
eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

California Digital Library
UC Office of the President

Peer Reviewed

Title:
Digital Archeology: Recovering Digital Objects from Audio Waveforms

Author:
Guttenbrunner, Mark, Vienna University of Technology
Ghete, Mihai, Vienna University of Technology
John, Annu, Vienna University of Technology
Lederer, Chrisanth, Vienna University of Technology
Rauber, Andreas, Vienna University of Technology

Publication Date:
10-05-2009

Series:
iPRES 2009: the Sixth International Conference on Preservation of Digital Objects

Publication Info:
iPRES 2009: the Sixth International Conference on Preservation of Digital Objects, California
Digital Library, UC Office of the President

Permalink:
http://www.escholarship.org/uc/item/7sk6659n

Multimedia URL:
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Guttenbrunner&title=Mark
%20Guttenbrunner%3A%20Digital%20Archeology%3A%20Recovering%20Digital%20Objects
%20from%20Audio%20Waveforms

Abstract:
Specimens of early computer systems stop working every day. One storage medium that was
popular for home computers in the 1980s was the audio tape. The first home computer systems
allowed the use of standard cassette players to record and replay data. Audio tapes are more
durable than old home computers when properly stored. Devices playing this medium (i.e. tape
recorders) can be found in working condition or can be repaired as they are made out of standard
components. By re-engineering the format of the waveform the data on such media can then
be extracted from a digitized audio stream. This work presents a case study of extracting data
created on an early home computer system, the Philips G7400. Results show that with some error
correction methods parts of the tapes are still readable, even without the original system. It also
becomes clear, that it is easier to build solutions now when the original systems are still available.

Supporting material:
Presentation

http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org/uc/cdl_ipres09
http://www.escholarship.org/uc/cdl_ipres09
http://www.escholarship.org/uc/ucop
http://www.escholarship.org/uc/search?creator=Guttenbrunner%2C%20Mark
http://www.escholarship.org/uc/search?creator=Ghete%2C%20Mihai
http://www.escholarship.org/uc/search?creator=John%2C%20Annu
http://www.escholarship.org/uc/search?creator=Lederer%2C%20Chrisanth
http://www.escholarship.org/uc/search?creator=Rauber%2C%20Andreas
http://www.escholarship.org/uc/cdl_ipres09
http://www.escholarship.org/uc/item/7sk6659n
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Guttenbrunner&title=Mark%20Guttenbrunner%3A%20Digital%20Archeology%3A%20Recovering%20Digital%20Objects%20from%20Audio%20Waveforms
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Guttenbrunner&title=Mark%20Guttenbrunner%3A%20Digital%20Archeology%3A%20Recovering%20Digital%20Objects%20from%20Audio%20Waveforms
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Guttenbrunner&title=Mark%20Guttenbrunner%3A%20Digital%20Archeology%3A%20Recovering%20Digital%20Objects%20from%20Audio%20Waveforms

eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

Copyright Information:

http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org

Proceedings

October 5-6, 2009
Mission Bay Conference Center

San Francisco, California

90

Digital Archeology: Recovering Digital Objects from Audio Waveforms

Mark Guttenbrunner, Mihai Ghete, Annu John, Chrisanth Lederer, Andreas Rauber
{guttenbrunner, rauber}@ifs.tuwien.ac.at

Vienna University of Technology, Vienna, Austria
http://www.ifs.tuwien.ac.at/dp

Abstract
Specimens of early computer systems stop working

every day. It is necessary to prepare ourselves for the
upcoming situation of having storage media and no
working systems to read data from these carriers. With
storage media residing in archives for already obsolete
systems it is necessary to extract the data from these media
before it can be migrated for long term preservation.
One storage medium that was popular for home computers
in the 1980s was the audio tape. The first home computer
systems allowed the use of standard cassette players to
record and replay data. Audio tapes are more durable than
old home computers when properly stored. Devices
playing this medium (i.e. tape recorders) can be found in
working condition or can be repaired as they are made out
of standard components. By re-engineering the format of
the waveform the data on such media can then be extracted
from a digitized audio stream.

This work presents a case study of extracting data
created on an early home computer system, the Philips
G7400. The original data formats were re-engineered and
an application was written to support the migration of data
stored on tapes without using the original system. This
eliminates the necessity of keeping an obsolete system
alive for preserving access to data on storage media meant
for this system. Two different methods to interpret the data
and eliminate possible errors in the tape were implemented
and evaluated on original tapes recorded 20 years ago.
Results show that with some error correction methods parts
of the tapes are still readable, even without the original
system. It also becomes clear, that it is easier to build
solutions now when the original systems are still available.

