
eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

California Digital Library
UC Office of the President

Peer Reviewed

Title:
An Emergent Micro-Services Approach to Digital Curation Infrastructure

Author:
Abrams, Stephen, California Digital Library
Kunze, John, California Digital Library
Loy, David, California Digital Library

Publication Date:
10-05-2009

Series:
iPRES 2009: the Sixth International Conference on Preservation of Digital Objects

Publication Info:
iPRES 2009: the Sixth International Conference on Preservation of Digital Objects, California
Digital Library, UC Office of the President

Permalink:
http://www.escholarship.org/uc/item/5313h6k9

Multimedia URL:
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Abrams&title=Stephen%20Abrams
%3A%20An%20Emergent%20Micro-Services%20Approach%20to%20Digital%20Curation
%20Infrastructure

Abstract:
In order better to meet the needs of its diverse University of California constituencies, the California
Digital Library UC Curation Center is re-envisioning its approach to digital curation infrastructure
by devolving function into a set of granular, independent, but interoperable micro-services. Since
each of these services is small and self-contained, they are more easily developed, deployed,
maintained, and enhanced; at the same time, complex curation function can emerge from the
strategic combination of atomistic services. The emergent approach emphasizes the persistence
of content rather than the systems in which that management occurs, thus the paradigmatic
archival culture is not unduly coupled to any particular technological context. This results in a
curation environment that is comprehensive in scope, yet flexible with regard to local policies and
practices and sustainable despite the inevitability of disruptive change in technology and user
expectation.

Supporting material:
Presentation

Copyright Information:

http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org/uc/cdl_ipres09
http://www.escholarship.org/uc/cdl_ipres09
http://www.escholarship.org/uc/ucop
http://www.escholarship.org/uc/search?creator=Abrams%2C%20Stephen
http://www.escholarship.org/uc/search?creator=Kunze%2C%20John
http://www.escholarship.org/uc/search?creator=Loy%2C%20David
http://www.escholarship.org/uc/cdl_ipres09
http://www.escholarship.org/uc/item/5313h6k9
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Abrams&title=Stephen%20Abrams%3A%20An%20Emergent%20Micro-Services%20Approach%20to%20Digital%20Curation%20Infrastructure
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Abrams&title=Stephen%20Abrams%3A%20An%20Emergent%20Micro-Services%20Approach%20to%20Digital%20Curation%20Infrastructure
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Abrams&title=Stephen%20Abrams%3A%20An%20Emergent%20Micro-Services%20Approach%20to%20Digital%20Curation%20Infrastructure

Proceedings

October 5-6, 2009
Mission Bay Conference Center

San Francisco, California

4

An Emergent Micro-Services Approach to Digital Curation

Infrastructure

Stephen Abrams, John Kunze, David Loy

California Digital Library, University of California
415 20th Street, Oakland, CA 94612, US

{Stephen.Abrams, John.Kunze, David.Loy}@ucop.edu

Abstract
In order better to meet the needs of its diverse University of
California constituencies, the California Digital Library UC
Curation Center is re-envisioning its approach to digital
curation infrastructure by devolving function into a set of
granular, independent, but interoperable micro-services.
Since each of these services is small and self-contained,
they are more easily developed, deployed, maintained, and
enhanced; at the same time, complex curation function can
emerge from the strategic combination of atomistic services.
The emergent approach emphasizes the persistence of
content rather than the systems in which that management
occurs, thus the paradigmatic archival culture is not unduly
coupled to any particular technological context. This results
in a curation environment that is comprehensive in scope,
yet flexible with regard to local policies and practices and
sustainable despite the inevitability of disruptive change in
technology and user expectation.

Introduction

Information technology and resources have become
both integral and indispensable to the pedagogic mission of
the University of California (UC). Members of the UC
community routinely produce and utilize a wide variety of
digital assets in the course of teaching, learning, and
research. These assets represent the intellectual capital of
the University; they have inherent enduring value and need
to be managed carefully to ensure that they will remain
available for use by future scholars. Within the UC system
the California Digital Library (CDL) UC Curation Center
(UC3) has a broad mandate to ensure the long-term
usability of the University’s digital assets.

