
Replicating Installed Application and Information
Environments onto Emulated or Virtualized Hardware

Dirk von Suchodoletz
Institute of Computer Science, Albert-Ludwigs

University
10 H.-Herder st., Freiburg, 79104, Germany.
dirk.von.suchodoletz@uni-freiburg.de

Euan Cochrane
Archives New Zealand, The Department of

Internal Affairs
10 Mulgrave st, Wellington, 6011, New Zealand.

euan.cochrane@dia.govt.nz

ABSTRACT
Digital objects are often more complex than their common
perception as individual files or small sets of files. Stan-
dard digital preservation methods can lose important parts
of digital objects, or the context of digital objects. To deal
with the different types of complex digital objects, and to
cope with their special requirements, we propose applying
emulation from a different perspective in order to preserve
the whole original environment of single digital objects or
groups of digital objects. Many of today’s preservation sce-
narios would benefit from a change in our understanding
of digital objects. Our understanding should be shifted up
from the single digital files or small groups of files as they
are commonly conceived of, to full computer systems. When
this shift in perspective is undertaken two important out-
comes result: 1. the subject of preservation includes a much
richer level of context and 2. the tools available for pre-
serving them are constricted. In this paper we describe a
workflow to be used for replicating installed application en-
vironments that have the x86 architecture onto emulated or
virtualized hardware, we discuss the potential for automat-
ing steps in the workflow and conclude by addressing some
of the possible issues with this approach.

Keywords
Emulation, Disk Imaging, Virtualization, Complex Digital
Object, Original Digital Ecosystem

1. INTRODUCTION
Most digital objects are more complex than perceived by
archivists or other practitioners dealing with the task of dig-
itally preserving office workflows, scientific desktops, elec-
tronic publications or dynamic objects like multimedia en-
cyclopedias, educational software and computer games. The
majority of today’s digital objects consist of individual files
but most of those files are not self contained. A digital
ecosystem is required to render or run these digital objects.
In order to preserve the individual files, and the entirety of

the information that is presented when they are rendered,
it would be useful, and in many cases necessary, to be able
to replicate and preserve their original rendering environ-
ments. Overall there are at least three compelling reasons
for making images of entire information environments and
maintaining the ability to render them over time:

1. To provide researchers the ability to experience indi-
vidual users’ or representative users’ old information
environments such as politicians’, artists’ and other
famous peoples’ information environments or an av-
erage/representative user’s Information Environment
from a particular time period.

2. In order to preserve complex digital objects in an inex-
pensive and efficient way by enabling the automation
of their preservation.

3. To produce permanent ”viewers”for digital objects that
can easily be maintained over the long term and are
known to be compatible with the objects.

Preserving a famous person’s installed application and infor-
mation environment has been demonstrated most success-
fully by the team at the University of Emory’s Manuscript
Archives and Rare Book Library (MARBL) where they have
preserved an image of the hard disk from Salman Rushdie’s
early 1990s Macintosh desktop and currently use an emu-
lator to access it [6]. The value of this approach has been
realized by the team at Emory where they have seen new
ways of conducting research being developed because of the
availability of the emulated desktop. The experience of in-
teracting with the original owner’s actual desktop environ-
ment has led to novel discoveries being made such as the
discovery the Emory team made that Rushdie was an avid
user of the ”stickies” application on the Mac operating sys-
tem.

Unfortunately, imaging and maintaining access to old com-
puter desktops is still a niche endeavor for a number of rea-
sons including the perceived complexity and difficulty for
average, non-technically trained preservation practitioners.
This need not be the case. The steps described in this paper
constitutes a feasible workflow that suitably skilled practi-
tioners could use immediately to begin replicating installed
application and information environments onto emulated or
virtualized hardware. The workflow also includes numerous
steps which have the potential to be highly automated, mak-
ing the process easily manageable by an average archivist,

148

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

iPRES2011, Nov. 1–4, 2011, Singapore.

Copyright 2011 National Library Board Singapore & Nanyang 
Technological University



librarian or other less technically skilled digital preservation
practitioner.

2. PRESERVING COMPLEX OBJECTS
Digital objects are often assumed to be individual com-
puter files that stand-alone and don’t have many dependen-
cies aside from requiring some sort of program to render or
”open” them.

This understanding of digital objects is very limited and
quickly breaks down under closer examination. For exam-
ple, there are many types of digital objects that include more
than one ”content files” such as digital videos which are of-
ten captured as thousands of image files with a separate
audio file and separate metadata file, or linked spreadsheet-
workbooks in which one table provides data to another. In
examples like this the loss of any one file from the digital
object can lead to the inability to render the wider object
[4].