Introduction

With storage media technology constantly changing,
devices for reading certain media become obsolete.
However, not only the devices, but also specimens of the
computer systems needed to access the data stop working
every day. Accessing data on an 8-inch floppy disc
requires not only a disc drive, but also a system to connect
it to, together with the right software to interpret the data
on a logical level. This all is necessary to access the
information contained on the floppy disc.

Estates submitted to archives now and in the future
not only contain analogue data on paper but also include
digital data (e.g. digital diaries) on various storage media.
As we have to deal with this data at the time it is ingested
in the archive, we have to find methods to extract data
from already obsolete storage media and make sure we

are able to migrate it to a format that can be used in the
digital archive.

A popular storage media for home computers in the
early 1980s was the audio tape, also called a compact
cassette1. As devices that could read and write audio tapes
were readily available in most households for recording
and playing music, some home computer systems featured
connectors for the headphone and microphone jacks of
such audio systems that could be used to store and
retrieve data. The data was first converted into an
analogue waveform by the computer system and then
recorded to a standard magnetic audio tape through the
microphone input of the audio device. To retrieve the
data, the tape was played back on the audio device and the
audio waveform was read by the computer system
through the headphone connector. The waveform then had
to be digitized and the data decoded into a binary stream
that was then usable by the original system.

As there was no standardized format across the
different home computer platforms, tapes are usually only
readable by the system that was used to write them. To
retrieve the data from such storage media today we
therefore need access to the original system, a tape drive
and a person with the knowledge of handling the original
system. As audio tape playing devices are still readily
available and made of standard components, it is fairly
easy to track down a device able to replay tapes. Getting a
working specimen of the original system as well as a
person to handle the system can be a more difficult task.

In this paper we present a methodology and an
application we developed that allows us to retrieve data
written by the Philips G7400 home computer system
without access to the original system. By using a tape
drive and a common personal computer with a sound card
we record the audio output of the tape drive and decode
the waveform. The resulting bit-stream is then interpreted
and the data is migrated to a non-obsolete format that can
be ingested into an archival system. Our application may
also be used for carrier refreshment - storing the original
data again onto an audio tape, correcting errors introduced
by the decay of the waveform on the original tape.

We first present related work on the topic. In the
following section we explain how the physical format was
reengineered. After that we show how the different types
of data are stored logically. Next we present an

1 Compact Cassette – Wikipedia
http://en.wikipedia.org/wiki/Compact_Cassette

91

application we developed that allows us to migrate data
from waveforms, together with the two methods we used
to convert the recorded waveform into binary data. We
show the results of using each method on original tapes,
including how much of the data we were able to recover.
Finally we present our conclusions.

Related work

The UNESCO guidelines for the preservation of
digital heritage (Webb 2005) list four layers where digital
data can be threatened.

Audio tapes are magnetic tapes and are subject to
various threats on the physical level as described in
(Bhushan 1992). By converting the analog waveforms to
digital waveforms and storing them as digital audio-files
on current systems we can avert the immediate threat on
the physical layer.

To prevent loss of data on a logical level it is
necessary to re-engineer the encoding of digital bits in the
analog audio signal. In (Ross 1999) an experiment with a
Sinclair Spectrum is described, where audio data was
migrated to a corresponding binary stream, which could
then be interpreted using an emulator of the real system.

However, to separate the digital objects from their
original environment the bit-streams have to be
interpreted in such a way as to extract the conceptual
object from the logical bit-stream. By extracting the
content and saving it to a format which is not obsolete at
the time of migration we can transform the data to a
format that is accessible without the original hardware.
No expert is needed to operate the original system as it is
necessary with emulation as a preservation strategy.

The essential elements of the digital object can then
be added on ingest in an archival system.

On the system we used for our case study BASIC
was used as a main programming language. Source code
is a significant property of software and can be necessary
to interpret the data stored by applications and is also
necessary if software is migrated for preservation
purposes (Matthews et. al. 2008). As the G7400 is used as

a video game console as well, some of the programs are
video games. This provides us with a situation where
migration would be a possible solution to preserve some
video games for the system (Guttenbrunner et. al. 2008).

