
Using METS, PREMIS and MODS for Archiving eJournals

Angela Dappert, Markus Enders

The British Library
Boston Spa, Wetherby, West Yorkshire LS23 7BQ, UK

St Pancras, 96 Euston Road, London NW1 2DB, UK
angela.dappert@bl.uk, markus.enders@bl.uk

Abstract
As institutions turn towards developing archival digital
repositories, many decisions on the use of metadata have
to be made. In addition to deciding on the more traditional
descriptive and administrative metadata, particular care
needs to be given to the choice of structural and preserva-
tion metadata, as well as to integrating the various meta-
data components. This paper reports on the use of METS
structural, PREMIS preservation and MODS descriptive
metadata for the British Library’s eJournal system.

Introduction
At the British Library, a system for ingest, storage, and
preservation of digital content is being developed under
the Digital Library System Programme, with eJournals as
the first content stream. This was the driver for develop-
ing a common format for the eJournal Archival Informa-
tion Package (AIP) as defined in OAIS [CCSDS 2002].
In order to understand metadata needs, it is helpful to
understand the business processes and data structures.
eJournals present a difficult domain for two reasons. The
first is that eJournals are structurally complex. For each
journal title, new issues are released in intervals. They
may contain varying numbers of articles and other pub-
lishing matter. Articles are submitted in a variety of for-
mats, which might vary from article to article within a
single issue.
The second reason is that, the production of eJournals is
outside the control of the digital repository and is done
without the benefit of standards for the structure of sub-
mission packages, file formats, metadata formats and
vocabulary, publishing schedules, errata, etc.. As a con-
sequence, systems that handle eJournals need to accom-
modate a great variety of processes and formats. This
paper presents a solution that can accommodate the
complexity and variety found in eJournals.
Fortunately, there has been a substantial amount of work
over recent years to define metadata specifications that
can support complex cases such as eJournals. The Meta-
data Encoding and Transmission Specification (METS)
provides a robust and flexible way to define digital ob-
jects ([METS 2006]). The Metadata Object Description
Scheme (MODS) provides ways to describe objects, and
builds on the library community’s MARC tradition
([MODS 2006]). Finally, the Preservation Metadata
Implementation Strategy (PREMIS) data dictionary
([PREMIS 2005]) provides ways of describing objects
and processes that are essential for digital preservation.
These three metadata specifications are all built on an

XML ([XML 2006]) foundation. Their user communi-
ties and underlying approaches also have much in com-
mon. All of them are content-type independent, which
makes it possible to define shared usage guidelines for
the various content-types held in the archival store.
Unfortunately, there are many ways to combine these
three specifications to provide a complete solution to the
problem of defining an eJournal Archival Information
Package. This paper explains one approach.

The eJournal Ingest Workflow
Ingesting eJournals requires a complex workflow that
needs to be adjusted for each individual information pro-
vider’s submission process and formats.
Each submission may contain several submission infor-
mation packets (SIP) as defined in OAIS [CCSDS 2002].
Most SIPs are tarred or zipped files that need to be un-
packed and virus checked before they can be processed
further.
An unpacked SIP will typically contain content files,
descriptive metadata for articles, issues and journals, and
manifests listing the content of the SIP with size and
hashing information.
Since a SIP may contain one or several issues and arti-
cles for one or several journals, each structured accord-
ing to the information provider’s conventions, and possi-
bly containing special issues or supplements, the content
needs to be split up into identified packages with well-
defined structural relationships. The publisher supplied
structural relationships between article, issues and jour-
nal objects may have been captured in the directory
structure, through file naming conventions or through
explicit metadata. In the latter case, issue and journal
metadata may have been kept with each article’s meta-
data, or contained as distinct metadata sets that are linked
to each other. These relationships are extracted and rep-
resented in a uniform way, as specified in the British
Library’s METS, PREMIS and MODS application pro-
files.
Publisher supplied metadata may have been represented
using in-house formats, standards, or modified standards.
We extract metadata either from the publisher supplied
metadata or directly from the content. The latter is typi-
cally the case for technical metadata. The extracted
metadata is then normalized according to the British Li-
brary’s METS, PREMIS and MODS application profiles.
Typically, information providers submit several manifes-
tations of each article. A manifestation is a collection of
all files that are needed to create one rendition of an arti-

151

cle. An HTML manifestation, for example, might consist
of the HTML file and several accompanying image,
video and sound files. Often the submitted content con-
tains a marked-up representation of an article that, again,
may be based on proprietary, standard, or modified stan-
dard XML schemas or DTDs.
The result of the ingest and normalization processes is
one or more Archival Information Packages (AIPs) that
can be stored. Structural relationships, metadata and,
possibly, content are normalized in order to ensure uni-
form search across all digital objects and to guarantee the
sustainability of formats, data and structural relationships
of the AIPs.
The structure of the AIPs is tied to the technical infra-
structure of the preservation system.

