
ABSTRACT
In today’s literature digital preservation and its concepts are usu-
ally connoted with long term views on the lifecycle of IT systems
and software. In addition to that long term view we believe that
concepts available for digital preservation are also useful in short
term views where the life span of systems and software is limited
to a significantly shorter timeline. In this paper we discuss three
different real-world use cases that benefit from DP concepts on a
short term basis.

Keywords
Software Escrow, Short Term Digital Preservation, Quality Risk
Management

1. OVERVIEW
In most literature digital preservation (DP) is associated with a
very long term view on systems: According to the Digital Preser-
vation Coalition it is defined as the “series of managed activities
necessary to ensure continued access to digital materials for as
long as necessary” [2]. This paper utilises the general ideas of
digital preservation for shorter term use cases, such as software
escrow and due diligence. The aim is to demonstrate that DP’s
capabilities are important not only in large scale, long term pro-
jects but to extend DP to a much wider range of project types and
a broad customer base making use of outsourced IT development
activities and delivery of IT services. The demonstration of a
commercial use case for DP is another goal of the paper.

1.1 Background Scenario “IT Outsourcing”
The basic scenario for our short-term digital preservation ad-
dresses the well-established concept of outsourcing that aims to
“subcontract responsibility for all or part of an IT function to a
third-party service provider that managed and operates the
work” [8]. Today, over 7% of all IT-budgets are spent towards
outsourcing contracts and this ratio will – accordingly to analyses
by Gartner – increase dramatically to 25% for 2020. Interestingly
enough the current hype of cloud computing is one specific type
of outsourcing and will account for 70% of the overall outsourc-
ing budgets in 2020.
The fundamental concept for all outsourcing contracts is to dele-

gate responsibility (and risks) to a third party. The advantages of
doing so are obvious:

• From a client perspective outsourcing enables focusing
oneself on one’s core competencies in business. For in-
stance, for an insurance company software development
and test or IT operations are not core competencies and
therefore instead of retaining complete IT testing or IT
operations departments they could be subjected to out-
sourcing them to a specialised third party.

• Outsourcing providers usually have specialised in their
fields and can leverage cross-customer synergies and
provide more expertise. Expectations are that providers
will be able to deliver a service in a more efficient and
effective way at a higher level of quality.

• Since outsourcing needs some level of standardisation
with regards to definition of services and interfaces be-
tween the involved organisations it usually fosters more
advanced payment models, i.e. paying per transaction,
per value added or per outsourced process step. This fa-
cilitates commercial planning processes and budgeting.

On the other hand, delegating responsibilities introduces new risks
as an undesired side effect: purchasers become dependent on
external providers. These risks need to be managed pro-actively:
What happens if an outsourcing provider goes bankrupt or if it is
acquired by another company and the new company discontinues
this service? What if prices are increased without any justifica-
tion? Usually, the purchaser only has a black box view onto the
service provider with a clear focus solely on the “what to deliver”.
The service provider is the only stakeholder knowing “how to
deliver” and access to this knowledge is at risk if the service
provider terminates the contract. Without the specific knowledge
it is difficult to keep the service alive, e.g. by handing over the
service delivery to another service provider – or maybe by in-
sourcing it again. The two standard risk mitigation approaches are
“software escrow” for the case of the provider going out of busi-
ness and “due diligence” for the case of insourcing the service at a
fair price.
The aforementioned risks and their respective mitigation ap-
proaches provide the background to DP in a short term perspec-
tive: If DP allows for “ensuring continued access” (to IT systems
and services) it can be applied to mitigate risks of outsourcing
contracts by limiting the impact of third party dependencies. If an
outsourcing contract is complemented by a properly set-up DP
initiative, the impacts of providers going bankrupt are limited
since the DP activities ensure required knowledge is preserved
and ready to be transferred to a different party. The challenge
shifts towards assuring the stored information is complete and up
to date rather than to preserving for a long period of time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
iPRES2011, Nov. 1–4, 2011, Singapore.
Copyright 2011 National Library Board Singapore & Nanyang
Technological University

Short Term Preservation for Software Industry
Daniel Draws, Sven Euteneuer, Daniel Simon, Frank Simon

SQS Research
Stollwerckstraße 11

D-51149 Cologne, Germany
+49 2203 9154 0

{daniel.draws,sven.euteneuer,daniel.simon,frank.simon}@sqs.com

130

1.2 Overview of the document
This background scenario laid out in the previous section is util-
ised for the structure of the rest of the document: In Section 2 an
established mitigation concept called software escrow covering
risks associated with providers is presented, and the limitations of
the current approach in practise are explained – being the reason
for make use of DP. In Section 3 the specific DP concepts re-
quired to meet these challenges are revisited in the context of
software escrow. In Section 4 an improved software escrow ser-
vice utilising short-term digital preservation is laid out. In Sec-
tion 6, several real-world use cases are discussed in the light of
this improved concept. The paper closes with an outlook for future
work and a summary in Section 6.