Re-engineering the Waveform

For our case study we decided to use the Philips
G74002. Originally designed as a video game system with
a keyboard, it can be extended to become a home
computer with a Microsoft BASIC operating system using
the C7420 expansion cartridge. This cartridge also
features 3 connector cables for data input, data output and
a remote controlling signal used to start and stop the audio
tape, if supported by the tape player. The system was
chosen as it is already very hard to find specimens in
working condition, so there is an imminent threat of
losing the data saved with this system permanently. It also
met our second criterion: off-the-shelf audio recorders
and tapes could be used for storage purposes.

Data on the system can be stored in various formats.
The BASIC programming language variant that comes
with the system supports saving program listings,
screenshots, and storing and retrieving self-defined data
(text strings and number arrays) using various forms of
the “CSAVE” instruction.

In order to start re-engineering the storage encoding,
the original machine’s output was connected to the input
of a PC’s soundcard. We started by writing some test
programs on the original machine and recording the
resulting audio files using Audacity3. One resulting
waveform can be seen in Figure 1. By recording different
test programs we were able to find out that there is always
a 2.77 second lead-in frequency of a 6 kHz sine wave.
The data block is stored in a 4.8 kHz sine wave encoding
bit set (‘1’) as a tone and bit cleared (‘0’) as silence.
Every byte is encoded as one start bit (tone), followed 8

2 Philips G7400- Wikipedia
http://en.wikipedia.org/wiki/Philips_Videopac_G7400
3 Audacity: http://audacity.sourceforge.net/

Figure 1: Waveform of sample program (1: 6 kHz lead-in; 2: 256 x 0xFF; 3: file header; 4: 128 x 0xFF; 5: data)

92

data bits (storing least significant bits first) and 2.5 stop
bits (silence) (Figure 2). The data is stored at a rate of
1200 bits per second. Every file consists of the following
data-bytes in the following order:

No. of Bytes Code Contained Information
256 0xFF <start of file>-signature
32 file-header
128 0xFF separate header / data
<variable size> data-block
10 0x00 <end of file>-signature

During our online-research we also found an active
community4 that is still using and also programming this
system. One of its members, René van den Enden5, had
written small programs that allowed BASIC programs to
be transferred between the original system and a PC. On
request he provided us a copy of the source code of his
programs which confirmed part of our research regarding
the format and provided more details we had not figured
out at this point of our investigation.

Re-engineering File Formats

The C7420 is able to store 5 different kinds of data
with the following commands:

Object type Command
BASIC Programs CSAVE
Screenshots CSAVES
Arrays CSAVE*
Strings CSAVEX
Memory Dumps CSAVEM

By saving different kinds of test data we were able to
identify the format of the 32 byte file header:

 10 bytes 0xD3
 1 byte determining the format of the file, usually

the character after “CSAVE” (e.g. ‘S’ for
screenshot, 0x20 (Space) for BASIC program)

 6 bytes for the program name
 1 byte 0x00
 5 bytes ASCII characters of the line number at

which the execution of the program should start
 3 bytes 0x00
 2 bytes start address in memory (Least Significant

Byte (LSB) first)
 2 bytes length of data block in bytes (excluding the

first leading byte 0x00, LSB first)
 2 bytes checksum: all data bytes added up to a 16

bit value (LSB first)
 The data block starts with 0x00 and continues depending
on the file format with the following data.

4 Videopac / Odyssey2 Forum: http://videopac.nl/forum/
5 Rene's VIDEOPAC page:
http://home.hetnet.nl/~rene_g7400/

Basic Program
For BASIC programs, the data block is split up into

lines which contain the following information:
 2 bytes RAM address of the next BASIC line

(LSB first)
 2 bytes line number (LSB first)
 The actual line with the BASIC commands

represented by byte codes between 0x80 and
0xDF

 1 byte 0x00
At the end of the BASIC program data block 2 bytes 0x00
are written.