Technical Infrastructure
The British Library’s technical infrastructure to preserve
digital material consists of an ingest system, a metadata
management component that may vary for different con-
tent-types, and an archival store that is shared for all con-
tent-types. They are linked with the existing integrated
library system (ILS). This architecture is designed to
enable access to resources, as well as to support long-
term preservation activities, such as format migrations.
The eJournal ingest system under development is highly
customizable and can be adjusted for different ingest
processes, metadata formats, and ways of bundling and
structuring the submitted content files. It extracts and
normalizes relevant metadata and content.
The metadata management component (MMC) manages
all types of metadata in a system-specific form, stores it
in a database, and provides an interface for resource dis-
covery and delivery. Since the ILS is designed to hold
information on the journal-title and issue levels only, it is
necessary to keep all article related information in the
metadata management component; the system synchro-
nizes changes to journal and issue information with the
ILS.
The archival store is the long-term storage component
that supports preservation activities. All content files are
stored there. All archival metadata (that which goes be-
yond day-to-day administration) is linked to the content
and also placed into the archival store. Even though the
metadata in the archival store is not intended to be used
for operational access, we consider it good archival prac-
tice to hold content and metadata within the same system
to ensure that the archival store is complete within itself.
This archival metadata is represented as a hierarchy of
METS files with PREMIS and MODS components that
reference all content files (images, full text files, etc.).
The bundle of METS and content files comprises the
Archival Information Package (AIP).
METS provides a flexible framework for modeling dif-
ferent document types and scenarios. The example of
eJournal preservation will show how complex documents
and their relationships are modeled in METS and stored
in the system.

AIP Granularity
To understand the design of the system, it is fundamental
to know that the objects in the underlying digital store

are write-once in order to support archival authenticity
and track the objects provenance; an in-situ update of
AIPs in the digital store is not possible. Updated AIPs
need to be added to the store and generations need to be
managed. (A generation corresponds to an update to an
object. Words such as version or edition are heavily
over-loaded in the library community.) Updates happen
for several reasons, and possibly frequently. A first pos-
sible reason is the migration of content files due to obso-
lete file formats. Second, errors might occur during the
ingest process that will result in damaged or incomplete
data. Even if effective quality assurance arrangements
are made, chances are still high that potential problems
are occasionally detected after data has been ingested.
Third, updates to descriptive or administrative metadata
that is held in the archival store may be needed. Metadata
updates might happen in small (e.g., a correction of a
typo) or larger scale. Fourth, even though the AIPs are
designed to have no dependencies on external identifiers,
it is conceivable that updates of other information sys-
tems (e.g., the ILS) might affect information stored
within the AIP.
In order to deal with updates efficiently, we

separate structural information about the relationship
of the files in a manifestation from the descriptive in-
formation and from submission provenance informa-
tion.
split logically separate metadata subsets that are ex-
pected to be updated independently (journal, issue, ar-
ticle) into separate AIPs.

The eJournal data model, therefore, contains five sepa-
rate metadata AIPs representing different kinds of ob-
jects: journals, issues, articles, manifestations, and sub-
missions. Each one is realized as a separate METS file.
The first three are purely logical objects intended to hold
relevant, mostly descriptive, metadata at that level. The
remaining two are different.
A manifestation object is a collection of all files that are
needed to create one rendition of an article. It must not
be mistaken for FRBR’s definition of a manifestation
[IFLA 1998], but is roughly equivalent to the PREMIS
representation concept. A manifestation may be original
or derivative, such as presentation copies or normalized
preservation copies of the article. The manifestation ob-
ject holds structural information about how its files relate
and provenance information about the files’ origin.
A submission object describes one submission event,
including all the tarred and zipped SIP files and a record
of all activities performed during ingest. Since data can
be lost or corrupted in the ingest process, or a need might
arise to ingest the same datasets into a different system,
we store the original data as it was provided by the pub-
lisher in the archival store linked to from its submission.
In the environment of a write-once store, this granularity
allows us to update data independently without creating
redundant records or content files.
The set of these objects represents a hierarchical data
model with well defined links from underlying entities to
the direct parent. We store relationships between those
AIPs in the AIPs themselves in addition to the metadata
management component’s database. This ensures that the
archival store is a closed system that is consistent and
complete within itself.

