
A Logic-Based Approach to the
Formal Specification of Data Formats

Michael Hartle, Arsene Botchak, Daniel Schumann, Max Mühlhäuser

Technische Universität Darmstadt
Telecooperation Group

Hochschulstr. 10
D-64289 Darmstadt, Germany

{nhartle,max}@tk.informatik.tu-darmstadt.de

Abstract
Processing information stored as data in a specific data
format is tightly coupled with software implementations
that handle necessary elementary processes such as read-
ing and writing. These implementations depend on spe-
cific technological environments and thus age due to
rapid technological change. The resulting effective loss of
information is a major problem for Digital Preservation.
In order to provide for persistent, authentic access to
stored information, this paper presents a logic-based ap-
proach for the formal specification of data formats.

Introduction
What turns data into information is the knowledge on its
semantics, its intended meaning. If this knowledge is
lost, so is our access to information that is contained in
data. A good example from history was the inability to
read ancient hieroglyphic Egyptian script for more than a
millennium, fortunately solved by the happenstance of
the Rosetta Stone. Only by the lucky circumstance of it
carrying three distinct translations of a decree, it enabled
the inference of the meaning of hieroglyphs in the early
19th century (Solé, Valbelle, and Rendall 2002).
For digital information, the problem of preserving the
knowledge of its intended meaning, its data format, is a
lot more complex. We do not have a small set of lan-
guages like hieroglyphic Egyptian with distinguishable
symbols in use, but rather a variety of different data
formats on binary data. Each of them defines the mean-
ing of bits and bytes essentially depending on context, so
for accessing contained information, establishing the
meaning of data from context needs processing. Yet for
this processing, we depend on implementations that are
expensive to create, do age over time and become obso-
lete due to rapid technological change.

Research Problem
Our central research problem is that the current state of
specifying data format knowledge is based on semi for-
mal, textual specifications. As these documents are in-
tended for human engineers, application of this knowl-
edge to a problem inevitably depends on human labour,

needed for developing suited implementations for a spe-
cific technological environment and purpose.
Now, rapid technological change of environments (e.g.
hardware, operating systems, programming languages)
combined with a variety of processing purposes (e.g.
reading, writing, validating, repairing, optimizing) and
the ongoing development of data formats constantly
retriggers the need for a new development cycle. Com-
plicating matters, reuse is often severely limited, as adap-
tation of existing source code can be next to impossible
due to radical differences in suited implementations.
Taking X.509 security certificates as example, develop-
ing software can result in widely different implementa-
tions for writing them on a Java mobile phone, for read-
ing them in a batch using C++ on a Linux server or for
validating them using Assembler on an memory-
constrained embedded system.
Developing format-compliant implementations is a
highly complex task, yet at the same time, human engi-
neers have cognitive limits and make mistakes. The cost
for developing an implementation, e.g. for sufficiently
qualified labour, puts economic limits to feasibility for
both public institutions and private companies.
Regarding public institutions, current Digital Preserva-
tion practices such as evaluating the risk of data format
obsolescence in regular intervals and planning for timely
data migration tell of this problem. For private compa-
nies, there must be a commercial incentive for the devel-
opment and maintenance of products in support of a
specific data format - the monetary value of information
contained must match the cost associated with its imple-
mentation and support in practice. If the monetary value
does not match its cultural or scientific value on a short
timescale, products are discontinued or not developed,
resulting in a loss of required processing means, the
underlying data format knowledge and thus ultimately of
access to contained information.

Contribution
For Digital Preservation of information in arbitrary data
formats, the current practice of semi-formal, textual
specifications and the subsequently required human
engineering effort is too expensive to guarantee long

292

term access to information, not speaking about other
usual problems such as format-compliance of implemen-
tations and authenticity of data.
We therefore propose the formal description of data
formats in order to make data format knowledge ma-
chine-processable in the first place and thus enable its
automated application in a scalable manner, e.g. for
extracting information from formatted data or for gener-
ating skeleton source code for implementations.
Towards that purpose, we recently published the concept
of Bitstream Segment Graphs (BSGs) for describing the
composition of data (Hartle et al. 2008a). In this paper,
we build upon BSGs and contribute a logic-based ap-
proach for formal data format specification.

Related Work
Data formats are not only a subject in Digital Preserva-
tion, but rather a cross-cutting concern that appears in
other disciplines of research as well:
• In Multimedia, motivations for research on data for-

mats were the need to specify data formats for MPEG-
4, e.g. for Part 2 (Visual) (ISO 2004) on the one hand
and the Universal Multimedia Access (UMA) vision
(Vetro, Christopoulos, and Ebrahimi 2003) in the con-
text of MPEG-21 (ISO 2007) on the other hand, part
of which focuses on content adaptation and filtering.
The former led to MSDL-S (Eleftheriadis 1996) and
its successor Flavor/XFlavor (Eleftheriadis and Hong
2004), whereas the latter resulted in BSDL (ISO
2008). In this domain, contributions in literature are
basically restricted to high-level descriptions of bit-
streams.