Example BASIC line and encoding:
10 PRINT “HELLO”

CF 88 = 0x88CF (address of next BASIC line in RAM)
0A 00 = 10 (line number)
94 = PRINT
20 = <SPACE>
22 48 45 4C 4C 4F 22= “HELLO”
00 = End of line

Screenshot
The C7420 has a text and a graphic mode to display

formatted data on screen. For each of the 40x23 positions
on the screen the following byte codes are stored in
memory and also in the saved data:

-one character-byte
< 0x80: ASCII character in text mode or special
graphical character in graphics mode (as defined
in the C7420 user manual)
>= 0x80: special control or custom character (as
defined in the C7420 user manual)
0x80 changes the background color to the color
defined in the foreground bits in the format byte
in text mode

-one format byte which changes the attributes of the
character or, in the case of 0x80, all following
characters:

7 6 5 4 3 0-2
text

mode (0)
negative dbl.

width
dbl.

height
!blink foreground

color
graph.

mode (1)
background color !blink foreground

color

Figure 2: Representation of one byte in the waveform (1
start bit (1), 8 data bits (least significant first: 11010011b
= D3h), 2.5 stop bits (0))

93

Array
The first byte of an array encodes the number of

dimensions of the array. For each dimension, two
subsequent bytes encode the number of fields in the
dimension (LSB first). Finally, for every entry in the
array, 4 bytes are used to express the value in different
formats, depending on whether the array contains strings
or numbers.
String Array:

 1 byte length of the string in bytes
 1 unused byte
 2 bytes address of the string in memory

Note that the actual string data is not saved in the array
but the strings have to be saved and loaded separately
using the string save command “CSAVEX”.
Number Array:

By saving number arrays on the original system,
examining the resulting byte stream, changing values and
re-loading the array onto the original system we were able
to find out that a floating point format is used to store
numbers. The encoding is similar to, but does not follow
the IEEE 754 floating point standard (IEEE 1987), as that
was released 2 years later than the C7420 cartridge. With
further testing, the bits for mantissa, sign and exponent
were determined. 4 bytes are used to encode the number
as a 32 bit floating point value (LSB first), with the
following meaning of the bits:

bit 25-32 bit 24 bit 1-23
exponent

(exponent bias = 129)
sign

(1 = negative)
mantissa

So any number can be calculated using equation 1:

number = sign * mantissa * 2exponent (1)
where,

sign = (-1)<bit 24>mantissa = 1 + (<bit 1-23> / 223)exponent = <bit 25-32> - 129
String

Strings are stored as a stream of bytes using the
ASCII encoding (number of bytes according to the file
header information).
Memory Dump

Memory dumps are stored as byte values (number of
bytes according to the file header information).

Converting Waveform to Bit-Stream

In order to write a tool that is able to convert the
waveform into usable data we had to develop a method of
interpreting the waveform programmatically and
detecting the various stages in the signal.

In our tests the signal was sampled as a 48 kHz, 16
bit, mono signal. As the C7420 outputs the signal at a rate
of 1200 bits per second, we can calculate the number of
samples per encoded bit (spb) using equation 2:

(2)
where,

spb = samples per bit in the digitized audio streamf = sample frequency of the waveformbps = bits per second as output from the C7420
The signal output by the C7420 is a sine wave with a
frequency of 4.8 kHz, so every bit is represented by 4 sine
periods.

We implemented two different methods of
interpreting the signal. Method 1 was taken from the
sample programs we got from René van den Enden. For
each sample we need to decide if it marks silence or
signal. The algorithm scans the sample stream of the
digitized waveform until an absolute value greater than
half the maximum amplitude of the signal is found. High
amplitude is interpreted as a signal and such as the start of
a coded bit “1”. More samples are subsequently read and
counted either as “signal” or “no signal”. If more than a
certain amount of “no signal” samples are found, it is
assumed that the end of a coded “1” has been reached and
a coded “0” starts. For a coded “1” bit to be properly
recognized, half the number of samples over the duration
of 4 sine waves has to be interpreted as “signal”. Figure 3
shows a sample waveform and the values counted as
“signal” (marked on the horizontal axis as “1”) and “no
signal” (marked as “0”).

While we were able to read the original signal output
by the console system without errors using this method,
we encountered the following problems when we tried to
interpret the signal stored on audio tapes:

 Missing parts of a coded bit: As a certain threshold
of “no signal” was defined as the beginning of a
coded “0”, errors were encountered while
interpreting the signal if a small part of the bit had
been lost due to data loss on the audio tape.

 Noise in the signal: Most parts of the tapes
contained noise which was incorrectly interpreted
as signal.

 Differences in amplitude due to independent
recordings on the same tape: While we were able to
adjust the level of the input signal using the
software for recording the signal from the audio
source, changes in the signal over various parts of
one tape made parts of the tape unreadable.