152

METS/MODS/PREMIS
Every AIP contains at least one XML file that uses the
METS schema. METS provides a flexible framework for
modeling different document types and scenarios. Using
additional metadata schemas, so called extension sche-
mas, METS can embed descriptive metadata records as
well as digital provenance, rights and technical metadata.
Figure 1 shows the basic sections of a METS file, which
are in use in our system. We store descriptive metadata
as a MODS extension to the <mets:dmdSec> section.
Provenance and technical metadata are captured as
PREMIS extensions to the <mets:amdSec>
<mets:digiprovMD> and the <mets:amdSec>
<mets:techMD> sections. If the METS file describes
content files, then they are identified in the
<mets:structMap> section.
Within each AIP there is only one single METS file.

METS / MODS / PREMIS Based Data
Model

The diagrams in Figures 3, 4, and 5 describe the choices
we made for representing the objects, their metadata and
their relationships to each other within METS, PREMIS
and MODS. As illustrated in Figure 2, METS files are
represented as shaded boxes, content files are repre-

sented in
white
boxes. Re-
lationships
that are
expressed
through
METS tags
are shown as dashed arrows; those expressed through
PREMIS tags within METS are shown as solid arrows;
those expressed through MODS relationsh

METS File

Content
File

PREMIS link

METS link

MODS link

Figure 2: Legend for Figures 3, 4, and 5

ip tags within

of object and the relation-
ships to other related objects.

ETS file. See Figure 3 for a graphical

rofile describes the

l

MC-ID
(M ment Component identifier).

m
m MMC-ID”>

m
m MMC-ID”>

rent

dItem>

ust be used to support effi-

ntains
g information.

ng="w3cdtf">1984

METS are shown as dotted arrows.
Each of the five objects mentioned above is described in
a separate METS file that forms a separate AIP. It stores
all information about the kind

Structural Entities: Journal, Issue and Article
Each structural entity, journal, issue and article, is stored
in a separate M

<mets:mets TYPE="issue">

<!-- section for descriptive metadata -->
<mets:dmdSec>
 <mets:mdWrap MDTYPE="MODS">
 <mets:xmlData> … </mets:xmlData>
 </mets:mdWrap>
</mets:dmdSec>

<!-- section for administative metadata -->
 <mets:amdSec>

 <!-- section for technical metadata -->
 <mets:techMD>
 <mets:mdWrap MDTYPE="PREMIS">
 <mets:xmlData> … </mets:xmlData>
</mets:mdWrap>
 </mets:techMD

 <!-- section for digital provenance metadata -->
 <mets:digiprovMD>
 <mets:mdWrap MDTYPE="PREMIS">
 <mets:xmlData> … </mets:xmlData>
</mets:mdWrap>
 </mets:digiprovMD>

 <!-- section for rights metadata -->
 <mets:rightsMD>
 <mets:mdWrap MDTYPE="MODS">
 <mets:xmlData> … </mets:xmlData>
</mets:mdWrap>
 </mets:rightsMD

 </mets:amdSec>

<!-- section describing structural relationships -->
<mets:structMap>
 <mets:div TYPE="issue"
 DMDID="ex01MODS01"/>
</mets:structMap>

</mets:mets>

representation.
Descriptive metadata is expressed using the MODS
metadata extension schema to METS and is embedded in
a single <mets:dmdSec> section of the METS file. A
separate British Library MODS p
elements in use and their meaning.
We use the MODS “host” link to express the hierarchica
parent/child relation between journal, article, and issue.
The link uses a unique identifier that is stored within the
parent object using the <mods:identifier> element. In
our implementation, the identifier is called an M

etadata Manage
< ods:mods>
 < ods:identifier type=”
 Identifier_of_object
 </mods:identifier>
 < ods:relatedItem type=”host”>
 < ods:identifier type=”
 Identifier_of_pa
 <mods:identifier>
 </mods:relate
 </mods:mods>

Links from child to parent are suitable for systems with a
write-once approach. The child objects are updated with
greater frequency; for example, each new issue links to
the journal. If the link was represented in the other di-
rection, it would be necessary to create a new generation
of the journal object for each issue. There are two issues
that must be considered when implementing this ap-
proach. First, the identifier for the parent must be avail-
able before the child’s AIP can be defined and ingested.
Second, additional indices mFigure 1: Embedding MODS and PREMIS in the

METS container cient traversal and retrieval.
As the issue or journal AIPs do not contain information
about the order of the articles, and as articles may be
ingested out of sequence, the position of the article
within an issue must be stored within the article’s de-
scriptive metadata. The <mods:part> element co
machine and human readable sortin
 <mods:part order="w3cdtf">
 <mods:date encodi
 </mods:date>

