Evaluating an Emulation Environment: Automation and
Significant Key Characteristics

Mark Guttenbrunner
Secure Business Austria
Vienna, Austria
mguttenbrunner@sba-research.org

ABSTRACT

Evaluating digital preservation actions performed on digi-
tal objects is essential, both during the planning as well as
quality assurance and re-use phases to determine their au-
thenticity. While migration results are usually validated by
comparing object properties from before and after the migra-
tion, the task is more complex: as any digital object becomes
an information object only in a rendering environment, the
evaluation has to happen at a rendering level for validating
its faithfulness. This is basically identical to the situation
of evaluating the performance in an emulation setting.

In this paper we show how previous conceptual work is ap-
plied to an existing emulator, allowing us to feed automated
input to the emulation environment as well as extract prop-
erties about the rendering process. We identify various sig-
nificant key characteristics that help us evaluate deviations
in the emulator’s internal timing compared to the original
system and how we can find out if the emulation environ-
ment works deterministically, an important characteristic
that is necessary for successful comparison of renderings.
We show the results of rendering different digital objects in
the emulator and interpret them for the rendering process,
showing weaknesses in the evaluated emulator and provide
possible corrections as well as generalized recommendations
for developing emulators for digital preservation.

1. INTRODUCTION

Preserving digital information for the long term means to
adapt it to be accessible in a changed socio-technological
environment. But applying a preservation action like mi-
gration or emulation on a digital object changes elements
in the so-called view-path. This includes not only the ob-
ject but also secondary digital objects needed to render it,
i.e. the viewing application, operating system, hardware or
rendering devices. To strengthen the trust in these digital
preservation actions we have to validate the rendered form of
the object (where "rendering” means any form of deploying
an information object, being rendering it on a screen or on

Andreas Rauber
Vienna University of Technology
Vienna, Austria
rauber@ifs.tuwien.ac.at

Manage Enterprise Risk
Manage Legalities Lifecycle
Capture Context & Dependencies

Virtualise BP
Store BP
Validate BP

Figure 1: Process for Digital Preservation of Busi-
ness Processes (BP) in TIMBUS.

any other form of output, including acoustic, physical actu-
ators, output on data carriers or TCP/IP ports, etc.) Thus,
migration and emulation, usually perceived to be drastically
different approaches in digital preservation, actually become
rather similar in their principles of evaluating the rendering
of the object.

The principles are the same: devise a way to capture infor-
mation from a rendering environment (which we will, with-
out limiting it’s general applicability, refer to as "emulator”
for the remainder of this paper, and where we will use a con-
crete emulator as a compact form of a system comprising key
elements of the rendering environment providing access to a
digital object). We devised a formal framework to evaluate
the rendering of digital objects in [8] that is applicable to
all kinds of objects, from static files to dynamic processes.
In this paper we will validate this framework and show a
detailed evaluation of the rendering process.

Evaluating digital preservation actions performed on digital
objects becomes a necessity when doing preservation plan-
ning to support the decision for the most suitable strategy
and tool to perform the action. Similarly the validity of the
preservation action has to be checked when preserving the
object by executing the preservation action on it, as well as
when validating the object once its re-deployed for future

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. iPRESS2012, Oct 1-5, 2011, Toronto, ON, Canada. Copyright 2012, Digital Curation Institute, iSchool, University of Toronto.

Page 202

sestakiv
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission
 and/or a fee. iPRESS2012, Oct 1-5, 2011, Toronto, ON, Canada. Copyright 2012, Digital Curation Institute, iSchool, University of Toronto.

execution in a new environment. The different stages as de-
fined in the TIMBUS' project are shown in Figure 1, and
are explained in detail in [1]. To compare the renderings
in these different stages of an object’s life cycle, we have to
extract characteristics about the rendering process as well
as data rendered during this process from the environment.
But to reliably compare two different renderings of a digital
object it is necessary to avoid side-effects from manual input
and other non-deterministic aspects, so we need to automate
the evaluation process.

In-depth information about the rendering process is only
known inside of the rendering environment. In the case of
emulation this is inside the emulator. Based on this we
argue that emulators used for digital preservation have to
offer functionality to support their evaluation. Based on the
theoretical work on the features we would expect emulators
to offer [8], we show how we implemented some of these in
an existing emulator. We also show how these features are
used to automate input to the emulation environment to
support automated and repeatable testing uncoupled from
exactly timed manual user input. We describe significant
key characteristics that we extract from the log files created
by the emulator about the rendering processes of various
different digital objects. Theses characteristics are analyzed
and used to improve the emulator.