Figure 3: Interpretation of the wave signal using method
1. Vertical axis shows the strength of the amplitude,
horizontal axes the parts of the sine wave interpreted as
“signal” (1) or “no signal” (0).

94

To reduce the sensitivity of the algorithm that
converts the waveform into a bit stream we implemented
a second method. For Method 2 we not only looked at
single samples in the waveform but also calculated the
sum of piecewise linear approximations of the amplitude,
thus calculating the arc length of the sine wave for silence
and signal first. Obviously, the arc length of a curve for a
bit that represents “1” is longer than the arc length of a
curve for a bit that represents “0”. To decide if a bit is set
or cleared, a cut-off value between signal and silence
wave arc length is used.

For every sample in the signal, a certain amount of
samples before it are used to calculate the arc length of
the sine wave up to the sample. If the arc length is above
the cut-off value then the sample is recognized as “1”
otherwise it is recognized as “0”.

The algorithm is also able to adjust itself to changes
in volume or noise, as the threshold which decides if a bit
is set or cleared is constantly adjusted for every file in an
input stream in parts of the signal which are known to be
signal or silence. This way we are able to compensate for
noise in the signal as well as for changes in volume.
Missing parts of a signal bit have less influence in the
recognition as not only the missing part, but also all parts
before it are used to decide the state of the bit.

Migration Tool

Using the algorithms for converting the digitized
waveform to a binary stream native to the system,
together with the information we gathered about file
formats, we developed a tool that is able to read the data
contained in the waveform. Both described methods of
interpreting the waveform were implemented.

The tool is written in JAVA. By using a virtual
machine as a platform, the tool is independent from actual
hardware for better long term stability. The tool and demo
files can be found on the project homepage6.

6 http://www.ifs.tuwien.ac.at/dp/hc_audio_migration

The following functions were implemented in the
migration tool:
 Opening an audio stream and loading the contained

files (either from an audio file (WAV or FLAC) or
directly from an audio-in device)

 Opening files in the C7420-native file format (binary
streams converted from WAV-file)

 Saving the opened audio stream as a C7420-native
file format (binary stream)

 Saving data in a non-obsolete format (screenshots as
PNG, basic-programs and arrays as text files, binary
data as binary)

 Saving data as an audio stream (either to an audio file
(WAV or FLAC) or directly onto the standard audio-
out device)

 Opening and saving compressed Zip-archives
containing a collection of migrated files

 Creating new files of the different formats in the
application (including syntax highlighting for
BASIC-programs)

All the data formats used by the C7420 as described in
Section Re-engineering File Formats are supported by the
migration tool.

Every file is opened in a new tab inside the
application in an editor that is linked to the file type. The
information associated with the file and stored in the file
header (native file name, address in memory to load to)
can be edited as well. A Screenshot of the migration tool
can be seen in Figure 4.

Evaluation

To evaluate the usability of the migration tool, we
recorded different programs and other data as output from
the original system. The data was recorded as a waveform
using Audacity and then converted to user readable data
in the migration tool using both implemented methods for
converting the waveform. Then the data was loaded back
into the original system, both from the recorded audio
stream and from a stream re-encoded using the migration
tool.

The migration tool was able to restore all the data in
the waveform as output from the original machine with
both methods of converting the signal. The original

Figure 5: Tapes used for evaluation of migration tool,
left upper corner C10 computer cassette, left lower and
right Philips FE-I 60 normal position audio tapes.

Figure 4: Screenshot of the migration tool GUI with BASIC
program loaded from a WAV-file.

95

stream outputted by the machine and the re-encoded
stream from the migration tool, both gave the same results
when the data was loaded back to the original machine.
For a clean signal that was not distorted due to age, the
migration tool perfectly read and wrote the data from and
to the original machine.

Additionally, we acquired three audio-tapes created
with the original system approximately 20 years ago from
a private archive. Two of the tapes were standard Philips
FE*I 60 normal position audio tapes as used for recording
music while one was a C-10 computer cassette tape from
manufacturer a11 specially manufactured for recording
data (Figure 5). The source who recorded the tapes and
the contents is not known.

We used a standard HIFI-system as an audio player
and the software Audacity to record the audio streams as
44 KHz, 16 bit mono digital signal. The audio streams
were saved as uncompressed WAV-files (Petermichl
2009) containing the pulse code modulated (PCM)
(Cattermole 1969) raw audio data as bit stream. Two of
the tapes had data recorded on both sides of the tape; one
had data only on side A. Five WAV-files were obtained,
one per side and per tape.

