
Evaluating Assisted Emulation for Legacy Executables

Swetha Toshniwal Geoffrey Brown
Indiana University School of
Informatics and Computing

Kevin Cornelius

Gavin Whelan Enrique Areyan

ABSTRACT
Access to many born-digital materials can only be accom-
plished economically through the use of emulation where
contemporaneous software is executed on an emulated ma-
chine. For example, many thousands of CD-ROMs have
been published containing proprietary software that cannot
be reasonably recreated. While emulation is proven tech-
nology and is widely used to run both current and obsolete
versions of Windows and Unix operating systems, it suffers a
fatal flaw as a preservation strategy by requiring future users
to be facile with today’s operating systems and software.

We have previously advocated “assisted emulation” as a
strategy to alleviate this shortcoming. With assisted emula-
tion, a preserved object is stored along with scripts designed
to control a legacy software environment and access to the
object enabled through a “helper” application. In this pa-
per we significantly extend this work by examining, for a
large data set, both the cost of creating such scripts and the
common problems that these scripts must resolve.

1. INTRODUCTION
This paper describes a project to develop practical tech-

niques for ensuring long-term access to CD-ROM materials.
The underlying technology for our work consists of off-the-
shelf emulators (virtualization software) supported by cus-
tom automation software. We use automation to capture the
technical knowledge necessary to install and perform com-
mon actions with legacy software in emulation environments
and hence mitigate a fundamental flaw with emulation. This
work directly addresses issues of sharing through networked
access to emulators and object-specific configuration and as-
sistance.

Over the past 20 years CD-ROMs were a major distri-
bution mechanism for scientific, economic, social, and en-
vironmental data as well as for educational materials. Our
work has primarily focused upon the nearly 5,000 titles dis-
tributed by the United States Government Printing Office
(GPO) under the Federal Depository Loan Program and
thousands more distributed by international agencies such
as UNESCO. Recently, we have expanded our study to the
thousands of commercial titles held by the Indiana Uni-
versity Libraries. In the short-term these materials suffer
from physical degradation which will ultimately make them
unreadable and, in the long-term, from technological ob-
solescence which will make their contents unusable. Many
such titles (as much as 25% of the GPO titles and perhaps
more for commercial titles) require execution of proprietary
binaries that depend upon obsolete operating systems and

hardware. A widely discussed technical strategy is to uti-
lize emulation (virtualization) software to replace obsolete
hardware. [6, 2, 4, 11, 10, 7, 3, 5] Recent surveys of issues
related to the use of emulation in preservation based upon
lessons from the Planets project include [9, 12].

A fundamental flaw with this approach is that future users
are unlikely to be familiar with legacy software environments
and will find such software increasingly difficult to use. Fur-
thermore, the user communities of many such materials are
sparse and distributed thus any necessary technical knowl-
edge is unlikely to be available to library users. The work
described in this paper is aimed at alleviating these issues.

As mentioned in the abstract, we have previously pro-
posed a strategy of “assisted emulation” which attempts,
through the use of helper applications and scripting, to sim-
plify access to legacy materials. [13] In prior work we de-
scribed a simple pilot study aimed at determining the basic
viability of this approach. In this paper we significantly ex-
pand this work with an emphasis upon understanding the
issues and difficulty associated with creating the scripts re-
quired by our strategy. In particular, we describe the re-
sults of a study involving several hundred CD-ROMs, both
government and commercial through which we are able to
make recommendations about the basic emulation environ-
ment, additional software requirements, and a collection of
techniques used to automate access to the individual titles.

2. REVIEW OF ASSISTED EMULATION
Our approach, as described previously in [13], relies upon

storing scripts along with legacy materials which are exe-
cuted automatically by a “helper program” when a user ac-
cesses the materials through an ordinary web browser. For
a given digital object, a single “click” causes the associated
script(s) to be downloaded and executed to start and con-
figure an emulation environment on the users workstation.
This approach is illustrated in Figure 1. Where a user re-
quests access to an object through a browser on the client
machine to a web server (1). The web server responds with
a signed applet (2) causing a helper program on the client
machine to execute a local emulator (3). This emulator is
configured using scripts stored on the network to execute
software and access objects also stored on the network. This
model makes certain basic assumptions which we elaborate
upon in the sequel. First, the emulator and its basic operat-
ing environment are accessible from the client machine; and
second, the preserved object and any necessary scripts are
accessible on networked storage.