• Regarding Telecommunication, the main motivation
was the need to specify an efficient representation of a
data model in an interoperable manner. This has lead
to the Abstract Syntax Notation One (ASN.1) (ITU-T
1997), the generic Encoding Control Notation (ITU-T
2002b) and specific standard encodings such as CER
or DER (ITU-T 2002a). For arbitrary data formats that
do not fit into these encodings, universal applicability
is sometimes claimed for the combination of ASN.1 &
ECN, yet such a claim has neither been proven nor
substantiated for these two highly complex specifica-
tions.

Other disciplines also touch upon the subject of data
formats, e.g. the Semantic Web with the problem of
making information accessible to machine reasoning, or
IT Security with the problem of testing application ro-
bustness by the introduction of data errors, so-called
fuzzing (Miller, Fredriksen, and So 1989)

Approach
In general, we assume a data format to define a lossless
digital representation of some structured information for
purposes of storage and transmission. A data format
therefore defines a set of finite, consecutive bit se-
quences and a set of structured information. Both sets
may be infinite in size and have a one-to-one correspon-
dence.

We thus assume that there exists a bijective mapping
function between both sets (for parsing and serialisation)
as well as functions for deciding the membership in
either set. For practicability, we require that all three
problems (bijective mapping as well as membership in
either set) are computable and decidable, that is, there
exists a Turing machine that always computes an answer
to the problem and halts.

Computational Complexity
Bijectivity of the mapping function does not limit its
computational complexity, as it was shown that every
single-tape Turing machine can be converted into a logi-
cally reversible 3-tape Turing machine (Bennett 1973).
Moreover, no general formalism can exist that exactly
covers the set of decidable problems, as follows from the
Halting Problem (Hopcroft and Ullman 1979). There-
fore, describing arbitrary data formats requires a formal-
ism which is equal to the Turing machine in computa-
tional power. Such a formalism inherits the Halting Prob-
lem and thus cannot guarantee decidability by itself.

Decomposing the problem
In order to decompose the problem of formal data format
specification, we define a data format instance as the
bijective mapping between a pair of elements from both
sets. We further define a data format as a potentially
infinite set of data format instances, with the definition
intentionally being analogous to that of a formal lan-
guage (Mateescu and Salomaa 1997).
We therefore decompose the problem of formal data
format specification into the problem of describing arbi-
trary data format instances and the problem of describing
a possibly infinite set of bijective mappings.

Model
For the first problem, we have recently proposed a model
for describing arbitrary data format instances using the
Bitstream Segment Graph (Hartle et al. 2008a), which
has also been applied for describing exploits in IT Secu-
rity (Hartle et al. 2008b). For the latter problem, we build
upon the BSG model and propose a logic-based approach
through fixed-point deduction of BSG instances.

Describing arbitrary data format instances
An abbreviated introduction into Bitstream Segment
Graphs is given in this subsection. For a more formalized
description, the reader is kindly referred to (Hartle et al
2008a).
Entities
A bitstream segment is a finite, consecutive bit sequence
such as 01000001. A bitstream source is a defined bit-
stream segment that is to be described and which follows
a certain data format, e.g. a specific image file or a net-
work packet.
A bitstream transformation is a bijective mapping of
input bitstream segments to output bitstream segments,
limited to one of the following normalisations:

293

Bitstream segment type Used in encoding? Used in transformation? Coverage
Generic no no (as input) 0
Primitive yes no (as input) 1
Structure no segmentation (as input) length-weighted coverage of successors
Transcode no transformation (as input) coverage of successor
Fragment no concatenation (as input) coverage of successor
Composite no concatenation (as output) coverage of successor

Table 1: Bitstream segment types.

• the segmentation transformation that splits one input
bitstream segment into two or more ordered output
bitstream segments (1:n),

start end
type
id

start end
type

parameter
id

Figure 1: Visual representations: generic, structure
and composite bitstream segments (left); fragment,
primitive and transcode bitstream segments (right).

• a class of block transformations which transform one
input bitstream segment into one output bitstream
segment (1:1), and

• the concatenation transformation that joins two or
more ordered input bitstream segments into one output
bitstream segment (n:1).