UC3 increasingly sees its mission in terms of digital
curation, the set of policies and practices focused on
maintaining and adding value to a body of trusted digital
content for use now and into the indefinite future (Abbott
2008). Traditionally, preservation and access have been

considered disparate activities. Properly, however, they
should be seen as complementary functions: preservation
focused on ensuring use over time, while use depends upon
preservation up to a point in time (Rusbridge 2008).
Curation is thus an ongoing process of management and
enrichment at all stages of the lifecycle of a digital asset
(Higgins 2008). While curation is not solely a technical
undertaking – curation success is, for example, highly
dependent on important human competencies, analysis, and
decision making – a robust infrastructure in which to
manage valuable digital content efficiently and effectively
is nevertheless a necessary foundation.

Curation Infrastructure

As a central system-wide service provider to the 10
UC campuses, UC3 is continually asked to assume
stewardship responsibility for digital content in ever
increasing number, size, and diversity of type.
Furthermore, this content is often used and repurposed in
novel contexts. Thus, the programmatic imperative of UC3
is to provide a curation environment that is comprehensive
in scope, yet flexible with regard to local policies and
practices, the inevitability of disruptive change in
technology and user expectation, and the realization that
curation over archival time-spans is a relay (Janée, Frew,
and Moore 2008).

To achieve this goal, UC3 believes it is necessary to
deprecate the centrality of the curation repository as place
(Abrams, Cruse, and Kunze 2008). The new UC3 approach
to digital curation infrastructure is based on the idea of
devolving necessary function into a set of independent, but
interoperable, micro-services that embody curation values
and strategies. Since each of the services is small, they are
collectively easier to develop, deploy, maintain, and
enhance (Denning, Gunderson, and Hayes-Roth 2008).
Equally as important, since the level of investment in and

5

commitment to any given service is small, they are more
easily replaced when they have outlived their usefulness.
Although the individual services are narrowly scoped, the
complex function needed for effective curation emerges
from the strategic combination of atomistic services
(Fisher 2006).

Micro-services can be deployed in the contexts in
which it makes most sense, both technically and
administratively. While UC3 will use the micro-services as
the basis for its ongoing centrally-managed curation
activities, these services can also be usefully deployed and
operated in local campus IT, research group, and
departmental environments. It is no longer necessary that
digital content must be transferred to a common repository
in order to receive appropriate curation care.

Curation Micro-Services

The UC3 curation micro-services are intended to
achieve the following strategic goals reflective of evolving
community best practice:

 Providing safety through redundancy
(Embodying the principle that “lots of copies
keeps stuff safe”; Reich and Rosenthal 2001)

 Maintaining meaning through description
(“Lots of description keeps stuff meaningful”)

 Facilitating utility through service
(“Lots of services keeps stuff useful”)

 Adding value through use
(“Lots of uses keeps stuff valuable”)

In consequence, the overall infrastructural framework is
conceived in terms of an initial set of 12 micro-services
arranged in four hierarchical service layers, each building
upon the necessary foundational function of lower layers,
and approaching curation sufficiency in the aggregate (see
Table 1). Although the micro-services are assigned a mode
and focus for purposes of classification, in actuality the
services have broad applicability throughout the full
curation lifecycle (see Figure 1).

The Protection layer Identity and Storage services are
foundational to the entire micro-services framework. The
Identity service provides a means by which to persistently
and unambiguously distinguish and reference a given unit
of curated content. The Storage service provides a secure
environment for the persistent management of that content.
The Fixity service provides the means to detect damage to
the bit-level integrity of managed content, and the
Replication storage manages the synchronization of
content replicas.

Note that the four components of the Protection layer
operate on content state without any understanding of what
that content represents. The contextual meaning of curated
content is managed by the higher-level Interpretation layer.
The Inventory service maintains a comprehensive, schema-
agnostic metadata catalog for the content managed in the
Protection layer. The Characterization service provides an

automated means to examine and extract the properties of
formatted byte streams underlying managed content that
are significant for purposes of curation and preservation
analysis, planning, and intervention (Abrams, Owens, and
Cramer 2008).