153

 <mods:detail type="volume">
 <mods:number>38</mods:number>

38030">
3</mods:number>

formation can be used to create a table of con-

tore using suitable persistent identifying
information.

n> element is used to store the

ink by the <mets:mdref> link.

hema. Events can be associ-

As mentioned earlier, in a write-

d

> element as a generation identi-
.

entifierType>

ue>

>

 </mods:detail>
 <mods:detail type="issue" order="19840
 <mods:number>
 </mods:detail>
 </mods:part>
This in
tents.
The MODS <mods:relatedItem> element is also used to
express a range of descriptive relationships between
different objects. For example, the relationship among
articles that comprise a series is expressed using the
value “series” for its type attribute; the relationship be-
tween a journal published under a new name and the
journal as it was previously known is expressed using the
value “preceding” for its type attribute. Some of these
relationships may refer to objects that are held outside
the archival s

For preservation purposes, we also store intrinsic, non-
volatile rights information. This includes copyright in-
formation as well as license information. License infor-
mation is stored in a separate policy AIP. Thus, every
object that is licensed or acquired under a single policy
can refer to the same policy object. This makes it easy to
update rights information for several objects at a time
without changing a large number of AIPs. The
<mods:accessConditio
link to the policy file.
 <mets:dmdSec> …
 <mods:mods>
 <mods:accessCondition
 type="GoverningLicense"
 xlink:href="http://xxxxx"/>
Similar considerations apply to Preservation Plans to
which article objects l

 <mets:amdSec>
 <mets:digiprovMD>
 <mets:mdref
 MDTYPE="OTHER"
 OTHERMDTYPE="Preservation Plan"

 OTHERLOCTYPE="MMC-ID" … />
 LOCTYPE="OTHER"

Provenance Metadata for Structural Entities
Long-term preservation requires us to keep a careful re-
cord of events related to digital material. Events might
impact the data being preserved; data can be lost, cor-
rupted or modified by an event. Some events won’t im-
pact the data itself, but extract information from the data
to be used during its processing. Information about
events is stored in the AIP’s digital provenance metadata
section using the PREMIS sc
ated with any object type.

once environment, up-
dates to metadata re-
quire the creation of a
new generation of the
structural entity. In
this case, a new AIP
for the journal, issue
or article is created.
This model results in
several AIPs repre-
senting the different
generations of one
logical object. While
the MODS section
within the METS file
defines a unique
MMC-ID identifier
for the logical journal,
issue or article object,
we need an identifier
that is unique to the
specific AIP of the
object’s generation.
Journal, issue or arti-
cle AIPs have a single
PREMIS section un-

er the
<mets:digiProvMD>

subsection that stores the AIP’s identifier within the
<premis:objectIdentifier
fier, called MMC-ID+
 <mets:amdSec>
 <mets:digiprovMD
 <premis:object>
 <premis:objectIdentifier>
 <premis:objectId
 MMC-ID +
 </premis:objectIdentifierType>
 <premis:objectIdentifierVal
 MMC-ID.20070909:3
 </premis:objectIdentifierValue
 </premis:objectIdentifier> …
The logical object can, hence, be addressed via the
MMC-ID stored in MODS; the AIP that represents a

Article

Journal

<mets:dmdSec>
 … <mods :relatedItem
 type =”series” >

<m ets:dm dSec >
 … <m ods:relatedItem
 type =”series” >

<mets:dmdSec>
 … <mods :relatedItem
 type =”preceding” >

<m ets:am dSec >
 <m ets:digiprovMD >
 <premis :object>
 <premis:relationship >
 <prem is :relationshipSubType >
 generation

<m ets:am dSec >
 <mets:digiprovMD >
 <premis:object>
 <premis:relationship >
 < prem is :relationshipSubType >
 generation

<m ets :am dSec>
 <mets:digiprovM D >
 <premis:object >
 <prem is:relationship >
 < prem is :relationshipSubType >
 ge

<p remis: e ve nt>
<p remis:eve ntType >
meta d ata U p da te

neration

Issue

Manifes -
tation

<mets:dmdSec>
 … <m ods:accessCondition >

Policy
F iles

<mets:dmdSec >
 … <mods:relatedItem
 type =”host”>

<m ets:dmdSec>
 … <mods:relatedItem

<mets:amdSec>
<mets:digiprovMD >

 <m ets:mdref>

Preserva
tion P lan

F ile

<m ets:amdSec >
 <mets:digiprovM D>
 <premis:object >
 <prem is:relationship >
 <premis :relationshipSubType >
 m anifestationOf<pre m is : even t>

<pre m is :e ve n tTyp e>
me ta da ta U pd ate

 type =”host” >

me ta da ta U pd ate
e ve n tTyp e>

Figure 3: Data model - Structural Entities

154

certain generation of the logical object together with in-
formation about its digital provenance can be addressed
via the MMC-ID+ stored in PREMIS. This is true to our
attempt of keeping logical, descriptive information in
MODS, and digital provenance information in PREMIS.
Each relationship in our data model is expressed via the

nd a version num-

om it and the <pre-
ted the event.