Throughout our work we have assumed that, for a given

Page 283

sestakiv
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. iPRESS2012, Oct 1-5, 2011, Toronto, ON, Canada. Copyright 2012, Digital Curation Institute, iSchool, University of Toronto.

Figure 1: Client Request for Networked Resource

platform (e.g. PC, or“classic Macintosh”), most software can
be accommodated by a small number of configurations. For
example, when working with legacy digital objects originally
supported by various versions of Windows, we have found
that Windows XP provides a high degree of backwards com-
patibility and hence a large fraction of digital objects from
prior releases of Windows can be accessed by an emulator
running Windows XP. Thus, we assume that the client ma-
chine has access to an emulator with a small number of ref-
erence configurations. In this paper we concentrate upon
preserving objects designed to execute under Windows and
MS-DOS – in separate work we have investigated the use of
emulation to preserve classic Macintosh applications. [1]

Our“reference”configuration consists of Windows XP and
Adobe Reader, with other software (e.g. Office and Quick-
Time) installed as needed by the helper scripts. It is not fea-
sible to combine all additional software in a single reference
image because some CD-ROMs depend upon specific soft-
ware versions; however, the results we present suggest that
a limited set of configurations could be created to minimize
the frequency with which run-time installation of helper ap-
plications is required.

As mentioned above, we assume that the digital objects
and necessary scripts are accessible through networked stor-
age (in our work we have used the Andrew File System
(AFS)). [8] The objects we work with are the thousands of
CD-ROMs in the Indiana University Libraries. Our archive
organization is illustrated in Figure 2 which shows how
uniquely numbered CD-ROM images (ISO files) are stored
in eponymous directories along with item specific scripts
(e.g. install.exe), and generated ISO files containing required
helper software. The CD-ROM images are created with
standard software from the physical disks and the scripts
are created using a process described in Section 4.2. This
figure differs from our previous work with the inclusion of
additional ISO files to provide helper applications required
by specific CD-ROM images.

3. RESEARCH ENVIRONMENT
Over the past five years we have built a research collec-

tion of nearly 5000 CD-ROM images from materials in the
Indiana University Libraries. These include United States
Government documents, publications of international orga-
nizations (e.g UNESCO) and foreign government, commer-
cial publications, and educational publications. In our initial
work on assisted emulation we focused upon the US Govern-
ment documents which generally have minimal requirements
for additional software and offered limited variety in terms of
installation processes. We have greatly expanded this work
and in this paper provide results based upon analyzing 1325
CD-ROMs of all types.

For our emulation platform we use VMWare Server run-
ning on top of Windows 7 (64-bit) (we also run on top of
Linux in our development environment). There are many al-
ternative emulation platforms for executing Windows oper-
ating systems with appropriate APIs enabling automation.
Within the virtual machine, we run Windows XP Profes-
sional with a basic set of application programs.

Assisted emulation depends upon the creation of scripts
that can be executed when a patron requests access to a par-
ticular CD-ROM image. For Windows emulation we use the
freeware tool AutoIt 1, a BASIC-like scripting language that
facilitates automating user tasks by capturing keystrokes,
mouse movements, and window controls. While we installed
AutoIt on our baseline machine, it is only required for the
creation of scripts which can be conveniently converted into
executable files. This is discussed further in the next section.

4. CD-ROM AUTOMATION
Our automation work consists of two phases for each CD-

ROM image. In the first phase we explore the image by
mounting it in our reference virtual machine to gather some

1AutoIt Automation and Scripting Language. http://www.
autoitscript.com/site/autoit/

Page 284

Figure 2: Organization of the Virtual Archive

basic information including: whether the image includes ex-
ecutable software, any required installation procedures, de-
pendencies upon other CD-ROM images (in some cases a
set of CD-ROMs are interdependent), and whether there
appear to be additional software requirements. Once the re-
quirements of a CD-ROM image are understood, the second
phase consists of automating any installation processes and
creating ISO files containing external software that may be
required – as our repertoire has grown, we have found there
is a considerable amount of reuse both in terms of scripting
and these additional ISO files.