Mode Focus Layer / micro-service

Value
Interoperation

 Annotation
 Notification

Curation

Service

Application

 Transformation
 Search
 Index
 Ingest

Context
Interpretation

 Characterization
 Inventory

Preservation

State

Protection

 Replication
 Fixity
 Storage
 Identity

Table 1 – Curation micro-services

Figure 1 – Micro-service lifecycle applicability
(adapted from Higgins 2008)

The Protection and Interpretation layers collectively
operate in a back-office preservation mode that would
typically be managed directly by repository managers (e.g.,
UC3 staff). User-facing curation services are provided by
the upper two service layers. The Application layer
supports base-line functions for both producer and
consumer users. The Ingest service provides the means

6

whereby new content is accessioned into the curation
environment, with interfaces geared for both manual and
automated workflows. The Index and Search services
support content and metadata-based search, browse, and
retrieval. The Transformation service provides the means
to transcode content into desired forms for purposes of
ingest canonicalization, preservation migration, and the
creation of delivery derivatives.

The upper Interoperation layer supports services for
adding value to curated content through consumer-driven
use and enrichment. The Notification service provides the
means to notify user communities of the availability of
newly acquired content. The Annotation service provides
the means by which both content curators and consumers
can describe the significant properties of content managed
in the micro-services infrastructure.

Design Principles
Design of individual curation micro-services is based

on the following principles:

 Granularity and orthogonality

 Complexity through composition rather than
incorporation

 Persistent interfaces, evolving implementations

 Flexible configuration, but meaningful default
behavior and the “principle of least surprise”

 Deferring implementation decision-making until
needs and outcomes are clearly understood

As mentioned previously, complexity is an emergent
property of the micro-services approach. In other words,
sophisticated curation function arises through the flexible
composition of individual, atomistic services rather than
through the addition of function to an increasingly large
monolithic service. The continual expansion of the scope
of monolithic systems does increase functionality, but at
the cost of complexity that complicates development,
inhibits maintenance, and increases the likelihood of errant
behavior. The UC3 preference is for an aggressive
devolution of curation function into simple, focused,
independent, but interoperable micro-services.

Micro-services expose their function through well-
defined interfaces that define their public service contract
(Liegl 2007; O’Reilly 2005). Assertions regarding the
persistence and sustainability of UC3 curation function are
made relative to these interfaces and not their underlying
implementations, which can and shall evolve freely over
time without invalidating higher-level interface contracts.
Interface design is based on the major conceptual entities
underlying a given service, which are defined in terms of
state properties and behaviors that can access and
manipulate that state. Individual state properties are
strongly typed and are assigned unique formal identifiers,
guaranteed unique within the appropriate scoping unit, so
that entity state definitions can be publicly exposed as
reusable ontologies.

Abstract interfaces are mapped to three interactive
modalities: procedural APIs in various language bindings;
command line APIs supported by major operating system
command shells; and web APIs conforming to the REST
paradigm (Fielding and Taylor 2002) and incorporating
thin client GUIs supported in major browsers (see Figure
2). The intention is to provide content managers and
curators with the means to interact with the services
without entailing significant changes to established
workflows and patterns.

Figure 2 – Micro-service stack

The initial language bindings for the micro-service
procedural APIs are Java and Perl. Java RESTful APIs are
built with the Jersey framework, the reference
implementation of JSR 311, JAX-RS – Java API for
RESTful Web Services, running in a Jetty or Tomcat
container. The Perl and Java implementations emphasize
thin command-line tools that expose as much functionality
as feasible to the shell user, but that themselves add
minimal functionality to what is already provided by the
language-based methods; in this way, maximal function is
pushed into the lowest level where it is available in all
three modalities.

As an example of these design principles, the Storage
service is described in some detail in the following section.
As the micro-services are works-in-progress, the apparatus
described below does not include some of their more
speculative components.

Storage Service
The Storage service manages unstructured storage

(i.e., with no common data model) of files holding the
digital representations of content. (Structured storage is
provided by the Inventory service.) By design the Storage
service is opaque with respect to the underlying semantics
of stored content, which is managed by the higher-level
Inventory service. Consequently, the Storage service has a
weak definition of a digital object, which is simply a set of
related files descending from a single directory whose state

7

can be modified over time through a sequence of discrete
versions. By policy, UC3 strengthens this with the
requirement that the directory hierarchy contain every non-
derivative file related to the digital object.

Conceptual Modeling. The Storage service is based on
five conceptual entities, each defined in terms of its state
properties and state manipulating behaviors.