SubType>
…

s of
provenance metadata used will be discussed below.

tations are linked to their article and submission objects </premis:relationship>

appropriate identifier type.
The MMC-ID+ identifier is derived from the MMC-ID
identifier, concatenated with a colon a
ber; it is unique for the AIP.
A <premis:relationship> “generation” link identifies the
predecessor’s AIP, and specifies the “metadataUpdate”
event in which it had been derived fr
mis:agent> that execu
 <mets:amdSec>
 <mets:digiprovMD> …
 <premis:object> …
 <premis:relationship> …
 <premis:relationship
 generation
 <premis: event>
 <premis:eventType>metadataUpdate …
All digital provenance metadata is captured using the
PREMIS extension schema, and is stored within the ad-
ministrative metadata section of METS. Other type

Manifestation
Each manifestation of an article is stored in a separate
METS file. A manifestation links its actual content files
together, records all events that have happened to its con-
tent files (such as uncompressing, migrating, extracting
properties) and links to related versions of those files
(such as the original compressed file, or the file that was
the source for the migration or normalization). Manifes-

using the PREMIS extension schema. See Figure 4 for a
graphical representation of these properties.
Each manifestation has one <mets:amdSec> that is dedi-
cated to holding information about itself, and one for
each of its files. The manifestation’s <mets:amdSec>
section contains the unique identifier for the manifesta-
tion and links to the article and submission objects using
their MMC-ID using PREMIS

<mets:amdSec>
 <mets:digiprovMD> ...
 <premis:object>
 <!-- identifier of the manifestation -->
 <premis:objectIdentifier>
 <premis:objectIdentifierType>
 MMC-ID+
 </premis:objectIdentifierType>
 <premis:objectIdentifierValue>
 MMC-ID.12345:1
 </premis:objectIdentifierValue>
 </premis:objectIdentifier>
 <premis:relationship>
 <premis:relationshipType>
 Derivation
 </premis:relationshipType>
 <premis:relationshipSubType>
 manifestationOf
 </premis:relationshipSubType>
 <premis:relatedObjectIdentification>
 <premis:relatedObjectIdentifierType>
 MMC-ID
 </premis:relatedObjectIdentifierType>
 <!-- identifier of the article -->
 <premis:relatedObjectIdentifierValue>
 MMC-ID.32596:1
 </premis:relatedObjectIdentifierValue>
 </premis:relatedObjectIdentification>

<premis: event>
<premis:eventType>
uncompress

Manifes-
tation

Content
File

<premis:linkingEventIdentifier>

<mets:amdSec>
 <mets:digiprovMD>
 <premis:object>
 <premis:relationship>
 <premis:relationshipSubType>
 containedInSubmission

<premis:relationship>
 <premis:relationshipSubType>
 migratedFile

Submis-
sion

<premis:relationship>
 <premis:relationshipSubType>
 generation

One amdSec per content file:
 <mets:amdSec ID=xxx>
 <mets:digiprovMD>
 <premis:object>

<mets:fileSec>
 <mets:fileGrp>
 <mets:file A
 <mets: Floc

DMID=xxx>
at>

<mets:amdSec>
 <mets:digiprovMD>
 <premis:object>
 <premis:relationship>
 <premis:relationshipSubType>
 manifestationOf