2. SOFTWARE ESCROW AS RISK MITI-
GATION
The risk of having dependencies to external third parties is not
unusual to most industries outside of IT. However, most of the
mitigation actions in real life simply change the relationship to the
external partner by acquisition and integration into the own or-
ganisation. A recent study by Boston Consulting Group and
UBS [3] indicates that nearly one in five of the companies sur-
veyed intends to undertake at least one acquisition. At least 18%
of the respondents stated “Access intellectual property and R&D”
as main driver for M&A activities. So these acquisitions bypasses
the risks introduced by outsourcing by changing the relationship
to the third party.
The only technique that really mitigates the outsourcing risks
while leaving the legal entity status of the outsourcing partner
unaffected is outlined in the following subsections, followed by
illustrating some pitfalls that motivate our improved approach.

2.1 Escrow Services
A well-established service to reduce the risks generated by strong
dependencies to 3rd parties is to establish a so called “Escrow
Service”. A software escrow is a three-party arrangement, similar
to a trust: “An independent trustee – usually a firm in the business
of doing technology escrows – is appointed is the escrow agent for
licensor and licensee. The parties enter into a three-way agree-
ment. The licensor delivers a copy of the source code to the es-
crow agent, and is usually required to deliver a source code up-
date whenever it delivers a corresponding object code update to
the licensee under the corresponding license agreement. Upon
occurrence of a triggering event, and only then, the escrow agent
delivers the escrowed source code to the licensee”. [12]
The risk mitigation approach is as follows: The software pur-
chaser (i.e. the licensee) and the software provider (i.e. the licen-
sor) maintain their legal status and even the level of information to
be exchanged between both parties is unchanged. This is an im-
portant prerequisite to secure the intellectual property (IP) of the
supplier.
In daily business the role of the trustee, the so-called Escrow
Agent, does not affect the IP discussion as he receives all informa-
tion (such as the source code) solely to file away. However, if a so
called escrow clause is triggered (e.g. if the supplier goes bank-
rupt), and only then, the trustee hands out all information to en-
able the licensee (in the case of software escrow: the software
purchaser) to enable the continued operation and maintenance of
the licensed application.

This type of service is well established in todays IT market. Mar-
ket leader NCC for example reports a revenue of 17,9m£ only in
the UK with over 100 FTEs [14].

2.2 Pitfalls
During the worldwide financial crisis in 2009/10 some of our
customers faced a scenario where the software escrow case oc-
curred but the risks that should have been mitigated revealed their
full impact as some key information stored in some digital arte-
facts were not available. The typical pitfalls around the estab-
lished software escrow service can be classified into

• Missing artefacts: Software is more than only source
code: “A set of computer programs, procedures, and as-
sociated documentation concerned with the operation of
a data processing system; e.g. compilers, library rou-
tines, manuals, and circuit diagrams.” [10] A software
escrow service considering only the source code fails to
account for the holistic nature of software. Nowadays a
lot of implementation work is done outside the source
code proper. Typical examples are models for code gen-
eration, architectural views, testware, technical docu-
mentation, used libraries, configurations of development
environments etc. Without these additional digital arte-
facts the source code has only limited value: It cannot
be understood, analysed, changed or outsourced to an-
other vendor. The more complex and developed the ap-
plied technology (e.g., .Net or J2EE) the more business
logic is stored in artefacts outside the source code.

• Low quality of deposited material: In many cases the
deposited source code was either incomplete or incon-
sistent with the corresponding binary code. The source
code was not commented, could not be analysed in any
efficient way and did not follow standard software engi-
neering techniques such as modularisation and de-
coupling. Exhuming a code basis with these attributes
does not allow to re-compile/re-build the application
and hinders any maintenance work that is necessary to
adjust the application due to changed requirements.

If these pitfalls occur in real life the consequences can be devas-
tating: It can start from the need for investing a large amount of
money to conduct software-archaeology before continuing main-
tenance work and goes up to the complete re-development of the
application being under software escrow.

2.3 Challenges
Consequently, the key challenge to be addressed in order to make
the Escrow Service work in practice and avoid the aforementioned
mistakes is to answer the following question:
How can we make sure that all relevant information for taking
over an IT system exist and are of appropriate quality?
This is the point where we hope to bring in DP tools and concepts
like [5]. Similar to software escrow services, DP tries to preserve
digital artefacts necessary for assuring their availability over time.
For software escrow, we need to preserve complete business
processes (including tools, external knowledge etc.) at a sufficient
level of quality of the preserved artefacts. This same is valid for
DP (at least for digital objects), so the capability for reuse is obvi-
ous.

131

3. SOFTWARE ESCROW VIEW ON DP
3.1 How long is long-term?
Typically, DP is connoted with the aspect of long term preserva-
tion and most of the concepts of DP have been developed with the
long term views (decades rather than months or years) in mind.
We believe that the concepts developed so far are also very valu-
able in the case of software escrow and can be applied beneficially
for much shorter periods of time. In some cases the timespan may
only be a couple of months and we make use of a slightly different
view on ‘long-term’. Consider the definition for ‘long-term’ given
by the OAIS:
“Long Term is long enough to be concerned with the impacts of
changing technologies, including support for new media and data
formats, or with a changing user community. Long Term may
extend indefinitely.” [5]
To our experience, Digital Preservation is not only required in the
‘long-term’ from a time based understanding as changes in tech-
nology can occur much more frequently. From the software es-
crow point of view involved parties have to keep information fit
for purpose across the lifecycle of technologies (or any other kind
of significant change in the context of the information that would
normally render the respective information useless).