1. Service. The Storage service itself. The Storage
service acts as a central broker to a number of
defined storage nodes, which can be defined for
administrative or technical convenience. Global
service state includes:

o Service name, identifier, and version
o Enumeration of storage nodes
o Number of objects, versions, and files
o Total size
o Access and support URI

The service encompasses an arbitrary number of
storage nodes.

2. Node. An entity responsible for managing a subset
of content known to the service. Nodes are
typically defined on the basis of their underlying
storage technology or policy regime. Node state
includes:

o Node name, identifier, and version
o Number of objects, versions, and files
o Total size
o Storage media: magnetic-disk, magnetic-

tape, optical-disk, solid-state
o Access modality: on-line, near-line, off-

line
o Access and support URI

A storage node encompasses an arbitrary number
of digital objects.

3. Object. A set of versioned files representing an
intellectually coherent unit of content. Object state
includes:

o Object identifier
o Enumeration of versions
o Number of versions and files
o Total size
o Creation, modification, last verification,

and last access date
o Access URI

An object encompasses an arbitrary number of
versions.

4. Version. A set of files representing the discrete
state of a digital object at a point in time. Version
state includes:

o Version identifier
o Number of files
o Total size
o Creation, modification, last verification,

and last access date
o Access URI

Version identifiers are assigned in numerical
sequence, starting with 1. The reserved version
number 0 references no fixed version, but is set
aside as an access synonym that always represents
the current version. A version encompasses an
arbitrary number of files.

5. File. A named digital octet stream. Note that a file
octet stream is named, but not typed; the Storage
service is not concerned with the meaning of the
abstract content expressed as a digital object. File
state includes:

o File identifier
o Total size
o Creation, modification, last verification,

and last access date
o Access URI

Methods. The Storage service supports a number of
methods for accessing and manipulating the conceptual
entities and their state. Each method is classified according
to the important transactional properties of idempotency
and safety (Fielding et al. 1999).

 Help [idempotent, safe]
 Get-service-state [idempotent, safe]
 Get-node-state [idempotent, safe]
 Get-object [idempotent, unsafe]
 Get-object-state [idempotent, safe]
 Get-version [idempotent, unsafe]
 Get-version-state [idempotent, safe]
 Get-file [idempotent, unsafe]
 Get-file-state [idempotent, safe]
 Add-version [non-idempotent, unsafe]
 Delete-object [idempotent, unsafe]
 Delete-version [idempotent, unsafe]

The Help method is common to all micro-services and
provides a brief descriptive text, an enumeration of all
supported methods, and a support contact URI. The Get-
object, Get-version, and Get-file methods are trivially
unsafe since they modify their respective states with a
current access timestamp. Note that the mechanism for
modifying an object’s content is to introduce a new
version. The Delete-object and Delete-version methods are
defined for completeness, but as a matter of policy are
intended for use only in response to unusual curatorial
circumstances.

Each method is first defined abstractly and then
mapped to specific protocols. For example, the Get-file-
state method definition is summarized in Table 2. This
abstract method definition is mapped to the concrete syntax
specified by the web, command line, and procedural APIs,
as shown, for example in Figure 3. All implementation
details are hidden behind the interface, which constitutes
the public service contract. The supported response forms
for which state information can be requested are ANVL
(Kunze et al. 2005), HTML, JSON, and Turtle.

8

Parameter Type Obligation Description
Node Identifier Mandatory Storage node
Object Identifier Mandatory Object identifier
Version Identifier Mandatory Version identifier
File Identifier Mandatory File identifier
Form Enum Optional Response form
RETURN State Mandatory File state
SIDE
EFFECTS Not applicable

Badly formed request
Node not found
Object not found
Version not found
File not found

ERRORS

Unsupported response form

Table 2 – Get-file-state method

GET/fileState/node/object/version/file HTTP/1.1
Accept: application/json

% store getFileState node object version file \
 –f json

File.getState(node, object, version, file,
 Form.JSON);

Figure 3 – Get-file-state method syntax

Implementation. The general micro-services principles of
granularity and orthogonality are applied throughout the
implementation process. Consequently the Storage service
relies on a number of subsidiary specifications,
conventions, and systems (described in more detail at
<http://www.cdlib.org/inside/diglib/>).