Article

<premis:relationship>
 <premis:relationshipSubType>
 uncompressedFile

<premis: event>
<premis:eventType>
integrityCheck

<premis
<premis
validati

: event>
:eventType>

on

<premis: event>
<premis:eventType>
propertyExtraction

<premis: event>
<premis:eventType>
formatIdentification

<premis: event>
<premis:eventType>
migration

<premis: event>
<premis:eventType>
metadataUpdate

Figure 4: Data Model - Manifestation

155

Similarly the link to the manifestation’s submission ob-
ject is realized through a <premis:relationship> <pre-
mis:relationship-SubType> “containedInSubmission”.
The <mets:fileSec> section is used to identify each con-
tent file of the manifestation by defining a METS
ADMID administrative identifier for it, and to link to the
AIPs where these files are actually stored. Each content
file receives its own <mets:amdSec> section that is
linked to the file by the ADMID that was defined in the
<mets:fileSec>. This <mets:amdSec> section stores
preservation metadata for content files.
Preservation metadata should support authenticity, un-
derstandability and identity of digital objects in a preser-
vation context and represent the important information to
preserve digital materials over a long term [PREMIS
March 2008]. The METS schema does not have a section
dedicated to preservation metadata. Instead it splits pres-
ervation metadata into technical, digital provenance,
source and rights metadata. Therefore, preservation
metadata represented in PREMIS needs to be split up and
distributed over these sections. General considerations
for this decision process have been discussed in
[PREMIS June 2008] and [Guenther 2008].
Fixity and format information for files are regarded as
technical information. Therefore the appropriate <pre-
mis:object> element containing this information is stored
within the <mets:techMD> section. The digital prove-
nance information contains basic identification and
provenance information (relationships and events, as
well as their attached agents) and is stored within the
<mets:digiProvMD> section. As the PREMIS-container
element <premis:premis> is not used, this is in accor-
dance with the current METS-PREMIS guidelines
[PREMIS June 2008].
As some of the metadata described in the PREMIS data
dictionary is mandatory and the XML file won’t validate
without incorporating this metadata in every PREMIS
section, the object-identifier as well as the object cate-
gory are repeated in each section.

Provenance Metadata for Manifestations
Similar to structural entities, manifestations can have a
“generation” <premis:relationship> that identifies a
predecessor AIP and a “metadataUpdate” event if correc-
tion of metadata has been necessary.
In contrast, a different kind of relationship, however, is
not realized as provenance metadata. When the actual
semantic content of an AIP gets updated, it is usually
regarded as versioning of content. Within the eJournal
context a new version is created whenever the publisher
decides to publish a corrected or an enhanced version of
an article. From the preservation system’s perspective
this article is seen as a separate expression and a new
AIP is created for the article as well as for its manifesta-

tion. The link between two expressions is not regarded as
digital provenance metadata. For this reason the link to
the previous version is stored in the descriptive MODS
metadata record of the new version.

Provenance Metadata for Files
There are two different kinds of events for files: those
which are side-effect free and capture information about
a file, and those which result in the creation of a deriva-
tive file.
Side-effect free events include identification and valida-
tion of the file’s format, extraction of properties or meta-
data, and validation of the file’s contents to ensure its
authenticity when it is disseminated, by checking and
comparing the data against stored metrics, such as check-
sum values. These events are represented in the file’s
<mets:amdSec><mets:digiprovMD> section in its mani-
festation’s METS file. Storing e.g. the metadata extrac-
tion process as an event lets us store the metadata extrac-
tion software used during this process as a related agent.
As the event does not change the file, no relationship of
the file to other objects is stored in the PREMIS meta-
data.
Derivation events produce a new bytestream while pre-
serving its significant properties and semantic content.
This will, for example, happen if an obsolete file format
is regarded as “at risk” and a migration has to take place.
In this case a new manifestation is created. A “migrated-
File” <premis:relationship> links back from each file
that results from the migration to each file that fed into
the migration (One or several files can be migrated to
one or several files). The “migration” event in which it
had been derived and the <premis:agent> that executed
the migration are recorded with the resulting file.
All files of a manifestation are referenced in its
<mets:fileSec>. If a new manifestation is created during
a “migration” event, in its <mets:fileSec> it may refer-
ence some unchanged files and some that resulted from
the migration event. The un-affected files won’t have any
related file relationships.
A relationship and event similar to the “migration” event
is recorded for an “uncompress” event and links from the
uncompressed files to the compressed file.
Usually the event outcome should be successful. If a
“migration” or an “uncompress” event fails, the file will
not be ingested. However, for certain events a negative
outcome will not prevent ingest. For example, if the vali-
dation of a file cannot be carried out successfully (the
validation-event fails), it is handled as an exception and
attempts are made to fix the file. If this is not successful,
it might be decided to ingest an invalid file just to make
sure that the manifestation is complete. Further attempts
at fixing the file can possibly be made in the future. This
event outcome is recorded within the PREMIS event.

156

Submission
A submission object de-
scribes a single submis-
sion event. This includes
all the tarred and zipped
SIP files as they have been
submitted by a publisher,
and a record of all activi-
ties performed during in-
gest. See Figure 5 for a
graphical representation of
these properties. The
structure and relationships
of the submission object
are very similar to the
manifestation object.
Rather than content files,
it references SIPs in its
<mets:fileSec> and each
SIP has a <mets:amdSec>
of its own to hold its
provenance metadata.