Each file was then loaded using the migration tool.
The resulting migrated files were stored in a Zip-archive.
For comparison the files were also loaded onto the
original system.

A visual check for the characteristic waveform was
done using Audacity to see how many files we expected
the migration tool and the original system to find. A
comparison between expected and loaded files can be
found below (first column for each method shows
recognized files, second shows unrecognized files and
third shows false positives):

tape-
side

visual C7420 method 1 method 2

C10-A 8 5 3 0 8 7 1 5
C10-B 2 1 1 0 2 2 0 0
Philips-
1-A

6 0 6 0 6 6 0 3

Philips-
2-A

6 0 6 0 6 6 0 2

Philips-
2-B

1 0 1 0 1 1 0 0

Total 23 6 17 0 0 22 1 10

Some files on the C10 tape were recognized by the
original system but could not be loaded due to a “Bad
label” error (with the suggestion to reposition the tape);
while on the other 2 tapes no files were recognized at all.
No files were correctly recognized using method 1. All
but one file were recognized by method 2. Ten additional
files recognized using method 2 were false positives that
were easily detectable in the user interface and
recognition could even be suppressed by checking a
checkbox in the migration tool.

The files that were recognized contained BASIC-
programs. To check the files for validity we loaded them
on the original system from tape and also loaded them on
the original system as output from the migration tool.

From the 23 files on the three tapes no file was
readable and usable on the C7420. All the 6 files that
were recognized on the tapes were loaded with a “Bad
file” error message and were not usable due to missing
lines and incorrectly interpreted bytes. Thus the original
system could not be used to load the data from the
original tapes.

The results of recognized data in the loaded files
using the migration tool can be seen below:

tape-side loaded not recognized or
wrong file format

with
errors

no
errors

C10-A 7 0 4 3
C10-B 2 0 2 0
Philips-1-A 6 1 5 0
Philips-2-A 6 1 5 0
Philips-2-B 1 1 0 0
Total 22 3 16 3

Of the 22 files loaded 3 files could be recognized without
errors. 16 files were loaded with various warnings in the
migration tool, indicating that some bytes could not be
recognized or were misidentified (e.g. wrong checksum,
missing bits in bytes). Three files were not recognized in
the correct format and shown as binary stream only.

Without manual preprocessing of the waveform or
manual post-processing of the binary stream we were able
to recover 19 files opposed to just 6 files loaded by the
original system.

The files loaded with errors were in various states of
completeness. Some files were missing various lines at
the end of the file. Other program lines were erroneous
due to incorrectly identified bytes (an example can be
seen in Figure 6). As the original data stored on the tapes
was not available for comparison, it is not possible to
quantify the errors. But in general it seems that only
single bytes were lost. As the data on the tapes consists of
BASIC programs it should be possible to correct the
errors by re-engineering the recovered program sources
and thus reconstruct most of the data on the tapes.

Figure 6: Errors in BASIC-Program decoded from a file
loaded using the migration tool.

96

Conclusions

The case study performed in this work proved that it
is possible to extract proprietary data from the analog
audio signal stored by a system without previous
knowledge of the format it is stored in. By having access
to the original system to write test programs we were able
to reengineer the audio waveform as well as all data
formats and write a tool to migrate the data to non-
obsolete formats. Archives or libraries that have or may
receive audio tapes containing data for the Philips G7400
can use this tool to migrate the digital data without access
to the original system or knowledge of how to handle the
system.

If such actions are undertaken today, while the
original systems still work, it is possible to develop tools
for the migration of digital objects now. Once the original
systems do not work anymore, it will not be possible to
run code on the original system, thus having to reengineer
the system on a circuit-diagram level and disassembling
the BIOS source code, which makes the task more
difficult and time consuming.

Reengineering of the system
While digital archeology and reengineering systems

is seen as a rather complex task, this case study shows
that the reengineering of the format is easier while having
access to the original system, as this way, test data can be
produced. Interpreting the number format without seeing
the effects of the changed numbers on the original
machine would have been a rather difficult task. It should
also be noted that non-commercial ‘retro gaming’
communities still working with the system can be an
excellent source not only for emulation, but also for data
archeology on home computer systems.