The Storage service is instantiated in a file system as
shown in Figure 4. The file of the form “0=name_version”
is a Namaste tag (Name-as-text), that functions as an
indicative signature of the Storage service home directory;
in this case it specifies that this instantiation conforms to
version 0.8 of the service specification. The “admin/”
directory holds various administrative declarations and the
“log/” directory holds access and diagnostic logs. The
global state properties of the service are defined by the file
“store-info.txt” (see Figure 5).

store_home/
 0=store_0.7
 admin/
 log/
 nodes.txt
 store-info.txt

Figure 4 – Storage service file system structure

The storage nodes known to the service are defined by
name and access URI in the file “nodes.txt” (see Figure 6).

Nodes can be remote or local to the host running the
Storage service. Local interoperability assumes that the
storage node is instantiated in a file system mountable by
the local host; remote nodes are accessed over a TCP/IP
network through their access URIs.

Name: store
Service-scheme: Store/0.7
Node-scheme: CAN/0.8
Verify-on-read: true
Verify-on-write: true
Access-uri: http://store.cdlib.org/
Support-uri: email:store-support@cdlib.org

Figure 5 – Storage file properties file

can01 http://can01.cdlib.org/
can02 http://can02.cdlib.org/
can03 file:///home/can03

Figure 6 – Storage nodes file

The default implementation for a storage node is the
Content Access Node (CAN, see Figures 7 and 8), which is
essentially a repository instance. A CAN manages its
objects in a hierarchical file system tree. The primary
convention for the structure of branches of the tree is
Pairtree, which uses a bigram decomposition of an object’s
identifier to determine the directory hierarchy at which the
object’s content is found. Thus, an object with identifier
“abc123” would be found at the end of the relative
directory path “ab/c1/23”. (Pairtree defines escaping rules
to prevent collision between identifier characters and file
system semantics.) Consistent with the principle of micro-
service independence, Pairtree has been adopted by a
number of external institutions and initiatives. For
example, it is being used by HathiTrust (York 2009) to
store millions of scanned books. Open source Perl code
supporting Pairtree, Namaste, and ANVL are available
(Kunze 2009).

can_home/
 0=can_0.8
 admin/
 can-info.txt
 log/
 store/
 pairtee_root/
 0=pairtree_0.1
 pairtree-info.txt
 ab/
 c1/
 23/
 abc123/

Figure 7 – CAN file system structure

9

The leaf at the end of a Pairtree path stores the digital
object, but its nature is not specified by Pairtree. For
example, it could be a Bagit bag (Boyko et al. 2009), a
HathiTrust digitized book, or a web crawl. In the context
of a CAN, the convention controlling the structure of that
object is Dflat.

Name: can01
Node-scheme: CAN/0.8
Branch-scheme: Pairtree/0.1
Leaf-scheme: Dflat/0.15
Media-type: magnetic-disk
Access-mode: on-line
Verify-on-read: true
Verify-on-write: true
Access-uri: http://can01.cdlib.org

Figure 8 – CAN properties file

Dflat defines structures for managing versioned sets of
files that represent a digital object (see Figures 9 and 10).
Object versions are stored in numbered directories of the
form “vnnn/”. (Directory names corresponding to versions
numbered up to 999 are left-padded to align lexical and
numeric ordering; names above 999 naturally extend an
additional digit per order of magnitude.) The symbolic
link “current@” provides direct access to the current
version.

dflat_home/
 0=dflat_0.16
 admin/
 current@
 dflat-info.txt
 log/
 v001/
 v002/
 v003/

Figure 9 – Dflat file system structure

Object-scheme: Dflat/0.16
Manifest-scheme: Checkm/0.1
Full-scheme: Dnatural/0.12
Delta-scheme: ReDD/0.1
Current-scheme: symlink

Figure 10 – Dflat properties file

A CAN is a container for everything that might belong
in a repository instance. While its specification is still
evolving, it bundles the premises that a CAN repository
collection is represented by one or more Pairtrees and that
the leaves of each Pairtree are Dflats. Consistent with
stated design principles, some implementation decision-
making has been deferred until needs are more clearly
understood; currently absent are ways to represent policies

governing such things as frequency of fixity checking,
remote replication sites, admissibility of annotations, etc.

A Dflat version can be represented in fully-instantiated
or delta-compressed form. The current version is always
fully instantiated; all previous versions are generally kept
in delta-compressed form to minimize storage utilization.
Regardless of representation type, all version directories
hold a manifest file (“manifest.txt”) conforming to the
Checkm specification, which associates a size and message
digest with each version file.

