speak to how good
the tool actually is, but we believe that it will work very
well. The experiment also showed that there is not one sin-
gle algorithm that will fit all. It might be necessary to fiddle
with parameters depending on the data set being processed.
Further work in this area is to try to develop even faster
algorithms and develop better metrics for comparing audio.
We used the Cross Correlation metric, which is a relatively
expensive metric to compute, perhaps there are cheaper ones
that work just as well or more expensive ones that can give
better guarantees. For doing the overlap analysis we could
possibly have adopted a finger printing scheme (such as [14])
that would have worked just as well, though that solution is
a lot more complex than our suggested approach. The tech-
nique of applying cross correlation is general and might have
application elsewhere for doing QA. It is worth investigating
if we can reuse the same ideas for other areas as well.

Acknowledgements
Thanks to Bjarne Andersen, Henning Böttger and Asger
Askov Blekinge for all their work on the experiments and
help with the paper.

7. REFERENCES
[1] FFmpeg (2012), ffmpeg.org

[2] Homepage of mpg321 (2012),
mpg321.sourceforge.net

[3] JHOVE2 (2012), jhove2.org

[4] LARM audio research archive (2012),
www.larm-archive.org/about-larm/

[5] LSDRT6 migrate mp3 to wav (2012), wiki.opf-
labs.org/display/SP/LSDRT6+Migrate+mp3+to+wav

[6] SCAPE project repository (2012),
https://github.com/openplanets/scape

[7] SCAPE scenarios - datasets, issues and solutions
(2012),
wiki.opf-labs.org/display/SP/SCAPE+Scenarios+-

+Datasets%2C+Issues+and+Solutions

[8] Scape xcorrsound tools (2012),
https://github.com/openplanets/scape-

xcorrsound

[9] Taverna workflow management system (2012),
taverna.org.uk

[10] Committee, I.T.: Guidelines on the production and
preservation of digital audio objects. standards,
recommended practices and strategies, iasa-tc 04,
www.iasa-web.org/tc04/audio-preservation

[11] Cooley, J.W., Tukey, J.W.: An algorithm for the
machine calculation of complex fourier series.
Mathematics of Computation 19(90), 297–301 (1965)

[12] Elsheimer, S.: Introduction to transcoding: Tools and
processes (2011),
www.prestocentre.org/library/resources/introduction-

transcoding-tools-and-processes, presentation at
Screening the Future 2011

[13] Frigo, M., Johnson, S.G.: FFTW library (April 2012),
http://www.fftw.org/

[14] Haitsma, J., Kalker, T.: A highly robust audio
fingerprinting system. In: Proceeding of the
International Symposium on Music Information
Retrieval (ISMIR) (2002)

[15] Houpert, J., Lorenz, T., Wiescholek, M.: Quadriga -
audiofile-inspector - cube-tec international (August
2012), http://www.cube-
tec.com/quadriga/modules/audiofileinspector.html

[16] Jurik, B.: Workflow entry: Migrate mp3 to wav
validate compare list to list (May 2012),
www.myexperiment.org/workflows/2914.html

[17] Jurik, B.: Workflow entry: migrationqa scape web
service including mpg321 decoding workflow (March
2012),
http://www.myexperiment.org/workflows/2806.html

[18] Pitzalis, D.: Quality assurance workflow, release 1 &
release report (March 2012),
http://www.scape-project.eu/deliverable/d11-1-

quality-assurance-workflow-release-1-release-

report-draft

[19] Wright, R.: Preserving moving pictures and sound.
dpc technology watch report 12-01 march 2012. Tech.
rep., The Digital Preservation Coalition (DPC) (2012)

Page 201