While applicable to all kind of preservation actions, in this
paper we focus on emulation. We picked an open-source
emulator of a home-computer environment as an example of
sufficient but still manageable complexity. Using two types
of applications with different characteristics and complexity,
namely a game as well as a simple, early business applica-
tion allowing the management of income and expenses, we
will validate the key characteristics and feasibility of the pro-
posed approach, and show how these extend to more generic
business or eScience processes of generic object renderings.

This paper is structured as follows. First we provide related
work on the evaluation of digital preservation actions. Then
we give a brief overview of the emulator we chose for evalua-
tion in Section 3. For the remainder of the paper we present
the theoretical work on evaluation and how it is implemented
in the emulator: We first show in Section 4 how we imple-
mented an event-log. Then we show in Section 5 how we
used this log for automated execution of the emulator. In
Section 6 we describe how the created logs can be used to
extract characteristics about the rendering process and how
those can be used for evaluating an emulator. In Section 7
we describe the experiments we performed on different dig-
ital objects in the emulator and describe the findings in the
rendering logs. Finally, we show our conclusions and give an
outlook to future work.

2. RELATED WORK

Choosing the right preservation action for digital objects is a
challenging task. To give the team responsible for perform-
ing digital preservation activities a certain level of certainty
about the digital preservation actions performed, it is neces-
sary to validate the effects of these actions on the significant
properties of digital objects.

"http://timbusproject.net/

In [2] a preservation planning workflow that allows for re-
peatable evaluation of preservation alternatives, including
migration and emulation strategies, is described. This work-
flow is implemented in the preservation planning tool Plato
[3]. As part of the preservation planning automatic char-
acterization of migrated objects can be performed. Tools
like Droid [5] are used to identify files. Migration results
can be validated automatically supported by the eXtensi-
ble Characterisation Languages (XCL) [4]. The original and
migrated objects are hierarchically decomposed and repre-
sented in XML. These representations can be compared to
measure some of the effects of the migration on the digi-
tal object. It is, however, not immediately obvious if all
the significant properties of a digital object are sufficiently
reproduced once it is rendered in a new rendering environ-
ment. This new rendering environment can be either differ-
ent software used to render the migrated file or, in the case
of emulation, a new environment in which the original file is
rendered.

Comparing rendering results to evaluate the outcome of a
rendering process was proposed in [12] as separating the in-
formation contained within a file from the rendering of that
information. The information stored in the file can, for ex-
ample, be the coordinates of text or descriptive information
about the font to use while the rendering displays the text
on a specific point on the screen and uses either a font built
into the system or a font stored within the file, which in turn
is also rendered in a way specific to the application used for
displaying the document. This is described as the look &
feel aspect of an object. In [9] case studies of interactive ob-
jects comparing the rendering outcomes of different render-
ing environments using the aforementioned characterization
language XCL on the level of screenshots of renderings are
presented.

Most approaches to evaluate the validity of emulators as a
preservation strategy are currently based on manually re-
viewing the emulation results. In the CAMILEON project
[10] users compared objects preserved by different strate-
gies including emulation. The emulated environments were
evaluated by the users as subjective experience with the
preserved digital object. A case study to compare differ-
ent approaches to preserve video games with one of the
approaches being emulation was also reported in [6] on a
human-observable and thus also to some extent subjective
level.

A manual comparison of original and emulated environment
is a very time consuming process, that would have to be
repeated whenever a new emulator or a new version of an
emulator is introduced in an archive due to the necessity of
a digital preservation action, e.g. if the hardware platform
used for the previous emulator gets obsolete or if any other
element in the viewpath (including any system changes on
the host environment running the emulator) or on the level
of output devices used for the rendering of an object that
may have an effect on the result of performing/rendering an
information object, change.