3.2 Basic Preservation Process in TIMBUS
According to TIMBUS project [19], one of the most up-to-date
project funded by EU around Digital Preservation, the high level
process of DP comprises three stages (cf. Figure 1).

• Expediency: In this, the fundamental steps need to be
taken to determine what should be preserved.

• Execution: After the expediency has been established it
is necessary to actually execute the DP preservation ac-
tivities (e.g. conserving and archiving artefacts).

• Exhumation: In this stage, the preserved artefacts are
brought back from the libraries into live environments
to take up the regular ‘business activities’.

Note that the stages and their activities are independent of the
timespan of a preservation project, so it does not depend on the
long-term view.

3.3 Models in DP
From our knowledge DP research so far has already taken care of
“How to” preserve digital information by focussing on preserva-
tion processes and the lifecycle of different media, data formats
and storage technologies (cf. [21], [22]). For DP in general (and
software escrow in particular) the still open (but crucial) question
is: What is the relevant information to be preserved and what
digital objects (DO) contain this information? That is often not
easy to answer because the boundaries of the system to be pre-
served are difficult to identify and usually debatable. For example,
in almost all practical cases software depends on and makes use of
third party components and libraries. To what extent do these third
party artefacts need to be preserved? Where is the line between
relevant context and the (for the time being) non-relevant context?
This challenge increases when using Cloud services like SaaS or
PaaS.
Our approach to answering the question of contexts to the best
possible extent lies in using explicit models for the context of the
systems to be preserved. The aim of these models is to preserve
not only the DOs itself but additionally to capture the semantics of
the objects. We make use of well-established architecture frame-
works for specific domains as a starting point to identify and
structure the DOs. Well known examples for these architecture
frameworks are the NATO Architecture Framework (NAF) [19],
the Zachmann framework [6] or The Open Group Architecture
Framework (TOGAF) [20]. It is expected that these architecture
models are describing a holistic view in their domain. Figure 2: The three phases of the digital preservation process

Expediency Execution Exhumation

Figure 1: The QRM framework and its components

I I I
I I I

P P P
P P P

AAA
AA

AA

O O O
O O
O O

M M M

M M M

M M M

M M M

3. What objects shall have what
attributes?

2. What attributes are
important?

1. What artefacts are
important?

4.1 What indicates a problem
with respect to control
points?

4.2 How can the indicators be
supported by metrics?

Control Objects1 Control Attributes2

Control Points3

Control Indicators

Control Metrics

4

132

4. SOFTWARE ESCROW MODELLING
APPROACH
The key to a successful Digital Preservation that can be com-
pletely used for software escrow is the holistic scrutiny of arte-
facts, their components and their respective properties. The vehi-
cle we apply to fulfil this requirements of digtal objects is the so
called quality risk management framework (QRM) [8]. The QRM
framework has been used successfully as a foundation for project
risk management and its concepts and ideas are applied in con-
junction with DP concepts as to improve the success rate of soft-
ware escrow.

4.1 Overview of the QRM Framework
The generic risk management framework consists of several com-
ponents, whose instantiation is crucial for holistic software es-
crow. The overall QRM framework is depicted in Figure 2. The
setup of the framework is explained in the following paragraphs.
Firstly, we identify the relevant DOs required for digital preserva-
tion by building a taxonomy for the context. In the framework
these objects are named control objects (cf. Figure 2, “1”). Sec-
ondly, the quality attributes of digital objects are inventoried and
classified – in terms of the QRM framework these are named
control attributes (cf.Figure 2, “2”). In order to identify the essen-
tial aspects for digital preservation the Cartesian product of con-
trol objects and controls attributes is determined in a third step.
The product of (control object, control attribute) is called a control
point (cf. Figure 2, “3”). For each of the control points we deter-
mine its relevance on a Likert scale (e.g., ++ - very high, to -- –
very low) indicating its priority for subsequent steps.
When control points are defined we have laid out the full view on
what to preserve with which priority and which criticality. As a
third step, we define control indicators and control metrics (cf.
Figure 2, “4”) supporting the control points with tangible infor-
mation based on the artefacts.
How to apply these sequent steps in general? The solution is to
reuse existing catalogues from other disciplines. For the develop-
ment of the taxonomy (see above) the reuse of standard models
for the relevant context is possible. For example, if there is a need
to preserve the organisational context we can make use of a well-
defined model such as the European Framework for Quality Man-
agement (EFQM) – model [15]. This model defines objects and
their attributes for evaluating organisations and provides a valu-
able source for modelling the contexts to be preserved. A cata-
logue of preservable objects could be a taxonomy based on the
EFQM-model which is illustrated in Figure 3.
But reuse can be done on the attribute level as well: they are
independent from the objects in the first phase and can be derived
from established standards such as ISO9126 [10], QUINT2 [17]
and research in [2].
Both, the catalogue of digital objects and quality attributes are
refined for the specific purpose of software escrow in the follow-
ing Sections.