SIP Files

Manifes-
tation

<premis: event>
<premis:eventType>
uncompressUnpack

<premis: event>
<premis:eventType>
virusCheck

<premis: event>
<premis:eventType>
metadataExtraction

<premis: event>
<premis:eventType>
accession

Submis-
sion

<premis:relationship>
 <premis:relationshipSubType>
 generation

<premis: event>
<premis:eventType>
integrityCheck

<premis: event>
<premis:eventType>
validation

<premis: event>
<premis:eventType>
propertyExtraction

<premis: event>
<premis:eventType>
formatIdentification

<mets:amdSec>
 <mets:digiprovMD>
 <premis:object>
 < premis:relationship>
 < premis:relationshipSubType>
 containedInSubmission

<mets:amdSec ID=yyy>
 <mets:digiprovMD>
 <premis:object>
 < premis:linkingEventIdentifier>

<mets:amdSec ID=xxx
 <mets:digiprovMD>
 < premis:object>
 < premis:linkingEventIdentifier>

<premis: event>
<premis:eventType>
metadataUpdate

<mets:fileSec>
 <mets:fileGrp>
 <mets:file>
 < mets: Flocat>

Provenance Metadata
for Submissions
Similarly to structural entities and manifestations, a
submission object can have a “generation” <premis: rela-
tionship> with a “metadataUpdate” <premis:event>.
All other events recorded for a submission object are free
of side-effects. Events such as “accession”, “uncompres-
sUnpack”, “metadataExtraction” and “virusCheck”
should theoretically be recorded on a file level, but are
actually recorded at the submission level in order to
avoid redundancy, since they are identical for all files of
a submission.

Provenance Metadata for SIPs
The <mets:amdSec> associated with each SIP file has
the same side-effect free events as were described for
content files in manifestations. It does not contain any
events with side-effects or relationships to other files.

METS, PREMIS and MODS Trade-offs
Several metadata elements can be represented in either or
several of the metadata schemas. When choosing be-
tween them it is helpful to consider that the purpose of
the metadata schemas are very different. METS de-
scribes a document, while PREMIS stores preservation
data for the document or for certain parts (files) of it, and
MODS captures descriptive information. Some of the
metadata that is captured can be used for several differ-
ent purposes.
Basic technical metadata, for example, such as check-
sums and file sizes, are important for preservation pur-
poses but are also part of a complete and detailed de-
scription of a digital document. Appropriate elements are
available in both schemas (for example,
<premis:object><premis:objectCharacteristic>
<premis:size> and
<mets:fileSec><mets:fileGrp><mets:file SIZE=…>

as well as
Figure 5: Data Model - Submission

<premis:object><premis:objectCharacteristic>
<premis:fixity><premis:messageDigest> and
<mets:fileSec><mets:fileGrp>
<mets:file CHECKSUM=…>)
It is envisaged that this information is used in use cases
that access either the METS or the PREMIS metadata
portions separately. We therefore store this identical in-
formation redundantly in METS and PREMIS. Addition-
ally, it was desirable to be able to store several check-
sums in a repeatable element, such as in PREMIS, rather
than in a non-repeatable attribute, such as offered by
METS.
For file format information our considerations were as
follows. While METS only stores the MIME-type of a
file, PREMIS permits referencing an external format
registry. For eJournals the PRONOM database is used
and referenced. The MIME-type is usually sufficient to
disseminate and render a file (e.g., the MIME type needs
to be incorporated in the http-header when transferring
files). But for preservation purposes further information
about the file format, such as the version or used com-
pression algorithm, might be very important. In theory
the MIME type could be extracted from the PRONOM
registry, but every dissemination would require a request
to the PRONOM database. Storing the data redundantly
is, therefore, convenient, especially as there was no con-
cern about data becoming inconsistent in our write-once
archival store. While the <mods:physicalDescription>
element offers the possibility of specifying technical
properties, we decided to keep all technical metadata
together in METS or PREMIS where they would be used
together. Using the relevant MODS subelements offered
no advantage over the more fit-for-purpose elements in
PREMIS and METS. We therefore chose not to use
MODS on a manifestation or file level at all.
Even though the relationship between a manifestation
object and its article object can be regarded as a hierar-

157

chical one and could be recorded via a
<mods:relatedItem> link, we did not want to introduce a
MODS section for manifestations just for holding it. In-
stead the "manifestationOf" <premis:relationship> ele-
ment is used within the administrative metadata section.
Rights information in our AIPs is not intended to be ac-
tionable, in the sense that it does not directly support any
repository function, such as access or preservation.
Rather it is of an archival, descriptive nature. We, there-
fore, capture it in MODS rather than PREMIS in order to
keep it together with other descriptive information.
MODS rights information that is of an administrative
nature and might change but is still considered archival,
such as embargo information, is stored in the
<mets:amdSec><mets:rightsMD> section, whereas de-
scriptive rights information, such as the persistent copy-
right statement, is kept with other descriptive metadata in
the <mets:dmdSec>.
An event that affects several objects is recorded in each
affected object’s <mets:amdSec>. To create a complete
set of metadata, the related agent - the software that exe-
cuted the event - is stored within the same
<mets:amdSec>. Unlike proposed in the current version
of the METS-PREMIS guidelines ([PREMIS June
2008]), the <premis:agent> is stored redundantly within
each PREMIS section of the same METS file. As each
PREMIS section contains a complete set of metadata for
a file, extracting, storing or indexing it for preservation
purposes becomes very easy.