In [8] we presented a framework which allows one to de-

termine the effects of an emulated environment on the ren-
dering of objects in a methodical way and suggest methods

Page 203

rendered form on output device rendered form on output device
(e.g. on monitor, hard disc, speakers, (e.g. on monitor, hard disc, speakers,
network, actuators) network, actuators)

outputting
— —

rendered form on the output interface rendered form on the output interface
(output of GFX-card, sound card, (output of GFX-card, sound card ,

network card, control port) network card, control port)

processing
— —

rendered form in host system memory
(e.g. in host video memory)

e > —

rendered form in memory
(e.g. in video memory, sound chip,
network buffer)

rendered form in emulator-memory (e.g.
in allocated host memory region)

. viewer- 5
application

descriptive form
(e.g. as stored in file)

descriptive form
(e.g. as stored in file)

Figure 2: Different forms of a digital object in a
system’s memory. On the left the layers of an origi-
nal system are shown, on the right the layers of the
system hosting the emulator are shown.

to automate the process of evaluation to some extent. We
described the different methods to automate input to the
rendering environment to ensure that changes in manual
handling of the digital object can be ruled out as a cause
for changes in the rendering process. We also described the
levels on which information can be extracted from the emu-
lation environment as shown in Figure 2.

In this paper we show how we apply some of the concepts
presented in the theoretical work on an existing emulator
we presented in [7]. We implement automated input and
extraction of data from the emulated environment. We iden-
tify key characteristics of the rendering process which can be
measured automatically to not only evaluate the emulation
environment but also to help improving the emulator.

3. VIDEOPAC EMULATOR O2EM

The emulator we chose for implementing features for evalua-
tion, O2EM?, was previously described in [7]. It emulates a
home-computer system introduced in 1978 as well as an up-
dated version of the system released in 1983. The original
system is both usable as a video game console by insert-
ing cartridges with games, but due to its built-in keyboard
it was also used as a home-computer with a special BASIC-
cartridge. In this home-computer-mode the system was able
to run BASIC programs and also load and save data to an
external tape recorder.

In our previous work we implemented features in the emula-
tor to make it usable for digital preservation purposes from
a user’s point of view (e.g. data exchange between the em-
ulated and the host system). To actually be able to use an
emulator in a digital archive, however, we need the possibil-
ity to evaluate the rendering process of digital objects more
objectively and in an automated way. Based on our the-
oretical work in [8] we decided to implement the following

202EM Sourceforge Page - http://o2em.sourceforge.net/
O2EM DP version - http://www.ifs.tuwien.ac.at/dp/o2em

features:

Event-Log The original system can be controlled by using
either the keyboard of the system or joysticks. In interac-
tive applications (and especially video games) timeliness and
type of input usually have a major influence on the behavior
and thus resulting rendering of the digital object. Besides
recording the points and type of input, we also wanted to
log other events like file access (reading / writing to files
in home-computer-mode) and the start of drawing an im-
age frame (i.e. the start of the Vertical Blank period on
the original system), to allow us to make statements about
the correct timing of the emulator compared to the original
system. Additionally, we recorded user-driven events in the
emulator such as triggering a screenshot or a memory dump.

Automated Input The previously created event-log was
defined in a form that is usable also as a command-file for
the emulator, allowing us to automatically apply input to
the system as well as create screenshots and memory dumps
at specified times.

Memory Dumps We also implemented a feature to trig-
ger memory dumps of the different memory regions in the
system, including the hardware registers of the multimedia
processors. This allows us to not only rely on screenshots of
the emulator or files saved in the home-computer-mode as a
way to extract data from the rendering process.

The next sections describe in detail the design decisions
taken when implementing these features.

4. RECORDING OF EVENTS

The migration of an object lets us to some extent draw con-
clusions about the digital preservation action taken by com-
paring the object’s properties before and after migration.
Yet we need to draw conclusions on the rendering process of
a digital object. We have to extract that information from
the rendering environment and not from the object. To al-
low this, we need to implement an event-log of the rendering
process in the rendering environment, e.g. an emulator or
the new viewer application. We decided to include the fol-
lowing information in the log-file:

Executed Cycles The system emulated in the rendering
environment usually runs at a different clock speed than
the host system. Therefore we decided on the number of
executed cycles as the main indicator of timing of when an
event appears. This adds value for automated testing, as
during an unsupervised test the emulator can be run without
any speed limits, thus reducing the time needed for testing.

Elapsed Time As an additional time measurement we also
record in the log-file the actual elapsed time since the ren-
dering process was started. This measurement gives us an
indication of how the emulator speed is perceived by a user
of the emulator and may be used to normalize for timed
events driven by a clock-based system rather than execution
cycles based timing.