Examples for these normalised bitstream transformations
are the segmentation of a data structure into its fields,
block transformations such as GZIP compression, AES
encryption or Reed-Solomon error-correction, or the
aggregation of a fragmented multimedia stream in an
Apple QuickTime container. Arbitrary (n:m) bitstream
transformations can be constructed through sequential
composition of multiple normalised transformations. A
bitstream transformation connects input and output seg-
ments as predecessors and successors, respectively. No
cycles may be formed through bitstream transformations
either directly or indirectly.

0 1.024
Structure

a

0 512
Transcode

GZIP
b

512 1.024
Fragment

#1
c

0 2.048
Fragment

#0
d

0 2.560
Composite

e

0 2.560
Primitive
short[]

f

Figure 2: Minimal example of a BSG instance.

A bitstream encoding is a bijective mapping between a
bitstream segment and a typed literal, representing some
information. For example, the bit sequence 01000001
represents the number 65 for a big-endian unsigned inte-
ger encoding, whereas for an ASCII encoding, it repre-
sents the letter A.
Every bitstream segment belongs to one of 6 bitstream
segment types, depending upon its participation in bit-
stream transformations and bitstream encodings as listed
in Table 1. For example, it may be a structure composed
from two or more successor bitstream segments, a primi-
tive if it represents an encoded literal, or a generic if it
does not participate in a bitstream transformation or a
bitstream encoding.
The coverage of a bitstream segment is a measure in the
range between 0 and 1 and expresses how completely a
bitstream segment is mapped to encoded literals through
its successor(s). It is computed depending on the bit-
stream segment type (see Table 1). For example, for a
structure bitstream segment a with two primitive seg-
ments as successors, the coverage of a would be 1. In
case of one primitive segment and a generic segment of
equal length as successors, the coverage of a would be
0.5. The coverage of a BSG instance refers to that of its
bitstream source.
A Bitstream Segment Graph (BSG) is now a rooted,
acyclic graph that is defined from a bitstream source, a
set of bitstream transformations and a set of bitstream

encodings, where the nodes correspond to bitstream
segments and the edges to transformations. It describes
the composition of a bitstream source from primitive
bitstream segment(s). For a visual representation of a
BSG instance, bitstream segments are depicted as in
Figure 1.
Properties
A bitstream segment x has a set of namespaced proper-
ties, denoted as ns:property(x,v0,…,vn). For the
BSG model, this includes placement information such as
an inclusive bsg:start position, a bsg:length and an
exclusive bsg:end position, all measured in bits and
relative to the context provided by its predecessors. For

294

example, the first successor segment of a structure seg-
ment starts at bit 0. Further properties include the bit-
stream segment bsg:type, one or more
bsg:semantics as identifiers or a bsg:codec identi-
fier for transcode bitstream segments. For example, for
the segments b and c in Figure 2, we can state properties
such as bsg:start(b,0), bsg:length(c,512) or
bsg:codec(b,GZIP).
Relations
Between any two bitstream segments x and y, name-
spaced relations may exist, denoted as
ns:relation(x,y,v0,…,vn). For the BSG model, this
includes neighbourship relations between bitstream seg-
ments in a structure bitstream segment as bsg:leads
and bsg:follows, and composition relations such as
bsg:successor and bsg:predecessor with
bsg:firstSuccessor and bsg:lastSuccessor as
special cases. For example, for the segments a, b and c
in Figure 2, we can state relations such as
bsg:firstSuccessor(a,b), bsg:leads(b,c) and
bsg:predecessor(c,a).
Using suited types of bitstream transformations and
encodings, the composition of arbitrary data format in-
stances can be described using BSG instances. Besides
the visual representation, we can represent a BSG in-
stance through facts regarding BSG-related properties
and relations.

Describing possibly infinite sets of data format
instances
We define a potentially infinite set of bijective data for-
mat instances through the set of stable models resulting
from a set of first-order logic rules, expressed as implica-

tions or biconditionals. For rules, predicates are used that
refer to either deduced or computed facts. In terms of
existing logic languages, it resembles Datalog (Ullman
1989) extended with functions.

Predicate Behaviour
math:lt(?a,?b) Tests the formula ?a < ?b.
math:lte(?a,?b) Tests the formula ?a <= ?b.
math:eq(?a,?b) Tests the formula ?a = ?b.
math:product(?a,?b,?c) Computes the formula ?a * ?b = ?c if two parameters are ground and no division by

zero occurs, and assigns the result to the third variable parameter. Tests the formula if
all parameters are ground.

math:sum(?a,?b,?c) Computes the formula ?a + ?b = ?c if two parameters are ground and assigns the
result to the third variable parameter. Tests the formula if all parameters are ground.

util:concat(?a,?b,?c) Concatenates ground strings ?a and ?b and binds the result to variable ?c. Tests
whether the concatenation of ?a and ?b corresponds to ?c if all parameters are
ground.