The structure of a fully-instantiated version
representation is defined by the subsidiary Dnatural
convention (see Figure 11). The content data and metadata
received from an object’s producer or curator are stored in
the “data/” and “metadata/” directories, respectively. The
content of the “data/” directory is completely up to the
producer or curator (e.g., it could be a BagIt bag). The
“enrichment/” directory holds additional metadata and
derivative content automatically generated by the Storage
service itself. The “annotation/” directory holds additional
metadata and derivative content supplied by content
consumers.

manifest.txt
v003/
 0=dnatural_0.12
 admin/
 annotation/
 data/
 enrichment/
 metadata/

Figure 11 – Dnatural file system structure

Compressed version representations conform to the
Reverse Directory Delta (ReDD) convention (see Figure
12). ReDD is a very simple tool- and platform-
independent scheme that uses file-level reverse deltas to
minimize overall storage utilization. The “add/” directory
holds the files that need to be added relative to the
subsequent version in order to re-instantiate the previous
version; the “delete.txt” file lists the files that need to be
deleted relative to the subsequent version to re-instantiate
the previous version. In other words, the delta information
associated with version 2 indicates how to manipulate the
files of version 3 in order to recover the complete form of
version 2. Access is thus faster for later versions; the re-
instantiation of a version early in the chronological
sequence will require the iterative application of deltas.
Dflat maintains an ordered sequence of versions, and can
be applied to any differencing scheme (e.g., Unix “diff”)
that operates on the notions of current and previous
version.

All of the conventions and subsystems underlying the
Storage service are supported by procedural APIs in
separate package spaces, so they can easily be repurposed
in other contexts.

10

d-manifest.txt
manifest.txt
v002/
 delta/
 add/
 delete.txt

Figure 12 – ReDD file system structure

The reliance on the file system as the paradigmatic
storage abstraction is justified by the design and behavioral
characteristics of modern file systems such as ZFS
(Bonwick and Moore 2007), which exhibits essentially
constant time read and write performance independent of
total number or size of files (Abrams et al. 2009). The
Storage service as deployed by UC3 policy will serve as
the copy of record for all information known about a unit
of digital content. While a subset of this information will
be managed in structured form by the Inventory service,
this is considered to be a duplicative, rather than
authoritative copy, for purposes of optimizing routine
administrative and curatorial queries. If necessary, the
Inventory service can be fully re-instantiated through an
exhaustive traversal of various Storage service file system
structures.

All of the micro-service implementations are designed
to be fully self-contained and easily deployed and operated
with minimal human intervention. While UC3 will
continue to provide a centrally-managed curation
repository, the intention of the micro-services approach is
to facilitate the distribution of efficient and effective
curation function to new constituencies and contexts,
including campus data centers, academic departments,
laboratory and field station computing clusters, and
scholars’ desktops.

Development Process

Establishing the UC3 micro-services infrastructure
draws from both traditional and agile development
principles:

 An engaged user community driving needs
assessment and functional requirements

 Early prototyping with frequent refactoring

 Continuous build and test

 Documentation as a co-deliverable, not an
afterthought

 A small group of early adopters

The 12 micro-services are being implemented in a
sequence of six developmental waves (see Table 3). The
second, fourth, and sixth wave represent significant
deliverable milestones, corresponding to a minimally,
moderately, and fully functional curation repository,
respectively.

The first through third waves are accompanied by the
concomitant development of standards and conventions for
modeling digital objects and object collections. The fourth
through sixth waves will be accompanied by the
development of common authentication and authorization
mechanisms. All six waves will be accompanied by policy
and business modeling.

The Identity and Storage services are currently
available in working form; the second wave milestone
deliverables will be ready to accept content in January
2010. The initial content will be provided by a multi-
campus pilot project on the curation of electronic theses
and dissertations. Subsequent content projects will involve
anthropological and zoological museum collections,
environmental field data, and biological type specimens.

Conclusion

In order to facilitate the application of UC Curation
Center service offerings to new campus constituencies, and
the increasing number, size, and type diversity of digital
content, the underlying curation infrastructure must be
easily adaptable to local needs and practices. An
architectural approach in which curation function is
embodied in a set of granular and orthogonal micro-
services best provides the necessary deployment flexibility,
while also simplifying development and maintenance
effort. Service interoperability is facilitated by strict
conformance to the behavioral semantics of well-defined
public interfaces. This permits comprehensive curation
function to emerge from the strategic combination of
individual atomistic services.