Drawn Frame As an additional timing measurement we

record for every event in which 'frame’ (unique consecutive
image produced by the video hardware of the system) the

Page 204

event was registered. (Note: For the purpose of this study
we focus on the screen rendering for ease of presentation.
Other forms of output rendering, such as acoustic behavior
or output on other devices such as storage units, are consid-
ered in a similar manner.)

Recorded Event For each event we record the type of event
as a code and as full text (for easier human readability).

Additional Infos Additional information on the recorded
event is included, e.g. the key that has been pressed, the file
that has been accessed etc.

To easily import the resulting file in spreadsheet applica-
tions for further processing and analysis we decided to use
a comma separated value (CSV) format escaping commas
that form part of the input in the log. When starting the
emulator the event-log file that should be created can be
specified as an extra parameter.

The following different types of events were defined for the
system emulated in the emulator:

4.1 Controlling the Environment

To be able to evaluate the rendering process reliably, we
have to make sure that the rendering is always exactly the
same under the same conditions applied to the rendering
environment, i.e. the emulator is deterministic in its be-
havior. Lamport et al. describe deterministic algorithms as
»algorithms in which the actions of each process are uniquely
determined by its local knowledge” ([11]). This means that
for any object rendered in the environment relying on ex-
ternal input to the rendering environment (e.g. user input,
network activity, access to files on the host system) the type
of input as well as the actual input data have to be stored to
be able to provide the same data on a re-run for evaluation
purposes.

The emulator O2EM (and the original system it emulates)
supports user input in the form of key presses and joystick
input. The hook-point for recording these events for the
event-log is the interface in the emulator between the em-
ulated environment and the host environment, i.e. when
the emulator detects that the emulated process is trying
to access the hardware registers that usually store the in-
put values and provides the host system input instead. By
recording the exact cycles already executed in the rendering
when accessing this information, we are able to provide the
same information when re-running the rendering process.

Reading files in home-computer-mode as a different type of
providing external data to the rendering environment was
recorded in the event-log, to let the digital archivist know
that for later evaluation of the emulator these files have to
be present besides the actual digital object, as they also
potentially influence the rendering process.

4.2 Extraction of Data

As a basis for comparing the results of the emulation pro-
cess, it is necessary to extract not only events but actual
data as a result of the rendering. In Figure 2 we show dif-
ferent levels on which a rendered object exists during the
rendering process. From inside the emulator we have access

to two different forms of rendered information: the form
in the (emulated) memory of the system (e.g. hardware
registers of the multimedia processor, usually triggering an
output on the original system) as well as the form that is
already translated to the host system (e.g. a rendered screen
based on hardware registers of the emulated system’s video
hardware).

In O2EM a feature to save screenshots of the currently dis-
played image was already present. We enhanced this fea-
ture to create an event-log entry including (as every log en-
try) the executed cycles up until the point in the rendering
the screenshot was taken. Additionally, we implemented a
feature that works similar to saving screenshots that lets
the user save the different emulated memory regions of the
host system: memory internal to the processor, main sys-
tem memory external to the processor, multimedia hard-
ware registers memory and, if available, the emulated home-
computer-mode memory. Additionally, in home-computer-
mode files can be stored externally, which also influences the
rendering process. The process of writing these files was also
recorded in the event-log.

Under the assumption that the emulator works as a deter-
ministic process, extracting data under the same external
conditions (e.g. the exact same input applied) at the same
point in the rendering process should provide the exact same
result files.

4.3 Additional Events

In addition to the events described above, we also defined
two other special event types for the log:

Vertical Blank The vertical blank is the period before the
drawing of a new frame is started. It was an important event
used to synchronize events on the screen to a fixed timing.
We implemented this event to let us draw additional con-
clusions about how the number of cycles executed and the
frames being drawn relates to the original system’s timing.

Emulation Start For O2EM we record information about
the cartridge image file that was rendered (filename and a
checksum), as well as name and version number of the em-
ulator and the date and time the log was created. This
metadata gives us additional information about the render-
ing process for which the log was recorded.

Emulation Stop The information that the rendering pro-
cess was stopped, the total number of cycles executed, the
number of frames drawn and the elapsed time is recorded in
the event-log.