PREMIS 1.0 versus 2.0
Our current implementation uses version 1.1 of the
PREMIS data dictionary ([Premis 2005]) and the corre-
sponding XML schema. After version 2.0 was released
in March 2008 ([PREMIS March 2008], [Lavoie 2008]),
the impact of changes on the current AIP format were
investigated.
Neither the fundamental data model of PREMIS, nor the
event and relationship information have changed. The
most important change is the possibility of using exten-
sions from within PREMIS that permit embedding of
metadata from other metadata schemas. Some elements
used in the AIPs could be refined within PREMIS using
an additional metadata schema. The event outcome, as
well as the creating application, the object characteris-
tics, and the significant properties could be described in
more detail.
For us, the <premis:objectCharacteristicsExtension>
might beneficially be used to capture further, object or
format-specific, technical metadata for a file. Currently
this data is stored in a <mets:techMD> technical meta-
data section using the JHOVE schema. If it is only used
for preservation purposes, it might be useful to move it to
the <premis:objectCharacteristicsExtension> instead.
Bigger changes have been made in the XML schema. It
does not only support the additional elements, but also
defines abstract <premis:object> types, and creates spe-
cial instances for representation, file and bitstream.
These instances allow the mapping of the data diction-
ary’s applicability and obligation constraints to the XML

schema and ties them to the object type. This might im-
prove and simplify the validation process

Conclusion
No single existing metadata schema accommodates the
representation of descriptive, preservation and structural
metadata. This paper shows how we use a combination
of METS, PREMIS and MODS to represent eJournal
Archival Information Packages in a write-once archival
system.

References
METS 2006. Metadata Encoding and Transmission
Standard (METS) Official Web Site. Version 1.6.
http://www.loc.gov/standards/mets/

PREMIS Working Group, May 2005. Data Dictionary
for Preservation Metadata: Final Report of the Premis
Working Group, version 1.0. http://www.oclc.org/
research/projects/pmwg/premis-final.pdf

MODS 2006. Metadata Object Description Schema.
Version 3.2. http://www.loc.gov/standards/mods/

Bray, T. et al. eds. 2006, Extensible Markup Language
(XML) 1.0 (Fourth Edition). http://www.w3.org/TR/
2006/REC-xml-20060816/

CCSDS, January 2002. Reference Model for an Open
Archival Information System (OAIS). CCSDS 650.0-B-1,
Blue Book (the full ISO standard).
http://public.ccsds.org/publications/archive/650x0b1.pdf

IFLA Study Group on the Functional Requirements for
Bibliographic Records, 1998. Functional requirements
for bibliographic records : final report. München: K.G.
Saur, 1998. (UBCIM publications; new series, vol. 19).
ISBN 3-598-11382-X.

PREMIS Editorial Committee, March 2008. PREMIS
Data Dictionary for Preservation Metadata, version 2.0.
http://www.loc.gov/standards/premis/v2/premis-2-0.pdf

PREMIS in METS Working Group, June 2008 Guide-
lines for using PREMIS with METS for exchange. Re-
vised June 25, 2008. http://www.loc.gov/standards/
premis/guidelines-premismets.pdf

Guenther, R., 2008. Battle of the Buzzwords; Flexibility
vs. Interoperability When Implementing PREMIS in
METS. D-Lib Magazine, July/August 2008, Vol. 14 No.
7/8, doi:10.1045/dlib.magazine, ISSN: 1082-9873.
http://www.dlib.org/dlib/july08/guenther/07guenther.htm
l

Lavoie, B. 2008. PREMIS with a fresh coat of paint:
Highlights from the Revision of the PREMIS Data Dic-
tionary for Preservation Metadata. D-Lib Magazine,
May/June 2008,Vo. 14 No. 5/6, ISSN 1082-9873.
http://www.dlib.org/dlib/may08/lavoie/05lavoie .html

This article was also published in D-Lib Magazine, Sep-
tember/October 2008, Vol. 14, No. 9/10.

158