First wave Second wave Third wave Fourth wave Fifth wave Sixth wave 
Identity Inventory Index Search Notification Annotation
Storage Ingest Fixity Replication Characterization Transformation

Object / collection modeling Authentication / authorization
Policy and business model development

Table 3 – Micro-services developmental waves

11

References

Abbott, D. 2008. What is Digital Curation?
http://www.dcc.ac.uk/resource/briefing-papers/what-is-
digital-curation/

Abrams, S., Cruse, P., and Kunze, J. 2008. Preservation is
not a place. International Journal of Digital Curation 4(1):
8-21.

Abrams, S., Cruse, P., Kunze, J., and Loy, D. 2009.
“Where are we from? Where are we going?”: Permanent
objects, disposable systems. 4th International Conference
on Open Repositories. Atlanta: Georgia Institute of
Technology.

Abrams, S., Owens, E., and Cramer, T. 2008. “What? So
what?”: The next-generation JHOVE2 architecture for
format-aware characterization. In Proceedings of the Fifth
International Conference on Preservation of Digital
Objects, 86-92. London: British Library.

Bonwick, J., and Moore, B. 2007. ZFS: The Last Word in
File Systems.
http://www.opensolaris.org/community/zfs

Boyko, A., Kunze, J., Littman, J., Madden, L., Vargas, B.
2009. The BagIt File Packaging Format.
http://www.cdlib.org/inside/diglib/bagit/bagitspec.html

Denning, P. J., Gunderson, C., and Hayes-Roth, R. 2008.
Evolutionary system development. Communications of the
ACM 51(17): 29-31.

Fielding, R., Gettys, J., Mogul, J., Frystuk, H., Masinter,
L., Leach, P., and Berners-Lee, T. 1999. Hypertext
Transfer Protocol – HTTP/1.1, RFC 2616.
http://www.ietf.org/rfc/rfc2616.txt

Fielding, R., and Taylor, R. 2002. Principled design of the
modern web architecture. ACM Transactions on Internet
Technology 2(2): 115-150.

Fisher, D. A. 2006. An Emergent Perspective on
Interoperation in Systems of Systems. Technical Report,
CMU/SEI-2006-TR-003, ESC-TR-2006-003, Carnegie-
Mellon Univ.
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr
003.pdf

Higgins, S. 2008. The DCC curation lifecycle model.
International Journal of Digital Curation 1(3): 134-140.

Janée, G., Frew, J., and Moore, T. 2008. Relay-supporting
archives: requirements and progress. International Journal
of Digital Curation 4(1): 57-70.

Kunze, J. 2009. Software modules, command-line scripts,
test suites, and documentation supporting Pairtree,
Namaste tags, and ANVL. Comprehensive Perl Archive
Network. http://search.cpan.org/~jak/

Kunze, J., Kahle, B., Masanes, J., and Mohr, G. 2005. A
Name-Value Language (ANVL).
http://www.cdlib.org/inside/diglib/ark/anvlspec.pdf

Liegl, P. 2007. The strategic impact of service oriented
architectures. In Proceedings of the 14th Annual IEEE
International Conference and Workshops on the
Engineering of Computer-Based Systems, 475-484.
Washington, DC: IEEE Computer Society.

O’Reilly, T. 2005. Web 2.0: Design Patterns and Business
Models for the Next Generation of Software.
http://oreilly.com/web2/archive/what-is-web-20.html

Reich, V., and Rosenthal, D. S. H. 2001. LOCKSS: a
permanent web publishing and access system. D-Lib
Magazine 7(6).
http://www.dlib.org/dlib/june01/reich/06reich.html

Rusbridge, C. 2008. “Digital preservation” term considered
harmful? Digital Curation Blog,
http://digitalcuration.blogspot.com/2008/07/digital-
preservation-term-considered.html

York, J. 2009. This Library Never Forgets: Preservation,
Cooperation, and the Making of HathiTrust Digital
Library. Archiving 2009 Final Program and Proceedings.
http://www.hathitrust.org/documents/This-Library-Never-
Forgets.pdf