S. AUTOMATED EXECUTION

Recording the events of a rendering process is only the first
step in validation and verification of the digital preservation
action. Especially if the rendering environment changes be-
tween execution of the digital preservation action and the
re-deployment of the digital object at a later point in time,
it is necessary to verify the correct rendering of the object
in the new environment.

To be able to compare the rendering between validation (the
time the digital preservation action was initially performed)

Page 205

and verification we need to make sure that the external con-
ditions influencing the execution are unchanged. This means
that any manual input or external data applied to the ren-
dering environment has to be the same as when the preser-
vation action was initially validated. By recording these ex-
ternal events in a rendering environment and applying them
at a later point in time to the new environment, we can
compare the outcome of the rendering process.

In the emulator O2EM we implemented a feature to use
the earlier described event-logs as command files. All exter-
nal events and triggered data export actions recorded in the
event-log file are automatically provided to the emulator us-
ing the command file. Actions are read from the command
file and applied to the emulator when the specified number of
cycles have been executed. In a deterministic emulator this
means that the relevant actions are applied at the same time
in the rendering process as they initially had been recorded.

In detail the following actions where implemented:

Keyboard and Joystick Input The manually recorded
input events are applied at the exact same cycle count as
initially recorded. The action from the command file is (sim-
ilarly to the recording of the input for the event-log) inter-
preted once the emulator invokes the interface in which the
emulated system tries to receive input from the host system.
In a deterministic emulator the number of cycles executed
until this check is performed does not change between ren-
derings of the same digital object.

Screenshot and Memory Data Extraction The manu-
ally triggered extraction of data that has been recorded in
the event-log file is automatically executed once the executed
cycles stated in the command file are reached. Additional
extractions can be inserted manually. This way it is possible
to extract both a screenshot and all memory regions at the
same point in the rendering process.

End Emulation The initial event-log record of the emu-
lation stop also stops the emulation in the re-run once the
action is encountered in the command file. This allows for
automated and unattended testing of the emulator.

By first recording external events and later applying the
event-log as a command file for a new version of the emulator
(or even a different emulator) it is possible to automatically
test an emulator. If the resulting data extracted at signifi-
cant points in the rendering process is identical, we have a
strong indication that the rendering process is unchanged.

6. KEY CHARACTERISTICS OF RENDER-
ING PROCESS

Analyzing the event-log and using the features implemented
in the emulator, we identified meaningful key characteristics
of the rendering process, to see how the logs can help us
evaluate if the rendering stays true to the original system
or how it differs between different emulators (or different
versions of the same emulator).

Deterministic Rendering The most important character-
istic of a rendering environment is that the rendering process
must be deterministic. This means that the emulator has to

perform the same rendering process under the same inputs.
This is of crucial importance to the evaluation, as only a
deterministic process lets us compare different renderings of
the same object and the results of it.

Cycles Executed vs. Emulation Time Another charac-
teristic we can extract from the rendering log is how many
CPU cycles have been executed during the course of the em-
ulation. If we compare these with the cycles that would have
been executed on the original system (using the known clock
rate of the original system), we can calculate the deviation
in speed of the rendering process compared to the original
system.

Executed Cycles per Frame By measuring the cycles
that are executed per frame, we can see if the timing is cor-
rect. As we know the clock rate and the number of frames
drawn on the original system from the systems specifica-
tions, we can evaluate any discrepancies to the original hard-
ware.

Time Needed to Draw a Frame By evaluating the time
that is needed to draw a frame and knowing how many
frames are drawn per second (and thus the time the draw-
ing of one frame should take) this characteristic also helps
us evaluating the timing of the emulator.

Frames per Second Determining the frames per second we
can see if the emulator is running slower than the original
system is supposed to. If the emulator is in fact not fast
enough, we can see from the event-log which of the drawn
frames took too long to calculate and what external events
happened during the slow frames.

Accessed External Sources By implementing a log for all
interfaces between the emulated and the host environment,
we also know which external resources (files, network, etc.)
are used by a digital object. By logging the data that is
transferred, we can decouple and simulate external interfaces
at a re-run of the rendering process.

Using these key characteristics, we can evaluate an emula-
tor, but also draw conclusions on the rendering process - not
only in general for the rendering environment, but for spe-
cific digital objects. Re-running the same automated test in
the emulator we can evaluate if the emulator works deter-
ministic. Re-running the automated test of a deterministic
emulator on a new version of the emulator we can test if the
emulator still works correctly. Finally re-running the test in
a different emulator for the same system, we can compare
the results of these emulators.