util:sourceLength(?a,?b) Gets the length in bits of the ground file reference ?a and binds it to variable ?b. Tests
whether file reference ?a has length ?b in bits if both are ground.

util:skolem(?a,…,?c) Skolem function provided for existential quantification. Maps the set of ground pa-
rameters (?a, …) to a value and binds it to variable ?c. Maps a ground ?c to a set of
values and binds them to variables (?a, …). Tests whether (?a,…) and ?c map to each
other if all parameters are ground.

util:value(?a,?b) Decodes the contained literal of a ground primitive bitstream segment ?a if it is
bsg:resolved, and assigns the result to variable ?b. Tests whether the bitstream seg-
ment ?a contains the literal ?b if both parameters are ground.

Table 2: List of computable predicates.

Deducible predicates refer to facts that were either given
initially or subsequently deduced through rules. They are
not limited to BSG-related properties and relations only,
but may also include predicates for intermittent facts
which may be needed for deducing a BSG instance. For
deduced predicates, the open world assumption applies,
as a currently unknown fact may become known later.
Computable predicates refer to facts that can be com-
puted directly (see Table 2). They handle aspects such as
decoding the literal ?l of a primitive bitstream segment
?x from the so-far deduced, partial BSG instance
through bsg:value(?x,?l), or for solving the equa-
tion ?v=?u+1 through math:sum(?u,1,?v) if either
?u or ?v are known. These predicates can choose be-
tween the open world assumption and the closed world
assumption, as they can decide to refute facts that will
always fail, such as math:sum(1,2,4).
Predicates have parameters that can either be ground and
thus have a specific value, or be a variable. A mode of a
predicate declares for each of its parameters whether it is
ground or variable. Computable predicate may support
arbitrary modes, e.g. allowing math:sum to compute
math:sum(?u,4,5) as well as math:sum(1,?v,5)
and math:sum(1,4,?w), or test math:sum(1,4,5).
Using these types of predicates, we can build rules as
implications or biconditionals. These rules can be parti-
tioned into model-specific rules that capture properties
and relations inherited from the BSG model itself, and
format-specific rules that represent data format knowl-
edge. For example, a BSG-specific rule is that two

295

neighbouring bitstream segments b and c share a bound-
ary, so from the facts bsg:follows(b,c) and
bsg:end(b,512), the fact bsg:start(c,512) can be
concluded. From the data format instance in Figure 2, we
could assume as format-specific rule that from the facts
bsg:source(a,…) and bsg:firstSuccessor(a,b),
the fact bsg:type(b,'bsg:transcode') follows.
For deducing a BSG instance, initial knowledge on a
specific bitstream source is given, such as the fact
bsg:source(a, 'oi2n0g16.png'). Through a series
of iterative steps, the set of rules is applied in a mono-
tone deduction process. In each step for every rule, it is
tried to match the antecedents with previously deduced
knowledge. If the antecedent of a rule matches, then for
its conclusion, the computable predicates are tested and
the deducible predicates are deduced. Should a comput-
able predicate fail in this test, the reasoning process
aborts, as a conclusion does not hold. This allows the use
of validation rules that assert certain properties, e.g. that
for all bitstream segments, its respective bsg:start and
bsg:length have to sum up to its bsg:end, which can
be violated in case of contradictory information con-
tained in a damaged or erroneous bitstream source. When
no new facts are deduced in a step, then a fixed point
consisting of the deducible facts of a BSG instance is
reached.
If a fixed point is reached, the resulting BSG facts can
then be translated into a BSG instance for that bitstream
source. This requires post-processing steps such as as-
signing the generic bitstream segment type whenever no
type was deduced for a bitstream segment. The deduction
of a BSG instance therefore can either
• abort with a computable predicate refuting a fact in a

rule conclusion, indicating that a conclusion does not
hold and thus the bitstream source does not conform to
the specified data format,

• reach a fixed point with a coverage x < 1, indicating
that there are bitstream segments in this data format
instance not specified in the set of rules, or

• reach a fixed point with a coverage x = 1, indicating
that this data format instance is completely covered by
the set of rules.

Building a set of rules as data format knowledge is typi-
cally an incremental process. It starts with the collection
of bitstream sources for a corpus that represents a spe-
cific format, and the definition of an initial set of rules.
This set of rules can be improved step-by-step by com-
puting the BSG instance for every bitstream source in the
corpus and computing its coverage. One then can select
BSG instances with a coverage x < 1 and focus on ge-
neric bitstream segments which need to be described
further through additional rules. Actual knowledge on
how these generic bitstream segments are actually com-
posed may come from consulting textual specifications,
existing implementations or through try-and-error re-
verse engineering efforts. Repeating this process in-
creases the overall coverage of BSG instances in the
corpus. For a corpus, a fitting set of rules is found if the
coverage reaches 1 for all of its BSG instances.