4.1 Exploration Phase
The exploration process can be quite simple – for exam-

ple, many CD-ROMs contain README files that explain
installation procedures and define externally required soft-
ware. However, in some cases there is little or no guidance
provided. Furthermore, many of the CD-ROMs we consid-
ered were in foreign languages which our research team could
not readily read. Where external software is required, it is
frequently difficult to determine which versions are compat-
ible both with the CD- ROM software and our execution en-
vironment (e.g. some CD-ROMs require 16-bit QuickTime
and only the last 16-bit version works correctly on Windows
XP). Once the necessary software version is determined, it
can be a challenge to find a copy (e.g. Multimedia Toolbox
3.0).

One of the more vexing problems we ran into was dealing
with foreign languages – especially Asian. There are two
aspects to this problem – our inability to read the language
and the need for foreign language support in Windows. Re-
solving this problem typically required: (1) determining the
appropriate language, (2) for east Asian languages installing
Windows support, (3) configuring the appropriate language
option in Windows.

We found it most efficient to install language support as
part of our base image meaning that only steps (1) and (3)
are necessary on a per-CD-ROM basis. In order to exe-
cute some programs provided on images it was necessary
to configure various compatibility modes in Windows XP.
These include changes to virtual memory settings, chang-
ing to 16-bit color, and setting file properties for specific
compatibility modes. For programs designed to run in DOS
mode, some images also required configuration of extended
memory (XMS).

An additional complication was dealing with objects which
were published on multiple CD-ROMs where there are cross-
disk dependencies. For example, a program on one image
might require access to a file on another image. Our cur-
rent strategy is to simultaneously mount all dependent disks.
This has a known limitation – VMware can only support up
to three simultaneous virtual CD-ROMs. Ultimately, we
may need to develop a more sophisticated helper program
which will help the user to selectively mount CD-ROM im-
ages from a given set.

In summary, exploring the CD-ROM images revealed the
program requirements, special cases, and required the devel-
opment of strategies to handle these special cases. However,
these problems are not unique to assisted emulation – even
if patrons were provided access to the original CD-ROMs
and machines capable of executing them, somebody would
have to understand these obsolete environments sufficiently
to overcome any obstacles. With assisted emulation there is
at least the possibility to capture the required knowledge in
scripts.

4.2 Helper Scripts
As mentioned previously, we use AutoIt for our script de-

velopment. AutoIt executes simple programs in a BASIC-
like language. Furthermore, the program provides a tool to

Page 285

Run("D:\SETUP.EXE")

WinWait("Setup")

ControlClick("Setup", "", "Button1")

WinWait("", "successfully installed")

ControlClick("", "successfully installed", "Button1", "", 2)

WinWait("CD-ROM Delos")

ControlListView("CD-ROM Delos", "", "SysListView321", "Select",

ControlListView("CD-ROM Delos", "", "SysListView321",

"FindItem", "Delos"))

ControlSend("CD-ROM Delos", "", "SysListView321", "!{ENTER}")

WinWait("Delos Properties", "Shortcut")

WinClose("CD-ROM Delos")

ControlCommand("Delos Properties", "Shortcut", "SysTabControl321","TabRight")

WinWait("Delos Properties", "Compatibility")

SendKeepActive("Delos Properties", "Compatibility")

Send("{TAB}{SPACE}")

ControlClick("Delos Properties", "Compatibility", "Button11")

ControlClick("Delos Properties", "Compatibility", "Button10")

Run("D:\WIN\DELOS.EXE")

Figure 3: Example Script

convert these programs into small executables (.exe files). In
general, most of the complexity of these scripts comes from
handling special cases – for example, setting compatibility
mode for older Windows programs. Consider the script in
Figure 3. The basic setup is accomplished within the first 6
lines. The remainder of the script is concerned with setting
compatibility mode for the installed executable, and then
running that executable.

Through the exploration of 1325 disks, we have built a
script catalog to deal with the commonly occurring spe-
cial cases. Some more difficult cases include autorun CD-
ROMs where the autorun.inf fails under Windows XP,
handling international CD-ROMs where window names and
commands are in non-English Unicode, and installations
where restarting the virtual machine is required after the
software is installed. With experience, we have developed
techniques to deal with these and other challenging cases.
In general, we have been able to reuse script fragments to
deal with many of the issues that arise in practice.