4.2 A Catalogue of Digital Objects for Escrow
In the software escrow use case for DP we need to ensure that the
full set of digital objects required for the maintenance and evolu-
tion of a software system is preserved for all agreed releases of the
software from the software provider’s repositories. A first and
simple approach to preservation of what is required in the soft-
ware escrow case starts intuitively with the software’s source

codes. In case the software escrow partners are aware of the effort
it takes to re-build the executable software system from the source
code the compiled and ready-to-run executables are preserved
additionally. To our experience, these types of digital objects are
considered in the first place as it is one of the most obvious arte-
facts of value for a software purchaser.

However, this is by no means all it needs for a successful exhuma-
tion of the software at a later point in time. The IEEE Standard
Glossary of Software Engineering Terminology reveals for good
reasons a far wider definition of software [10], taking into account
a far more holistic set of artefacts worth to be preserved.
A significant proportion of the artefact types and artefacts men-
tioned in [10] (compilers, library routines, manuals, documenta-
tion) is usually in practise not considered as a part of a software
purchase and therefore tends to be neglected in the escrow preser-
vation process. Examples for important documentation are the
software architecture, the programmer’s manual and other ‘inter-
nal’ documentation usually only required for maintenance pur-
poses. (Which is exactly what the purchasing party wants to take
over in case of the escrow exhumation.) More detailed taxonomies
for documentation can be derived from text books such as Som-
merville [17]:

• System Documentation
o Requirements
o System Architecture
o Program Architecture
o Component Description
o Source-Code-How-To
o Maintenance Guide
o Environment Description

• End User Documentation
o Functional Description
o Reference Manual
o Installation Manual
o System administrators guide

In the case of software escrow exhumation, the software purchaser
needs to take over the full maintenance process for the software
under escrow. To be in a position to pick up these tasks in an
efficient way, artefacts beyond the end user view are required. A
first incomplete and project specific list contains

• configurations of the software and build environment
• the build environment itself and other third party tools

and libraries
• software models and modelling tools

Figure 3: EFQM excellence model as initial context setting
for software escrow in DP

133

• test tools and test ware (tests, test data, automation, …)
• licenses to run the aforementioned tools and make use

of 3rd party libraries
• licenses for intellectual property

Note that the escrow should ensure that for example licenses are
issued for the purchaser, not for the original software developer. If
license management is enforced by technical means it must be
ensured licenses (and the depending tools) can be used for the
purchaser.
Our current experience leads us to the taxonomy depicted in Fig-
ure 5. This taxonomy is usually used as a starting point for a more
detailed elicitation and determination of the project specific DOs
for software escrow. So far, we have seen a number of re-
occurring DOs across different projects. But due to various rea-
sons (e.g. software application domain terminology, business
culture, or simply project lingo) it seems that the taxonomies are
most useful if tailored to the project’s context.

4.3 Quality Attributes of Digital Objects for
Escrow
After having determined what to preserve for software escrow in
the previous section, we address the properties of what to preserve
in more detail. In many cases the exhumation already fails con-
cerning a very simple attribute of the DOs – their existence. As
many artefacts are forgotten or ignored the exhumation cannot be
successful.
However, even if the artefacts do exist, the software purchasers
must make their expectations towards the DOs explicit. If the
purchaser has to take up maintenance activities they have to have
an interest for example not only in the existence of relevant
documentation but also in the quality of the respective documents.
Thinking in terms of software engineering a good starting point
for attributes of software artefacts is ISO 9126 [11] with
QUINT2 [17] extensions (ISO 9126 has been superseded by the
ISO 25000 series but remains a useful guidance for the purposes
of this paper). Additionally, we enrich these attributes by attrib-
utes derived from research in the field of digital libraries [2]. The
top level categories proposed can be reused by generalising their
intended meaning from software to general artefacts. They are the

following:

• Reliability: A set of attributes that bear on the capability
to maintain the level of performance under stated condi-
tions for a presumed period.

• Usability: A set of attributes that bear on the effort
needed for use, and on the individual assessment of such
use, by a stated or implied set of users.

• Portability: A set of attributes that bear on the ability of
artefacts to be transferred from one environment to an-
other.

Figure 4: Control attributes for digital objects in software
escrow

Maturity Analyzability
Fault tolerance Changeability
Recoverability Stability
Availability Testability
Degradability Manageability
Relevance Reusability
Significance

Learnability Suitability
Understandability Accuracy
Operability Interoperability
Explicitness Compliance
Customizability Security
Attractivity Confidentiality
Clarity Integrity
Helpfulness Availability
User-Friendliness Traceability
Accessibility Completeness
Consistency Preservability

Installability Time Behaviour
Replaceability Resource Behaviour
Adaptability Similarity
Conformance
Timeliness

Control Attributes(ISO9126 and QUINT2, DL)
Reliability Maintainability

Usability Functionality

Portability Efficiency

Figure 5: Digital objects for software escrow

Operating Systems
Data feeds Requirements Executables
Network connections System Architecture Configurations Programming Languages
Operating Systems Program Architecture Licenses Runtime Environments