Evaluation
In order to apply our approach, we implemented a rea-
soning system in Java, defined suited interfaces for proc-
essing bitstream transformations and bitstream encod-
ings, and implemented components for handling certain
transformations and encodings as required.

Setup
For evaluation, we decided to describe a small subset of
the Portable Network Graphics (PNG) image format. We
required that of this subset, some data format instances

Rule
M1 bsg:source(?a,?f) & util:sourceLength(?f,?l) bsg:start(?a,0) & bsg:length(?a,?l)
M2 bsg:length(?a,?l) & bsg:end(?a,?e) & math:sum(?s,?l,?e) bsg:start(?a,?s)
M3 bsg:start(?a,?s) & bsg:end(?a,?e) & math:sum(?s,?l,?e) bsg:length(?a,?l)
M4 bsg:start(?a,?s) & bsg:length(?a,?l) & math:sum(?s,?l,?e) bsg:end(?a,?e)
M5 bsg:start(?a,?s) & bsg:length(?a,?l) & bsg:end(?a,?e) math:sum(?s,?l,?e)
M6 bsg:leads(?a,?b) bsg:follows(?b,?a)
M7 bsg:leads(?a,?b) & bsg:end(?a,?p) bsg:follows(?b,?a) & bsg:start(?b,?p)
M8 bsg:firstSuccessor(?a,?b) bsg:successor(?a,?b)
M9 bsg:lastSuccessor(?a,?b) bsg:successor(?a,?b)

M10 bsg:successor(?a,?b) bsg:predecessor(?b,?a)
M11 bsg:successor(?a,?b) & bsg:leads(?b,?c) bsg:successor(?a,?c)
M12 bsg:successor(?a,?b) & bsg:follows(?b,?c) bsg:successor(?a,?c)
M13 bsg:firstSuccessor(?a,?b) bsg:start(?b,0)
M14 bsg:lastSuccessor(?a,?b) & bsg:length(?a,?c) bsg:end(?b,?c)
M15 bsg:lastSuccessor(?a,?b) & bsg:end(?b,?c) bsg:length(?a,?c)
M16 bsg:start(?a,?s) & bsg:length(?a,?l) & bsg:end(?a,?e) & bsg:type(?a,?t)

& bsg:source(?a,?f) bsg:resolved(?a)
M17 bsg:successor(?a,?b) & bsg:start(?b,?s) & bsg:type(?b,?t) & bsg:resolved(?a)

 bsg:resolved(?b)

Table 3: List of model-specific rules.

296

Rule
F1 bsg:source(?a,?f) bsg:semantics(?a,'png:root')
F2 bsg:semantics(?r,'png:root') util:skolem('F2',?r,?s)

& bsg:type(?r,'bsg:structure') & bsg:firstSuccessor(?r,?s)
& bsg:semantics(?s,'png:signature')

F3 bsg:semantics(?s,'png:signature') util:skolem('F3',?s,?f) & bsg:leads(?s,?f)
& bsg:semantics(?f,'png:chunk')

F4 bsg:semantics(?c,'png:chunk') util:skolem('F3',?c,?l)
& bsg:firstSuccessor(?c,'png:chunk') & bsg:semantics(?l,'png:chunk-length')

F5 bsg:semantics(?l,'png:chunk-length') util:skolem('F5',?l,?t) & bsg:leads(?l,?t)
& bsg:semantics(?t,'png:chunk-type')

F6 bsg:semantics(?l,'png:chunk-length') & bsg:value(?l,0) & bsg:leads(?l, ?t)
& bsg:successor(?ch,?l) util:skolem('F6',?l,?t,?ch,?cr)
& bsg:lastSuccessor(?ch,?cr) & bsg:leads(?t,?cr)
& bsg:semantics(?cr,'png:chunk-crc')

F7 bsg:semantics(?l,'png:chunk-length') & bsg:value(?l,?v) & math:lt(0,?v)
& bsg:leads(?l,?t) & bsg:successor(?ch,?l) & math:product(?v,8,?lv)
 bsg:leads(?t,?d) & bsg:leads(?d,?cr) & bsg:lastSuccessor(?ch,?cr)

& bsg:length(?d,?lv) & bsg:semantics(?d,'png:chunk-data')
& bsg:semantics(?cr,'png:chunk-crc')

F8 bsg:semantics(?t,'png:signature') bsg:type(?t,'bsg:primitive')
& bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#ascii-string')
& bsg:length(?t,64)