4.3 Analysis
In selecting test cases for this work, we have attempted

to choose materials from a wide range of genres, languages
and publication dates (1990-2010) and have analyzed 1325
CD-ROM titles. To understand the breadth of these choices,
consider the Table 1 which provides a sampling of the range
of these characteristics.2 Any such characterization is, by
necessity, somewhat arbitrary. We distinguish between com-
mercial publications and government publications because
our experience with the government printing office materi-
als suggests that many government publications are primar-
ily data in a limited set of formats; although, some earlier
publications required installation of proprietary programs.
Our selection of “genre” categories is intended to illustrate
the breadth of materials – i.e. these are not all data sets.
The language category is the least ambiguous. Note the
relatively high fraction of Asia languages; this isn’t too sur-
prising given the source of the materials – a major research

2This table is based upon an initial analysis of 240 CD-
ROMs.

library. However, it also illustrates a challenging problem
for archivists of such materials as installation of these disks
presents a potential language barrier.

These various categories of works have widely varying soft-
ware requirements. As mentioned previously identifying and
finding additional software has been a major issue for this
project – this is discussed further in the sequel. The work
described in this paper has had its share of failures – CD-
ROMs which we have not yet succeeded in executing. Fi-
nally, a key objective of this project has been to evaluate
the cost of employing the strategy we are advocating. We
present preliminary results on these costs.

4.4 Additional Software
In some cases, additional software requirements could be

determined by the file types present on a CD-ROM, in other
cases, error messages received when attempting to execute a
CD-ROM provided helpful hints. It is not always necessary
to find the exact version of software requested by CD-ROM
documentation. For example, we found Adobe Reader to
have excellent backwards compatibility – so good that we
have added Adobe Reader X to our base configuration. In
the few cases where images required an earlier version, our
scripts uninstall Adobe Reader X and then install the re-
quired version. In other cases, the installation process re-
quires specific versions (e.g. Office 97 or Office 2000) where
one would expect better backwards compatibility. Quick-
Time has extremely poor backwards compatibility and it
is essential that the correct version be selected. Finally,
we sometimes substitute alternative packages; for example,
we used Adobe Reader in place of Abapi reader (a Chinese
“clone” of Adobe Reader). The Table 2 summarizes the soft-
ware we installed based upon the CD-ROM requirements.
The percentage of CD-ROMS requiring each software prod-
uct is also provided. Unfortunately, determining acceptable
version requirements for additional software is a trial and
error process. Of the 1325 scripts we consider in this article,
1194 required the installation of some additional software;
however, the majority can be satisfied by an enhanced base-
line image including Adobe Reader, Internet Explorer, and
Microsoft Office.

Page 286

Category Genre Language
Commercial 84.0% Periodical/Serial 33.0% English 49.2%
Government 16.0% Informational 14.5% Japanese 21.3%

Historical 6.8% Chinese (PRC) 14.6%
Database 5.6% Chinese (Taiwan) 7.0%
Educational 5.6% German 5.5%
Media 5.2% French 4.3%
Cultural 4.4% Hungarian 4.3%
Bibliography 4.0% Czech 3.5%
Entertainment 3.6% Romanian 3.5%
Geographic 3.6% Bulgarian 2.7%
Geological 2.8% Estonian 2.7%
Academic 2.4% Greek 2.7%
Survey 1.6% Italian 2.7%
Literature 1.6% Polish 2.7%
Biographical 1.2% Slovanian 2.7%
Agricultural 0.4% Korean 0.8%
Political 0.4% Russian 0.8%
Statistical 0.4% Spanish 0.3%

Table 1: Characteristics of CD-ROMs

Program Number Percent
Adobe Reader 695 58%
Internet Explorer 255 21%
QuickTime 108 9%
Microsoft Office 65 5%
Windows Media Player 49 4%
Java 13 1%
Photoshop Pro 6 < 1%
Real Audio 2 < 1%
Multimedia Toolbox 1 < 1%

Table 2: Additional Software

Based upon these results, we recommend a virtual ma-
chine configuration supporting three CD-ROM drives (the
limit for IDE), Adobe Reader X, and the Windows Inter-
national Language Package. In most cases, Microsoft Office
should be installed, but as mentioned above, there are situa-
tions where the latest version is incompatible. Thus, it may
make sense to support a CD-ROM collection with a small
number of base images (e.g. both with and without Office)
in order to simplify run-time customization.