Information lost due to migration
While most of the information that can be stored in

files on the original system can be migrated to non-
obsolete formats, certain restrictions apply:

 Screenshots: The G7400 is able to render blinking
information on screen. By choosing PNG as a non-
obsolete (static) format, this dynamic information of
the data is lost. Additionally it is possible to define
custom characters using the BASIC language. The
definition of these characters is not stored in the
waveform with the screenshot data. A complete
program with the definition of the custom characters
would have to be stored and preserved to keep the
information available (e.g. through emulation)

 String Arrays: As a string array contains only the
addresses of the strings stored in it and the strings
themselves are each stored in separate files, the
interrelation between these files is lost without the
logic of the program that establishes the link between
them.

Evaluated tapes
Examination of the data on tapes from a private

archive showed that the data was no longer readable on
the original machine. Using the migration tool we were
able to retrieve most of the data with small errors. The
evaluation also showed that it is necessary to act now and
migrate data that was stored on magnetic tapes 20 years
ago, as the lifetime of magnetic tapes is expected to be a
maximum of 20 years (Van Bogart 1998). Most of the
data retrieved in the experiment could not be extracted
without errors.

Media refresh
Using the developed migration tool it is possible to

refresh the media (audio cassettes) by reading and
decoding the content, recoding it into a waveform and
recording it to the tape again without using the original
system.

Using decoded data for emulation
With the possibility to save the data encoded in the

waveform as a system native binary stream, files can be
stored for usage in emulators. Currently no emulators for
the C7420 are available, but by storing the streams in the
native format the data is kept safe for emulation at a
future date.

Interpreting results for other media types
As audio tapes can be read using standard non-

proprietary audio equipment, access to the physical layer
of data is not in immediate danger. Other magnetic media
like floppy discs cannot be read as easily. Even with
floppy drives using the same media size (8”, 5¼ “, 3½”)
access to data written on non-compatible computer
systems is not possible.

The results of re-engineering the logical data can be
used for other media as well. Re-engineering file formats
can either be done using original systems or emulators, if
available. Expert knowledge in handling the system has to
be at hand to complete these tasks.

Acknowledgements

Part of this work was supported by the European
Union in the 6th Framework Program, IST, through the
PLANETS project, contract 033789.

References

Bhushan, B. (1992) Mechanics and Reliability of Flexible
Magnetic Media. Springer, New York.

Cattermole, K. W. (1969) Principles of Pulse Code
Modulation. Iliffe Books. London, U.K.

97

Guttenbrunner, M., Becker, C., & Rauber, A. (2008,
September). Evaluating strategies for the preservation of
console video games. In Proceedings of the Fifth
international Conference on Preservation of Digital
Objects (iPRES 2008), London, UK, pp. 115–121.

Matthews, B., McIlwrath, B., Giaretta, D., and Conway,
E. 2008. The significant properties of software: A study.
JISC Study. Retrieved September 1, 2009, from
http://www.jisc.ac.uk/media/documents/programmes/pres
ervation/spsoftware_report_redacted.pdf.

Petermichl, K. (2009) Handbuch der Audiotechnik:
Kapitel 12: Dateiformate für Audio. Springer Berlin
Heidelberg, Germany.

Ross, S., and Gow, A. (1999). Digital archaeology:
Rescuing neglected and damaged data resources. A
JISC/NPO study within the Electronic Libraries (eLib)
Programme on the Preservation of Electronic Materials.
Retrieved September 1, 2009, from
http://eprints.erpanet.org/47/.

Rothenberg, J. (2000). Using Emulation to Preserve
Digital Objects. Koninklijke Bibliotheek.
Retrieved September 1, 2009, from
http://www.kb.nl/pr/publ/usingemulation.pdf

Van Bogart, J. (1998) Storage Media Life Expectancies.
Digital Archive Directions (DADs) Workshop 1998.
Retrieved September 1, 2009, from
http://nost.gsfc.nasa.gov/isoas/dads/presentations/VanBog
art/

Webb, C. (2005). Guidelines for the Preservation of the
Digital Heritage. Information Society Division United
Nations Educational, Scientific and Cultural Organization
(UNESCO) – National Library of Australia. Retrieved
May 29, 2009, from
http://unesdoc.unesco.org/images/0013/001300/130071e.
pdf

IEEE (1987). IEEE Standard 754-1985 for Binary
Floating Point Arithmetic, IEEE, (1985). Reprinted in
SIGPLAN 22(2) pp. 9-25.