F9 bsg:semantics(?t,'png:chunk-length') bsg:type(?t,'bsg:primitive')
& bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#msbf-uint')
& bsg:length(?t,32)

F10 bsg:semantics(?t,'png:chunk-type') bsg:type(?t,'bsg:primitive')
& bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#ascii-string')
& bsg:length(?t,32)

F11 bsg:semantics(?t,'png:chunk-crc') bsg:type(?t,'bsg:primitive')
& bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#msbf-uint')
& bsg:length(?t,32)

F12 bsg:successor(?ch,?t) & bsg:semantics(?ch,'png:chunk')
& bsg:semantics(?t,'png:chunk-type') & bsg:value(?t,?v)
 util:concat('png:chunk:',?v,?ct) & bsg:semantics(?ch,?ct)

F13 bsg:successor(?r,?c) & bsg:semantics(?c,'png:chunk') & bsg:end(?c,?ce)
& bsg:length(?r,?rl) & math:lt(?ce,?rl) util:skolem('F13',?c,?ce,?r,?rl,?nc)
& bsg:leads(?c,?nc) & bsg:semantics(?nc,'png:chunk')

F14 bsg:semantics(?r,?c) & bsg:semantics(?c,'png:chunk') & bsg:end(?c,?ce)
& bsg:length(?r,?rl) & math:eq(?ce,?rl) bsg:lastSuccessor(?r,?c)

Table 4: Excerpt of format-specific rules for a limited PNG subset. Due to length considerations, this list is limited to
describing a PNG image down to the level of chunk structures.

should at least be sufficiently complex as to require all
three types of normalised bitstream transformations
(segmentation transformation, block transformation and
concatenating transformation) from the BSG model.
We found a suited subset of PNG images, namely those
where compressed image data is stored as separate frag-
ments in so-called IDAT chunks. For building a suited
corpus, we examined the PNG Test Suite (van Schaik
1998) with 156 PNG images for compliance testing,
including corrupted files and extreme variants, and se-
lected 8 images with filename pattern oi??????.png.
Regarding the granularity of description, we allowed
primitive bitstream segments to represent arrays of en-
coded literals. Without this consideration, the decompo-
sition of arrays such as pixel data into individual pixels
would have bloated the resulting description of a data
format instance without substantial benefit.
We built a fitting set of rules for our corpus, consisting
of 17 model-specific rules (see Table 3) and 36 format-
specific rules (see Table 4 for an excerpt).

Data format rules
Regarding model-specific rules, we start with rules on
placement regarding a bitstream segment. This begins
with a rule for deducing bsg:start and bsg:length
from an initially given bsg:source (M1). If any two of
bsg:start, bsg:length and bsg:end are given for a
bitstream segment, the remaining fact can be deduced
(M2-M4). Moreover, if all facts are given for a bitstream
segment, it can be validated for ensuring consistency
(M5). Further rules include aspects of bitstream seg-
ments in structures, such as neighbourship (M6, M7),
successorship (M8-M12), placement (M13-M15) and
resolvability (M16, M17), whereas the latter is necessary
for decoding the contained literal of primitive bitstream
segments.
Finally, we come to format-specific rules on our PNG
subset. We start with a rule that deduces the PNG-
specific type of 'png:root' for a bitstream source (F1). For
such a bitstream segment, we can deduce that there exists
a first successor bitstream segment ?s with

297

bsg:semantics(?s,'png:signature') (F2). For a
'png:signature', there exists a following 'png:chunk' struc-
ture (F3) as shown in Figure 3, which again always be-
gins with a 'png:chunk-length' bitstream segment (F4),
followed by a 'png:chunk-type' bitstream segment (F5).
If the value of a 'png:chunk-length' is 0, then the
'png:chunk-type' is followed directly by the 'png:chunk-
crc' bitstream segment as last successor of the chunk
(F6). Otherwise, the 'png:chunk-type' bitstream segment
is followed by a variable-length 'png:chunk-data' bit-
stream segment and again the 'png:chunk-crc' bitstream
segment (F7). Details on bitstream segments such as
their type, encoding and length are provided for
'png:signature' (F8), 'png:chunk-length' (F9), 'png:chunk-
type' (F10) and 'png:chunk-crc' (F11) bitstream seg-
ments. The PNG-specific type of the chunk is deduced
from the 'png:chunk-type' value and assigned as
bsg:semantics to the chunk (F12). The remaining
rules listed in Table 4 state that if there is space left after
a chunk, there exists another one following (F13), other-
wise the chunk is the last successor of the bitstream
source (F14). Further rules handle chunk-specific as-
pects, e.g. for the IHDR chunk which contains informa-
tion on image width and height.