Component Description
Data feeds Source‐Code‐How‐To Tests
Network connections Maintenance Guide Regression Tests
Operating Systems Environment Description

Functional Description Automation Executables
Reference Manual Database Schema
Installation Manual
System administrators guide Models

Configurations
SLAs Modelling tools
UP Licenses

Configurations

Supply Chains

Digital Objects

Binaries

Methods

Configurations

Contracts

3rd party libraries

Source Code

Licenses

Build Environment

IT Processes

Intellectual Property

Supporting Processes

Compilers

Patents

Applications

Algorithms

End UserBusiness Processes Test scripts

Design Environment
Test reports

Processes
Business Processes

Services Provided Test cases

Test data

DocumentationInterfaces Test Environment
SystemServices Used Infrastructure

134

• Maintainability: A set of attributes that bear on the ef-
fort needed to make specified (and consistent) modifica-
tions to artefacts.

• Functionality: A set of attributes that bear on the exis-
tence of a set of functions and their specified properties.
The functions are those that satisfy stated or implied
needs.

• Efficiency: A set of attributes that bear on the relation-
ship between the level of performance of the software or
the processes and the amount of resources used, under
stated conditions.

The complete list of control attributes for software escrow is listed
in Figure 4.
As before, the control attribute taxonomy needs to be tailored to
the project context of the software escrow to be of most use.
Having defined the taxonomy of control attributes independently
from the specific control objects allows for an truly holistic view
in the next step.

4.4 Software Escrow Control Points
Both the list of control objects and the list of desired control at-
tributes can now be contrasted with each other. This can simply be
done by calculating the Cartesian product of the two taxonomies
and yields a matrix of all possible combinations of DOs with
quality attributes. As we produce a full matrix we include poten-
tially meaningless combinations of control objects and control
attributes, we can now additionally prioritise the control points
(e.g., on a scale from “not relevant” to “very important”). We can
also use a more fine granular scale, but for illustrative purposes
and in practical use in past projects already the simply five step
scale proved effective. The prioritisation of the control points
must be agreed between purchaser and vendor as it will guide the
escrow agent in subsequent steps of the software escrow to assess
both completeness and adequacy of the preserved DOs.

4.5 Indicators and Metrics
The sheer act of defining the control points itself already provides
benefits as it clarifies what to look at and which attributes are
relevant to which artefacts. In a final step, the control points are
associated with control indicators and control metrics (cf. Fig-
ure 2, “4”). Control indicators help to identify quality risks by
making use of simple metrics. The following example was arbi-
trary selected and only illustrates the idea in general. The control
point (“Requirements”, “complete”), being very important for
both Digital Preservation and for software escrow, could be sup-
ported e.g. by an indicator “98% of requirements have an ID”.
The supporting metrics are (a) count requirements, (b) count
requirements with ID, (c) compute the ratio of (a) and (b).
In practise, indicators are most successful when expressed in
terms of non-desired properties. For example, it is very difficult to
assess the quality of requirements written in natural language.
Rather than trying to measure the quality directly, it is attempted
to identify the “bad” requirements by searching for terms like “to
do”, “tbd”, etc. If we identify one of the search terms in the con-
text of a requirement (a task that can even be automated to some
extent) we assume the requirement’s quality is low: In this case it
does not make sense to digitally preserve them nor does it make
sense to be part of any software escrow.
By following this pattern of negating quality the set of indicators
comprises a safety “net” of things we do not want to see. Having a
sufficient number of indicators significantly reduces the risk of
missing a bad “smell” and allows for re-adjustment of the quality
model over time.

5. APPLYING DP IN SOFTWARE ES-
CROW USE CASES
The concepts described in the preceding sections are applicable to
a multitude of use cases. In the following we will outline three of
those use cases that highlight the value that the application of DP-
techniques can add to software escrow.

Figure 6: The high level software escrow process

Standard
Rollout

Software
Escrow

Software
Maintenance
& Support

Next
Software
Release

End of
Lifetime

Software
Purchase and

Escrow
Agreement

In
Escrow
Case

• Identify Digital Objects
(consumer / provider)

• Identify Quality Attributes
(consumer / provider

• Prioritise Control Points
(consumer / provider)

Software Escrow
Expediency

• Preserve DOs (provider)
• Bundle DOs and QRM model
(provider to agent)

• Ensure Completeness &
Quality (agent)