4.5 Failures
We have not yet succeeded in executing all of the CD-

ROM images. A small number had physical errors intro-
duced during the imaging process – this can be addressed
by creating fresh images. More challenging are several CD-
ROMs created for early versions of Windows (e.g. 3.1) which
we have not been able to execute on either Windows XP
or Windows 98. We have not yet attempted setting up a
Windows 3.1 environment to test them. Unfortunately, the
scripting tool we use is not available for Windows 3.1 so
it is unlikely that we will achieve full automation for these
cases. However, the virtual image requirements are likely
to be quite small for Windows 3.1 and this may be a case
where storing a custom virtual machine image along with
the CD-ROM image makes sense.

4.6 Temporal Costs of Scripting
In this section we consider the per-item costs associated

with setting up an assisted emulation environment. Fac-
tors setting up VMware and creating base images, which are
one-time costs, are not considered. Throughout this work we
have monitored the time used to create each script. As might
be expected, as our team became familiar both with the
scripting tool and solved some of the common automation
problems, times have declined significantly. The time taken
to write a script has ranged from a few minutes to 3 hours
with an average of 15 minutes. The data for 1325 scripts
are provided in Figure 4. Indeed, virtually any script that
took longer than average meant that we encountered some
challenge, often for the first time. Examples of the problems
that we had to overcome include: changes to environment
settings, finding required external software, language issues
including support and documentation, installation of mul-
tiple programs, installation requiring multiple OS restarts,
cryptic error messages, unusually lengthy and complex in-
stallations.

Notice that most of these issues are fundamental – they
are due to issues with the underlying software and are not
due to the scripting process. Some of these issues resulted in
specific actions in the scripts (duplicating actions required
for a normal installation). Among the more common cases
were: language change (12%), Computer restart3 (13%),

3Language changes also require a restart

Page 287

0"

100"

200"

300"

400"

500"

600"

1" 5" 10" 15" 20" 30" 45" 60" 120" 180" 600"

N
um

be
r'o

f'S
cr
ip
ts
'

Time'

Figure 4: Number of Scripts by Creation Time (minutes)

Java installation (1.5%), free virtual memory (1.1%), dis-
play settings change (0.1%), Compatibility Settings (0.4%),
and XMS memory configuration (0.1%).

4.7 Script Complexity
Another way to measure the difficulty of scripting is to

consider the length of scripts. In Figure 5 we provide a
chart of script lengths. The shortest scripts were a single
line, for example:

Run("D:\start.exe")

which hardly justifies a dedicated script ! A more typi-
cal script, such as that illustrated in Figure 3 requires some
interaction with the CD-ROM installer as well as initializa-
tion of an environment for the end-user. This example is
21 lines whereas our average script was 27.5 lines. Many
of the longest scripts involved either rebooting the virtual
machine during installation, changing the platform language
(e.g. to support Asian languages) or installing multiple ad-
ditional software applications. For example, the 158 scripts
that performed language changes averaged 52 code lines.
An additional 14 scripts required rebooting and averaged 68
code lines. The longest scripts which did not involve a re-
boot, also altered system properties (e.g. colors) to create a
compatible environment for software designed to execute on
older platforms.

As mentioned previously, many of these installation“tricks”
are reusable – indeed they are recorded in our scripts. Con-
sider, as an example, a fragment of a script that reboots
the virtual machine during installation as illustrated in Fig-
ure 6. The key idea is that there are two phases – “prere-
boot” and “postreboot”. The first phase performs the basic
installation (mostly elided) and, through the “ RunOnce”
procedure marks a suitable variable in the registry. The
postreboot procedure starts the installed application.

I f not F i l e E x i s t s (. . .) Then
pre r eboot ()

El se
pos t r eboot ()

EndIf

func pre r eboot ()
Run(‘ ‘D: /SETUP.EXE’ ’)
. . .
RunOnce ()

Shutdown (2)
EndFunc

Func RunOnce ()
. . .
I f @Compiled Then

RegWrite (. . .)
E l se

RegWrite (. . .)
EndIf

EndFunc

func pos t r eboot ()
. . .