7. EVALUATION OF O2EM

In this section we describe some of the experiments we per-
formed on different digital objects suitable for the emulator
we adapted. We describe the steps undertaken and the re-
sults of the rendering processes as well as the analysis of the
resulting event-log files.

7.1 Video Game: Terrahawks

As a first digital object we chose a video game running in the
standard mode of the emulator emulating a Philips Videopac
G7000 running in European timing mode (PAL video stan-

Page 206

Figure 3: Non-deterministic rendering of Terrahawks - result of initial recording on the left, re-run on the

right.

dard). We chose a video game as one of the objects because
those are usually the most timing sensitive objects on the
chosen hardware.

We chose the game Terrahawks that creates a random im-
pression using external events to change the gameplay on
every execution, to see if repeated execution of the game
will produce the same rendering results, i.e. if the rendering
process can be made deterministic.

As first step the emulator was started and one gameplay
was recorded, both input using joystick but also some key
presses (to enter letters for the highest score). A screenshot
was taken after the game resulted in the player loosing his
life (at which point the game just restarts, showing the new
highest score on the bottom). In a second step the emulator
was restarted with the event-log file given as a command-
file. The previously recorded input was applied automati-
cally during the rendering process. However the resulting
screenshot taken at the same point in the rendering process
as the original screenshot differed from the initial run of the
emulator as shown in Figure 3.

A closer look on the emulator source code revealed that the
emulation process was not entirely deterministic (i.e. inde-
pendent from external factors), as the emulation of one of
the hardware components, a voice synthesis module, was ac-
tually simulated using sound samples. The status check in
the emulated code of this component was connected to the
actual completion of playing the sample of the host system,
an event the emulated environment had no control over. By
deactivating the voice component, the emulation process was
made deterministic and when the experiment was repeated,
the results were identical on each re-run.

As timing in video games (especially action games) is cru-
cial for the game experience, we used the rendering log to
compare the timing of the real hardware (known due to the
original system’s schematics) to the values measured in the
log as described in Section 6. The measured values as well
as the expected values calculated from the original system’s
specification can be seen in Table 1.

Characteristic Calculated| Measured
executed cycles per frame 7882 7259
executed cycles per second 394100 435540
frames per second 50 60

seconds per frame 0,02 0,0165

Table 1: Calculated versus measured key charac-
teristics taken from the event-log of running Terra-
hawks in O2EM.

Based on these results it can be seen that due to the eval-
uation log we detected another error in the emulator. Even
though the emulator was executed with the timing set to
European TV-standard PAL timing (50 frames per second),
the emulator was still rendering 60 frames per second as in
the North American TV standard NTSC. The time taken for
each frame was consistently 1/60 of a second, which is cor-
rect based on NTSC timing. The emulator was running fast
enough to render every frame in less time than the original
system would have needed, keeping the subjective feeling of
speed for the user steady. Furthermore, it can be seen in Ta-
ble 1 that the timing inside the emulator is not cycle-correct,
thus timing-sensitive applications would not run correctly.

The findings about the incorrect timing were used to fix the
errors in O2EM and improve the timing in the emulator,
thus helping us to get a better rendering environment.

7.2 Application: Cassa

As a second example we chose not a video game but an
application that runs in the home-computer mode of the
system. We chose an application that allowed us to save data
to the external tape drive and reload the data and render
it during later use. The application was a BASIC-program
distributed with the system in Italy, allowing the user to
keep track of income/spendings per month over a year. We
started the computer in home-computer mode, loaded the
program, entered various fictitious data and saved the data
in the program. For the actual evaluation we recorded the
following process in the event-log: starting up the emulator
in home-computer mode, loading the program (of which we

Page 207

Characteristic limited no limit
total executed cycles 49201503 49201503
total frames drawn 6778 6778
total emulation time 136.426 10.512

Table 2: Characteristics for testing the application
Cassa with original (=limited) and unlimited speed.

took a screenshot as seen on the left in Figure 4), loading the
data into the program and displaying the data as also shown
on the right in Figure 4. So not only the recorded user input
but actual data loaded from an external drive influenced the
rendering (i.e. what was shown on the screen).