Software Escrow
Execution • Exhume DOs and QRM model

• Transition into maintenance
stage of DOs

Software Escrow
ExhumationPer

Release

135

5.1 Holistic Software Escrow
The overarching software escrow process starts when the two
parties – software purchaser and software provider – agree the
terms and conditions of the escrow contracts with the help of the
software escrow agent. The software purchaser identifies the need
for software escrow and subsequently both software purchaser and
software provider prepare for an escrow agreement. The necessary
steps for the execution in addition to the usual software rollout
and maintenance procedures, and commitment on the triggers of
the software escrow exhumation case are determined. The soft-
ware escrow processes from the viewpoint of DP can be illus-
trated in . When comparing Figure 1 and Figure 6 it becomes
obvious that these processes constitute a direct application of the
DP processes to the software escrow problem space.
The first step, called software escrow expediency, aims at estab-
lishing (first iteration) or refining/revising (further software re-
leases) the DOs, their quality attributes and the QRM model in-
cluding the respective control points required. Secondly, per
release of the software under escrow the software provider makes
the preserved assets available to the escrow agent and bundles the
DOs with their QRM model. The escrow agent then can ensure
the completeness and adequate quality of the artefacts provided by
the software provider (utilising technical support) without disclos-
ing the preserved information to the software purchaser. If the
escrow case does not occur before the next release of the software
product the escrow process is hibernated. The agreed software
maintenance and support is delivered by the provider. Typically,
software products are updated from time to time and conse-
quently, after every new rollout of a new release of the software
under escrow the escrow process is triggered again.
In case the predefined events terminating the existence of the
software provider occur, escrow exhumation is triggered. The
software escrow agent hands over to the software purchaser all
assets in his behold. The software purchaser then may take the
necessary step as to re-vitalise the software maintenance and
support activities either on his own or with the support of a differ-
ent software supplier.
This approach is well-established in the software and IT industry
and there is a variety of vendors that offer this software escrow
service. Figure 7 illustrates the roles and tasks for the software
escrow approach, in which the software provider hands over
certain assets being part of their intellectual property to an escrow
agent who safely files away and manages access to those assets.
The software purchaser simply gets the executable software, just
as would be the case without the software escrow agreement.
Usually, the assets would remain in possession of the escrow
agent until the contract between software provider and software
purchaser terminates or until other events render the escrow un-
necessary.
Unfortunately, with software escrow, risks come into effect at a
late point in time: If and only if the escrow event occurs the soft-
ware purchaser will get access to the escrow asset base, and only
then is he able to determine the suitability of stored assets.
The holistic software escrow, utilising the Digital Preservation
research area, goes beyond the provisioning of a simple storage
and management service by the escrow agent by utilizing the
power of the approach detailed in the preceding sections (cf.
Section 4). By including an appropriate amount of quality assur-
ance into the escrow process upon software escrow expediency
and software escrow execution, the rate of success upon software
escrow exhumation can be greatly increased, increasing trust with

the software purchaser and enabling the software provider to ask
for higher compensation for the software escrow option.

5.2 Ex-Post ESCROW Analysis
As discussed previously, there already exists a market for soft-
ware escrow that has developed primarily in the Anglo-Saxon
countries, where players are offering a fairly basic escrow service
with limited success, as more often than not the quality of depos-
ited assets is insufficient for exhumation of the software at a later
point in time.
Subsequently, there is a need for the software purchaser to deter-
mine the course of action in such a situation. The fundamental
question that needs answering is whether it is worthwhile to invest
into re-engineering the system based on its available artefacts or
whether the system needs to be rebuilt from scratch, discarding
whatever was supplied as part of the escrow effort.
The procedure of choice for evaluating the various alternatives
and for answering this underlying question is to estimate the
respective investments for the relevant alternatives. For the alter-
natives that target the re-use of assets from the escrow this re-
quires transparency about the status quo as well as enough data to
support a reliable estimation of effort necessary to transform those
assets into value for the business.
An ex-post escrow analysis as depicted in Figure 8 yields the
necessary transparency by

• identifying the software purchaser’s vision, goals and
subsequent requirements towards the system

• making use of the software escrow object catalogue to
define a target state of required assets

• making use of the software escrow attribute catalogue to
map the software purchaser’s requirements to and pri-
oritize attributes

• conducting a gap analysis to identify the gap between
this target state and the status quo

• estimating the effort required to fill this gap by reverse
engineering of those parts of the system that are miss-
ing, incomplete, or outdated

Figure 7: Roles and tasks of the software escrow scenario

Software Provider Software Purchaser

License Executable

Escrow Agent

Escrow Event

136

When comparing this list of activities with the tool box supplied
by DP, it quickly becomes evident that we can draw heavily on
DP techniques to conduct the abovementioned tasks. The follow-
ing sections detail this link.

5.2.1.1 Identifying Vision, Goals and Requirements
Before any of the alternatives can be evaluated and ranked against
each other, a precise definition of the target state is required. The
required documentation to define this target state consists of
strategic visions, broken down into goals and objectives which in
turn decompose into a set of requirements that operationalise these
goals (similar to the first steps in the GQM approach [2]).
Some of this information will be available already, while others
may not. In any case, existing documentation needs to be re-
viewed to gauge its accuracy and actuality before it may be used
as a foundation for the analysis. Any documentation that does not
yet exist needs to be made explicit. The discipline of Require-
ments Engineering has developed a proven set of methods to
extract these requirements using a variety of techniques [15].

5.2.1.2 Defining the Object Catalogue
Once the high level target state is known, the preparation of the
actual gap analysis can commence. The first step towards this gap
analysis comprises the tailoring of the escrow object catalogue to
fit the specific requirements in place (cf.Figure 2, “1”). The stan-
dard escrow object catalogue depicted in Figure 5 is used as a
starting point from which all irrelevant objects are stripped.
The result of this activity comprises a catalogue of objects that
need to be present within the software escrow asset base for the
assets to be used in the intended fashion. This catalogue consti-
tutes the starting point for setting up an escrow quality model that
will be used to support the subsequent gap analysis.