Example deduction steps
For a given initial fact

bsg:source('root','oi2n0g16.png')

the deduction process tries to apply all rules to deduce
new facts. In the first step, only the rules F1 and M1 are
applicable, which yield the following new facts:

bsg:semantics('root','png:root') &
bsg:start('root',0) &
bsg:length('root',1432)

Again, the deduction process tries to apply all rules, this
time on an increased set of facts. In step 2, the rules F2
and M4 yield the following:

bsg:type('root','bsg:structure') &
bsg:firstSuccessor('root','sc1') &
bsg:semantics('sc1','png:signature') &
bsg:end('root',1432)

The process of deduction is repeated until either no new
facts can be deduced, or a computable predicate refutes a

fact in a conclusion. The resulting facts from the reached
fixed point describe a BSG instance for the PNG image
oi2n0g16.png, which is part of the corpus and has a cov-
erage of 1.0.

0 256
Structure

PNG chunk

0 32
Primitive
Integer
Length

32 64
Primitive

ASCII
Type

64 224
Structure

Data

224 256
Primitive
Integer
CRC

Figure 3: BSG instance for a PNG chunk.

Result
After building a fitting set of rules with coverage of 1.0
for our corpus, we tested the set on all remaining PNG
images from the PNG Test Suite. We obtained a cover-
age of 1.0 for 64 images, with the remaining 89 valid
images having an average coverage of 0.79. Three cor-
rupt images belonging to the test suite were excluded
from the evaluation, as the fitting set of rules did not
contain verifying rules for PNG-specific properties.
For a fitting set of rules over the entire PNG Test Suite,
additional rules need to be included for palette handling
(PLTE and sPLT chunks), transparency (tRNS chunk),
background colour (bKGD chunk), textual data (tEXt
and zTXt chunks) and other aspects. To estimate the
effect of adding further rules, we added two preliminary
rules for handling PLTE chunks and re-evaluated our
rules on the corpus. We obtained a coverage of 1.0 for 78
images, with the remaining 75 valid images having an
average coverage of 0.91.
During evaluation, the deduction process computed a
fixed point and halted on all instances. Since errors may
be present in a set of rules preventing a fixed point to be
reached, a primitive approach on handling the Halting
Problem is to place a limit on the iteration steps and
abort the deduction beyond that limit. We discovered that
the typical number of iterative steps required for our set
of rules to reach a fixed point on valid PNG images
ranges from 72 up to 170 steps. In case of the image file
oi9n2c16.png, more than 3,000 iteration steps were re-
quired, as compressed image data is present as fragments
with a length of 8 bit, each encapsulated into a separate
IDAT chunk. This can be considered an extreme exam-
ple, but demonstrates what is still considered legal in
terms of the original specification. Since data format
instances of other data formats such as Apple QuickTime
movies have a more complex structure which requires an
even higher number of iterations, the use of a semi-naive
evaluation method for the deduction process as known
from Datalog (Ullman 1989) is absolutely essential.

Discussion
The set of rules we tested is quite small, yet describes
central elements of PNG files. 'Unexplained' bitstream
segments can be readily identified due to the generic
bitstream segment type and the coverage measure, and
thus allow for incremental development of data format
rules. Testing this approach, incrementally adding rules
for PLTE chunks to describe palette information had
been quite simple and resulted in a significant increase
regarding the coverage of nearly all images in the PNG
Test Suite.
Regarding data formats in general, our approach maps
the diversity of data formats to format-specific data for-
mat rules, bitstream transcodings and bitstream encod-
ings. We assume that some bitstream transcodings and a
majority of bitstream encodings may be shared among
multiple data formats. For example, PNG employs a

298

scanline transformation to increase the efficiency of a
subsequent GZIP compression transformation; the GZIP
compression is likely to be reusable, whereas the
scanline transformation is highly PNG-specific. The
bitstream encodings we encountered so far are basically
the ASCII encoding used for PNG chunk types and a bit-
endian unsigned integer encoding used for numerical
values, which are easily reusable, e.g. in the context of
Apple QuickTime.
The set of rules includes model-specific rules that vali-
date the consistency of essential model-specific proper-
ties. Due to the complexity of PNG, adding rules
for validating all PNG-specific properties is nontrivial
and requires specifically corrupted image files for testing
the corresponding rules. Our tested set of rules is over-
accepting in terms of a formal language when compared
to the PNG specification.
We decided to use first-order predicate logic in our ap-
proach, yet it may be possible that data formats have
rules which are more naturally expressed using frag-
ments of higher-order logics, e.g. when having to express
rules on sets of segments. For example, when multiple
IDAT chunks are present in an BSG instance, these have
to be concatenated in order of their appearance, yet for-
mulating the corresponding rules was non-intuitive. We
assume that complex data format rules will at times
translate into specialised computable predicates and
require larger, more complex sets of rules.