To test the emulator in home-computer mode for determin-
ism, we not only recorded screenshots (as due to the missing
random element in the application those would most prob-
ably be similar), but also save the memory content of all
different memory regions along with the screenshot of the
displayed data (i.e. after the data was loaded into mem-
ory). We ran the test under two different settings in the
emulator, first with speed limited as a user would usually
experience it, and a second time without speed limit, simu-
lating a verification where the test should be performed as
fast as possible. We compared all the exported data files
(screenshot and memory) with the result, that in all cases
the files where exactly the same. As for the timing of the
different runs as shown in Table 2, we can see that on our
system the unlimited test executed the exact same test in
only 7.7% of the time needed for a correctly timed emulation
while creating the same results.

In the event-log we could also see the external files that
had been loaded. These included not only the application
Cassa itself, but also the file used for storing user entered
data. In a real-life scenario this would enable us to identify
which resources had been accessed and keep (or simulate)
the necessary data for a later verification of the rendering of
the preserved application.

8. CONCLUSIONS AND FUTURE WORK

In this paper we presented how previous conceptual work on
evaluating emulators can be applied to evaluate the render-
ing process of different types of digital objects in an existing
emulator. We first introduced the event-log of the rendering
process with different properties that allow us to re-run a
rendering in the same environment and potentially also in
different ones. We showed the different kinds of events that
have to be recorded depending on the original system. The
different types of external data that can influence the ren-
dering process have been explained as well as the different
types of data that can be exported from the rendering en-
vironment for a comparison of different rendering processes.
We then explained how the event-log can be used to auto-
mate the process of applying the same input data to the
emulator to ensure a deterministic rendering of the digital
object. After introducing the different key characteristics of
the rendering process we identified in the event-log, we eval-
uated two different digital objects in the emulator O2EM
and explained how the event-logs helped us to identify flaws
in the rendering process.

Theoretical work we presented in [8] was successfully imple-
mented in the emulator O2EM.

We rendered different objects in the emulator and analyzed
the event-log files, which led us to the following conclusions:

Deterministic Emulation Automatically evaluating emu-
lators by comparing the rendering results at different points
in the rendering requires that the rendering environment be-
haves the same provided with the same external data. In the
case of the game ’Terrahawks’ evaluated in Section 7.1 the
emulation was initially not deterministic, leading to differ-
ent results of the rendering process, even though the obvi-
ous external data (user input) was kept constant. Only by
making the rendering process deterministic, we could suc-
cessfully compare the renderings in consecutive runnings of
the emulator. This would also be the basis for later com-
parison of the rendering to later emulator versions or even
other emulators.

External Data The external data needed to create a deter-
ministic rendering is the one that is passed up from the host
environment into the emulated environment. By recording
the data that is transferred on these interfaces, we can apply
the same data at the same point in the rendering process at a
later time ensuring a deterministic rendering process. With
the application ’Cassa’ we showed that the external events
(file access and user input) can be tracked in the event-log.
External resources can then either be stored for a re-run for
validation purposes or even simulated if the resources are no
longer available (e.g. an external Web services).

Key Characteristics Using the key characteristics about
the rendering process which we extracted from the event-
log we were able to draw conclusions on the correctness of
the emulation process. Especially deviations in handling the
timing in the emulator were detected, assisting the emula-
tor authors in improving the rendering process. Obviously
when extending the described characteristics to more com-
plex systems, additional characteristics could be found. Ad-
ditionally to the time needed to draw a frame on the screen,
similar measures could be captured for other output devices,
e.g. port communications etc., where the timing of events
needs to be captured, normalized and compared.

Automation of Evaluation Applying the external data
to the rendering process not only gives us a possibility of
creating a deterministic rendering, we can also automate the
process of evaluating a rendering environment by applying
the user input to a digital object automatically. This way
interactive digital objects could be tested automatically on
re-deployment in a new environment to see if the rendering
is the same as at the time they have been preserved. We also
showed that for this automated evaluation we not necessarily
have to run the rendering process at the original system’s
speed, as all the automation is based not on time passed but
on CPU cycles executed in the rendering environment, thus
massively speeding up the process of the validation.