5.2.1.3 Defining the Attribute Catalogue & Control
Points
More often than not the sheer existence of an artefact is not
enough to render it a useful asset that supports the viability of a
system.

Subsequently, each of the objects in the object catalogue must be
part of an overall QRM model and needs to be defined that estab-
lishes and operationalizes the expected quality for this specific
object (cf. Figure 2, “2”). The generic escrow attribute catalogue
depicted in Figure 4 serves as starting point for the analysis of
each escrow object that determines how the previously identified
requirements apply to each of the escrow objects (cf. Figure 2,
“3”).
These combinations of escrow objects with escrow attributes are
result in the escrow control points. For the above mentioned rea-
sons, not all combinatorial possible combinations of escrow ob-
jects and escrow attributes are meaningful. The meaningful ones
to be considered require a prioritization due to economic reason,
as discussed in Section 4.4.
Additionally, for each such escrow control point, a suitable verifi-
cation method needs to be determined and documented, including
all parameters that may have an influence on the result of the
verification. The verification method can be an in-depth analysis
of the control object with regards to the respective control attrib-
ute in the most complex case or, in simpler cases can be supported
by – simple – indicators and metrics.

5.2.1.4 Conducting the Gap Analysis
The actual execution of those verification activities involves the
application of methods and techniques from the quality assurance
discipline to the software escrow asset base in order to determine
the degree of gap that may exist between target state and the
artefacts contained in the asset base.
The results of these verification activities are mapped to the rele-
vant software escrow control points (cf. Figure 2, “4”). Doing this
guarantees traceability from verification results back to individual
escrow objects and attributes as well as the ability to aggregate the
results.
Once verification activities have concluded, the so annotated
QRM model is used to systematically identify the gaps between
verification results and target state.

5.2.1.5 Estimating Effort
Finally, the gap analysis results are used to inform the effort esti-
mation that makes the cost of using the escrow asset base explicit
by attaching a figure to it.
For each of the gaps identified, viable mitigations need to be
identified and for each of those expected effort and cost needs to
be estimated. In addition to this, all other direct and indirect costs,
such as costs arising from the need to license third party intellec-
tual property in order to use the escrow asset base need to be
considered. This holistic estimate of costs associated with (re-)use
of the escrow asset based can then be used as part of a larger
evaluation and decision making process that ranks all potential
alternatives against each other using the predefined requirements.
In supporting this decision making, the ex-post escrow analysis
can contribute as much value to the business as is possible for a
post-mortem analysis. While it is certainly able to create transpar-
ency regarding the viability of the deposited escrow asset base it
cannot bring back artefacts that have not been deposited, be it
intentionally or for want of knowledge that certain artefacts are
required. In a worst case scenario, the ex-post analysis can only
establish that the deposited assets are without any value to the
software purchaser and thus do not constitute a viable alternative.
The ability to influence the course of action before any damage is
done is a luxury that is only afforded to the holistic software

Figure 8: The ex-post software escrow process

Identify Vision, Goals and
Requirements

Define the Object
Catalogue

Define the Attribute
Catalogue & Control Points

Conduct the Gap Analysis

Estimate Effort

137

escrow documented in Section 5.1 and utilising the Digital Pres-
ervation knowledge base.

5.3 Due diligence Analysis
Mergers and acquisitions (M&A) of companies are a risky under-
taking. Recent studies find that almost two thirds of all mergers
and acquisitions fail, for instance resulting in a split along old
corporate borders [9].
In those cases where the corporate management needs to report to
a diverse group of owners and other stakeholders such as with
publicly traded companies there is a subsequent requirement to
prove to owners and stakeholders that corporate management is
diligent in executing the merger or acquisition by closely scruti-
nizing the partner or acquiree. One integral part of this scrutiny is
a financial valuation of the organization and all its assets.
IT systems and the software and applications that drive those
systems are usually part of the tangible assets that are owned by
any modern company. Unlike real estate, a corporate fleet or
factory buildings with production lines inside, software is notori-
ously difficult to value correctly. In addition to this, more com-
plex M&A scenarios may require parts of the affected companies
and their assets to be severed from the rest of the organization, for
instance to be sold off separately because of regulatory concerns.
All this calls for both the precise valuation of software and IT
assets in general and for the ability to safely deposit assets into
escrow while the M&A transactions are being finalized by all
affected parties.
Subsequently, this use case constitutes a hybrid between a soft-
ware escrow, where software assets are being put into Escrow and
an ex-post Escrow analysis where an extant asset base is evaluated
in terms of its future viability for the intended use cases.
This dichotomy becomes transparent when inspecting the meth-
odological building blocks necessary to conduct this analysis:

• In a first step all IT and software assets relevant for the
analysis need to be surveyed and mapped to an overall
IT and software landscape that shall serve as input to the
valuation. In terms of the QRM framework, the estab-
lishment of the control objects catalogue is a useful tool
to achieve a comprehensive overview of existing assets.