EndFunc

Figure 6: Script Performing Reboot

Page 288

0"

100"

200"

300"

400"

500"

600"

700"

800"

0+5
"

06
+10
"

11
+20
"

21
+30
"

31
+40
"

41
+50
"

51
+60
"

61
+70
"

71
+80
"

81
+90
"

91
+10
0"

10
1>
"

N
um

be
r'o

f'S
cr
ip
ts
'

Lines'of'Code'

Figure 5: Lines of Code for Scripts

5. DISCUSSION
Clearly the creation of scripts is an extra layer of work

required beyond installing and configuring software. The
alternative would be to store a separate virtual machine im-
age for each preserved object. For Windows XP these images
are 4-8GB which implies a substantial overhead for a 500MB
CD-ROM. In contrast with the development of install pro-
grams for arbitrary machines with arbitrary software con-
figurations as is required for the development of commercial
software, our scripts are required to work only in the tightly
controlled environment of a virtual machine image. Fur-
thermore, we have not found the temporal cost of writing
scripts is a large additional burden. In a separate project
we studied the emulation of CD-ROMs published for “clas-
sic Macintosh” machines. In that case, storing customized
virtual machine images imposes a much smaller overhead
(these images are typically 128MB). [1]

For many in the preservation community, the fundamental
questions are how expensive is this approach and what skills
are required. Most of the script development was performed
by Computer Science undergraduates working as research
assistants. These are bright students with some degree of
programming sophistication. The data we have presented
suggest that, on a per-item basis, an average of 15 minutes
is required. In a more realistic production environment with
the overhead of developing proper documentation and addi-
tional testing, it is reasonable to budget an hour per-item.
The actual time requirements of creating the images is quite
small (less than 10 minutes per item).

A side benefit of this project is that the process of creat-
ing scripts has helped us understand and collate both the
common installation problems and the additional software
required to preserve CD-ROM materials. In this sense, the
creation of install scripts represents only an incremental ef-

fort over any principled preservation strategy.
We assumed from previous work that Windows XP would

be an adequate platform for emulation of most CD-ROMs
created for Windows and MS-DOS operating systems. This
has proven to be largely correct; however, as we have noted,
we have encountered a handful of CD-ROMs that are so
tightly tied to Windows 3.1 that we have not (yet) succeeded
in executing them in the Windows XP environment.

The work described in this paper is part of a larger project
which aims to create open-source tools to support assisted
emulation and which will greatly expand the set of test cases
from those we have discussed. We plan to make all of the
data, scripts, and helper code available at the end of the
project.

Acknowledgment
This material is based upon work supported by the National
Science Foundation under grant No. IIS-1016967. Any opin-
ions, findings, conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation.

6. REFERENCES
[1] G. Brown. Developing virtual cd-rom collections: The

voyager company publications. In iPRES2011 8th
International Conference on Preservation of Digital
Objects, 2011.

[2] S. Gilheany. Preserving digital information forever and
a call for emulators. In Digital Libraries Asia 98: The
Digital Era: Implications, Challenges, and Issues,
1998.

[3] M. Guttenbrunner, C. Becker, and A. Rauber.
Keeping the game alive: Evaluating strategies for the

Page 289

preservation of console video games. The International
Journal of Digital Curation, 5(1):64–90, 2010.

[4] A. R. Heminger and S. Robertson. The digital rosetta
stone: a model for maintaining long-term access to
static digital documents. Communications of AIS,
3(1es):2, 2000.

[5] Keeping Emulation Environments Portable.
http://www.keep-project.eu/expub2/index.php.

\AccessedSeptember2011.

[6] A. T. McCray and M. E. Gallagher. Principles for
digital library development. Commununications of the
ACM, 44(5):48–54, 2001.

[7] P. Mellor. CaMiLEON: emulation and BBC
doomsday. RLG DigiNews, 7(2), 2003.

[8] OpenAFS. OpenAFS, 2010. http://www.openafs.org.
Accessed November 2010.

[9] K. Rechert, D. von Suchodoletz, and R. Welte.
Emulation based services in digital preservation. In
Proceedings of the 10th annual joint conference on
Digital libraries, JCDL, pages 365–368, 2010.

[10] J. Rothenberg. An experiment in using emulation to
preserve digital publications. Technical report,
Koninklijke Bibliotheek, July 2000.

[11] J. Rothenberg. Using emulation to preserve digital
documents. Technical report, Koninklijke Bibliotheek,
July 2000.

[12] D. von Suchodoletz, K. Rechert, J. Schroder, and
J. van der Hoeven. Seven steps for reliable emulation
strategies -solved problems and open issues. In 7th
International Conference on Preservation of Digital
Objects (iPRES2010), 2010.

[13] K. Woods and G. Brown. Assisted emulation for
legacy executables. The International Journal of
Digital Curation, 5(1):160–171, 2010.

Page 290