Overall we successfully implemented some of the concepts
described in [8] in the existing emulator O2EM. This not
only allowed improving the emulator for more accuracy, but
also gave us a better understanding of the evaluation of ren-

Page 208

Ad=140 AT=141

OZTonDroIZID I 0
HOAMDCHDTDmrm
OLAdonCoAoamzT

TOT

MESE

1000 R 2000 20%
LL e 23% 2000 20k
= 11X 20 Zok
SO0 29% 1o 10%
S 29k L 2ok
o Q% o Q%
0 O 0 O
O 0% 4] 0%
0 [¢h-4 0 [¢h-4
O 0% 4] 0%
0 [¢h-4 0 [¢h-4
0 O 4] O
17a0d 100% 1 iniadaiy 100k

IM CIFRECO=FIME2?

Figure 4: Two screenshots taken during the rendering of Cassa - before starting the loading process on the

left and after displaying data on the right.

dering environments in general. We showed that it is possi-
ble to automate the process of evaluating interactive objects
beyond the manual testing of emulators with human inter-
action.

Future work has to be done on applying the concepts to
more complex rendering environments like virtual machines
that are more interwoven with the host system. Input and
output events would have to be defined for more complex
systems to catch all the events that are needed to make the
rendering environments deterministic.

9. ACKNOWLEDGMENTS

This research was co-funded by COMET K1, FFG - Aus-
trian Research Promotion Agency and by the European Com-
mission under the IST Programme of the 7th FP for RTD -
Project ICT-269940/ TIMBUS.

10. REFERENCES

[1] J. Barateiro, D. Draws, M. Neumann, and S. Strodl.
Digital preservation challenges on software life cycle.
In 16th Furopean Conf. on Software Maintenance and
Reengineering (CSMR2012), 3 2012.

[2] C. Becker, H. Kulovits, M. Guttenbrunner, S. Strodl,
A. Rauber, and H. Hofman. Systematic planning for
digital preservation: Evaluating potential strategies
and building preservation plans. International Journal
on Digital Libraries, 10(4):133-157, 2009.

[3] C. Becker, H. Kulovits, A. Rauber, and H. Hofman.
Plato: a service-oriented decision support system for
preservation planning. In Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries
(JCDL’08). ACM, June 2008.

[4] C. Becker, A. Rauber, V. Heydegger, J. Schnasse, and
M. Thaller. A generic XML language for
characterising objects to support digital preservation.
In Proc. 23rd Annual ACM Symposium on Applied
Computing (SAC’08), volume 1, pages 402-406,
Fortaleza, Brazil, March 16-20 2008. ACM.

[5] A. Brown. Automatic format identification using
PRONOM and DROID. Digital Preservation

[6]

[7]

8]

[9]

(10]

(11]

(12]

Technical Paper 1, 2008. http://www.
nationalarchives.gov.uk/aboutapps/fileformat/
pdf/automatic_format_identification.pdf.

M. Guttenbrunner, C. Becker, and A. Rauber.
Keeping the game alive: Evaluating strategies for the
preservation of console video games. International
Journal of Digital Curation (IJDC), 5(1):64-90, 2010.
M. Guttenbrunner and A. Rauber. Design decisions in
emulator construction: A case study on home
computer software preservation. In Proceedings of the
8th International Conference on Preservation of
Digital Objects (iPres 2011), pages 171-180, 11 2011.
Vortrag: iPres 2011 - 8th International Conference on
Preservation of Digital Objects.

M. Guttenbrunner and A. Rauber. A measurement
framework for evaluating emulators for digital
preservation. ACM Transactions on Information
Systems (TOIS), 30(2), 2012.

M. Guttenbrunner, J. Wieners, A. Rauber, and

M. Thaller. Same same but different - comparing
rendering environments for interactive digital objects.
In M. Ioannides, D. W. Fellner, A. Georgopoulos, and
D. G. Hadjimitsis, editors, FuroMed, volume 6436 of
Lecture Notes in Computer Science, pages 140-152.
Springer, 2010.

M. Hedstrom, C. Lee, J. Olson, and C. Lampe. The
old version flickers more: Digital preservation from the
user’s perspective. American Archivist, 69:28, 2006.
L. Lamport and N. Lynch. Handbook of Theoretical
Computer Science, Volume B: Formal Models and
Semantics, chapter 18, pages 1157-1200. Elsevier
Science Publishers B.V., 1990.

M. Thaller. Interaction testing benchmark deliverable
PC/2 - D6. Internal Deliverable, EU Project Planets,
2008. http://planetarium.hki.uni-koeln.de/
planets_cms/sites/default/files/PC2D15_CIM.pdf.

Page 209