Summary and Conclusion
We have presented an approach for describing arbitrary
data formats as a possibly infinite set of data format
instances, building upon the Bitstream Segment Graph
model. In contrast to previous related work, we can de-
scribe arbitrary data format instances down to contained
primitives even when real-life aspects such as compres-
sion or fragmentation are present. We applied our ap-
proach to the description of a sufficiently complex subset
of the PNG image format and were able to show that a
quite small number of rules is capable of describing a
significant part of PNG images. Furthermore, our ap-
proach allows the measurement on how completely a set
of rules describes a data format instance, which supports
the incremental development of data format rules over
time.
It therefore provides some means for formal specification
of data formats, which may be of use for the specifica-
tion of new data formats and for the documentation of
existing ones. This can especially be helpful for data
formats which are undisclosed or which are deviations.
For Digital Preservation, a formal data format specifica-
tion may provide for ``a last line of defense'' by allowing
to extract contained information if a fitting set of rules
exists.

Acknowledgements
The authors would like to thank Gina Häußge for feed-
back, comments and corrections on various drafts of the
paper.

References
Bennett, C. H. 1973. Logical Reversibility of Computa-
tion. IBM Journal of Research and Development
17(2):525–532.
Eleftheriadis, A., and Hong, D. 2004. Flavor: A Formal
Language for Audio-Visual Object Representation. In
MULTIMEDIA ’04: Proceedings of the 12th annual
ACM International Conference on Multimedia, 816–819.
New York, NY, USA: ACM Press.
Eleftheriadis, A. 1996. The Benefits of Using MSDL-S
for Syntax Description. Contribution ISO/IEC
JTC1/SC29/WG11 MPEG96/M1555.
Hartle, M.; Möller, F.-D.; Travar, S.; Kröger, B.; and
Mühlhäuser, M. 2008a. Using Bitstream Segment Graphs
for Complete Data Format Instance Description. In Pro-
ceedings of the Third International Conference on Soft-
ware and Data Technologies (ICSOFT).
Hartle, M.; Schumann, D.; Botchak, A.; Tews, E.; and
Mühlhäuser, M. 2008b. Describing Data Format Exploits
using Bitstream Segment Graphs. In Proceedings of The
Third International Multi-Conference on Computing in
the Global Information Technology (ICCGI).
Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages and Computation. Addi-
son-Wesley.
ISO. 2004. ISO/IEC 14496-2:2004: Information technol-
ogy – Coding of audio-visual objects – Part 2: Visual.
ISO, Geneva.
ISO. 2007. ISO/IEC 21000-7:2007: Information technol-
ogy – Multimedia framework (MPEG-21) – Part 7: Digi-
tal Item Adaptation. ISO, Geneva.
ISO. 2008. ISO/IEC 23001-5:2008: Information technol-
ogy – MPEG systems technologies – Part 5: Bitstream
Syntax Description Language (BSDL). ISO, Geneva.
ITU-T. 1997. Recommendation X.680 (12/97) — Ab-
stract Syntax Notation One (ASN.1): Specification of
Basic Notation. ITU-T, Geneva.
ITU-T. 2002a. Recommendation X.690 (07/02) —
ASN.1 Encoding Rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER). ITU-T, Geneva.
ITU-T. 2002b. Recommendation X.692 (03/02) —
ASN.1 Encoding Rules: Specification of Encoding Con-
trol Notation (ECN). ITU-T, Geneva.
Mateescu, A., and Salomaa, A. 1997. Formal Lan-
guages: an Introduction and a Synopsis. Springer
Verlag. chapter 1, 1–40.
Miller, B. P.; Fredriksen, L.; and So, B. 1989. An Em-
pirical Study of the Reliability of UNIX Utilities.
Technical report.
Solé, R.; Valbelle, D.; and Rendall, S. 2002. The Rosetta
Stone: The Story of the Decoding of Hieroglyphics. Four
Walls Eight Windows.
Ullman, J. D. 1989. Principles of Database and Knowl-
edge-Base Systems, Volume II. Computer Science Press.
van Schaik, W. 1998. PngSuite - The Official Set of
PNG Test Images. Available online at
http://www.schaik.com/pngsuite/pngsuite.html, last
accessed 2008-08-015.
Vetro, A.; Christopoulos, C.; and Ebrahimi, T. 2003.
From the guest editors: Universal Media Access. IEEE
Signal Processing Magazine 20(2):16–16.

299