• The valuation of assets itself can be conducted using the
procedure detailed in Section 5.2, with the only real dif-
ference being that the assets to be analysed are not part
of an software escrow asset base. This requires addi-
tional preparatory activities to collect and collate all the
required assets for the analysis. From the QRM frame-
work perspective, this step corresponds to the estab-
lishment of the control attributes catalogue and the sub-
sequent elicitation of control point.

• Once the asset base is complete and the ex-post analysis
has been conducted, a first value estimate can be deliv-
ered. The estimation can make use of the QRM model
by supporting the various control points with price indi-

cators and thereby systematically derive a transparent
overall assessment.

• Depending on the discussed influencing factors, some
assets may need to be put into software escrow for the
duration of time during which the merger or acquisition
is being executed.

• In order to diligently curb risk, all parties involved need
to ensure that a holistic software escrow is instituted to
make sure that whatever is put into escrow conforms to
its estimated value after the merger or acquisition has
been finalized.

6. SUMMARY AND OUTLOOK
In this paper we have laid out use cases taken from the industry
scenario “IT outsourcing” that mitigate specific risks by making
use of software escrow services and due diligence analyses. To
support the use cases in practise we exploit the concepts of DP
and apply the QRM framework to provide an holistic view on
quality risk management. We have pointed out that the results
from DP research are not limited to long-term views but can also
be deployed in typically short-term scenarios.
Derived from our experiences we suggest a new definition of a
holistic software escrow based on the definition made in [12]: “An
independent trustee is appointed as the escrow agent for licensor
and licensee. The parties enter into a three-way agreement. The
licensor delivers a copy of all source artefacts needed to build the
object code and maintain the software to the escrow agent, and is
usually required to deliver a update of the artefacts whenever it
delivers a corresponding object code update to the licensee under
the corresponding license agreement. Upon occurrence of a trig-
gering event, and only then, the escrow agent delivers the es-
crowed artefacts to the licensee”.
Currently, we are evaluating the suggested definition and further
use cases –in the context of the TIMUBS project [19] – for apply-
ing QRM and DP in various contexts for the benefit of our cus-
tomers.

7. ACKNOWLEDGEMENTS
Parts of this work have been supported by the European Union in
the TIMBUS project [19]: “Digital Preservation for Timeless
Business Processes and Services”, Grant Agreement Number
269940

8. REFERENCES
[1] American Society for Quality/ISO 8402:1994
[2] Basili, V., Caldiera, G., Rombach, H. D.: The Goal Question

Metric Approach. In: Encyclopedia of Software Engineering.
John Wiley & Sons, 1994

[3] BCG The Boston Consulting Group: “M&A: Ready for
Liftoff? A survey of European Companies’ Merger and Ac-
quisition Plans for 2010”, December 2009

[4] Beagrie, N., Jones M. (maintained by Digital Preservation
Coalition): Preservation Management of Digital Materials:

138

The Handbook, 2008, available at
http://www.dpconline.org/advice/preservationhandbook

[5] Consultative Committee for Space Data Systems: Reference
model for an Open Archival Information System recommen-
dation for space data system standards. Washington D.C,
2002

[6] Zachmann, J.A.: A framework for information systems archi-
tecture, IBM Systems Journal 26 (1987)

[7] Goncalves, M.A., Moreira, B.L., Fox, E.A., Watson, T.L.:
‘‘What is a good digital library?’’ – A quality model for digi-
tal libraries, Information Processing and Management
43 (2007)

[8] EFQM Excellence Model 2010. http://www.efqm.org/
[9] Fulmer, R.M., Gilkey, R.: Blending Corporate Families:

Management and Organization Development in a Postmerger
Environment, The Academy of Management Executive Vol.
2, No. 4 (Nov., 1989)

[10] IEEE Standard Glossary of Software Engineering Technol-
ogy, 1983

[11] International Standard ISO/IEC 9126, Part 1, Software engi-
neering – Product quality – Quality model, Beuth-Verlag,
Berlin (2001)

[12] Meeker, H.: “Thinking outside of the Lock Box: Negotiating
Technology Escrow”, Computer & Internet Lawyer, No 9,
2003

[13] NATO Consultation, Command and Control Board, NATO
Architecture Framework (NAF), http://www.nhqc3s.nato.int

[14] NCC Group plc: “Preliminary Annual Results for the year
ended 31 May 2010”, July 2010

[15] Pohl, K.: Requirements Engineering, Springer, 2010
[16] Simon, F., Simon, D.: Qualitäts-Risiko-Management, Logos

Verlag, November 2010
[17] Software Engineering Research Centre Netherlands,

“Kwaliteit van Softwareprodukten – Ervaringen met een
kwaliteitsmodel”, http://www.serc.nl/quint-book.

[18] Sommerville, I.: Software Engineering, 8th edition, Pearson
Education (2007)

[19] TIMBUS, http://www.timbusproject.net/
[20] The Open Group Architecture Framework,

http://www.opengroup.org/togaf
[21] PLATO, The Preservation Planning Tool,

http://www.ifs.tuwien.ac.at/dp/plato
[22] H. Neuroth, A. Oßwald, R. Scheffel, S. Strathmann, M. Jehn,

“nestor-Handbuch: Eine kleine Enzyklopädie der
Langzeitarchivierung“, 2009

139