As another example, files stored in Electronic Document and
Records Management Systems (EDRMS) can be ruined from
an archival perspective if they are taken out of their EDRMS
as their context can be lost. In this example it would theo-
retically be possible to define a metadata standard and pre-
serve sufficient metadata to capture the context that the file
came from; however in practice this is extremely difficult.
A further example is provided by the case of office docu-
ments (e.g. Microsoft Word) that require additional/special
fonts to be rendered. Without the fonts these digital objects
sometimes cannot be rendered at all [1, 9]. These exam-

Figure 1: Missing fonts can make digital objects un-
intelligible [1].

ples illustrate that digital objects are often more complex
than they are generally conceived. In addition to this, when
the necessary additional files are not saved directly with the
”content files”, it is often unclear and difficult to ascertain
what additional components are necessary for rendering the
object with integrity. This presents a real and significant
problem to archivists, librarians, curators and other digital
preservation practitioners who are faced with the task of
preserving such objects.

All of these cases benefit from a shift of our understanding of
digital objects up from the single digital files or small groups
of files as they are currently conceived of, to full computer
systems. By shifting our understanding up to this level we

enable conversations and planning to be undertaken to iden-
tify such objects. This shift in understanding also enables
preservation institutions and research organisations to be-
gin to address the practical preservation requirements that
need to be fulfilled in order to preserve such complex objects
for future generations. The experience of maintaining access
to old software like computer games using emulation [2, 8]
helps to understand the envisioned process.

The workflow described in this paper provides one initial
practical option for preserving such complex objects. The
workflow can be used to preserve the complete creating and/-
or rendering environment portion of a complex digital ob-
ject, ensuring that any dependencies are preserved. This
approach would significantly help in solving the problem
outlined above.

3. PRODUCING PERMANENT, COMPATI-
BILITY VERIFIED VIEWERS

When addressing the problem of long term access to (or
preservation of) digital objects there are two primary op-
tions that preservation practitioners have for solving it:

1. Move the information from one file or set of files to
another file or set of files which can be rendered more
easily using existing software.

2. Maintain the original rendering software indefinitely.

Option (1) implies many potential problems including dif-
ficulty in ascertaining whether migrated versions of objects
have retained their integrity, either due to information loss
in the conversion process or difficulty in assessing whether
new renderers are truly compatible with the objects, and
a potentially high long-term cost due to having to perform
migrations on a regular (if infrequent) basis. Option (2)
has been considered unfeasible for various reasons includ-
ing (though not limited to) the difficulty in maintaining the
viewers over time.

The workflow outlined in this paper could be used to pro-
duce viewing environments that would be known to be com-
patible with an organization’s entire set of digital objects or
digital objects across a time period. This would solve one of
the problems faced by option (1) by providing a compatibil-
ity verified viewer for the objects. For example, a standard
desktop environment from a public-sector organization that
is intended to be able to be used to view/render all the ob-
jects created by that organization could be replicated onto
virtual or emulated hardware, or a web browsing environ-
ment representing a period of time could be replicated and
maintained for use indefinitely in viewing/rendering web-
sites from that period.

Virtualized or emulated environments are designed to be
portable across different types of hardware and operating
systems, including potential future hardware and operat-
ing systems, and thus viewing environments created using
the workflow outlined in this paper would have these same
sustainability properties. Furthermore, while longevity is a
general property of virtualized or emulated environments,
the workflow outlined in this paper could also be used to

149



replicate environments for use in emulators that have been
specifically designed to need very little maintenance over
time, such as the Dioscuri modular emulator. This would
ensure that there were even more sustainable and viable as
permanent solutions. Virtualization products may be seen
as being quite short-term solutions from a digital preserva-
tion perspective however they are are practical in so much
as they are available now and can be used to solve cur-
rent problems. Furthermore virtualization products often
use emulation to provide many critical components of their
total product and are best seen as emulators (e.g. Virtual-
Box).

4. ENVIRONMENT REPLICATION WORK
FLOW

After some initial hard drive imaging and virtualization tests
with a MySQL database system running on Linux to inves-
tigate the general feasibility and practicality in 20071 the
authors undertook more elaborate and broader experiments
at Archives New Zealand. In these activities we aimed to
investigate the feasibility of making images of old comput-
ers that were running a wide range of DOS and Windows
operating systems. The experiments aimed to replicate the
installed application and information environments on the
computers’ disks onto emulated and virtualized hardware.
This imitated the idea of moving a hard disk from one phys-
ical machine to another compatible machine, and thereby
preserving most (if not all) relevant aspects of the first one.
This was achievable as almost all the relevant information on
a computer is kept on its hard disk. In some circumstances
this approach may not be feasible due to some components
being provided through external hardware or some aspects
of the environment being dependant on particular firmware
code, however for the most part this approach is very effec-
tive. The experiments were very successful and from these
experiments a number of steps were documented and have
been formed into a workflow. The workflow outlines how to
replicate installed application and information environments
onto emulated or virtualized hardware. A detailed discus-
sion of the experiments, including additional findings, will
be included in a forthcoming paper. The following section
describes the steps involved in the workflow and outlines the
options and decision points that occur within it.

4.1 Create Disk Images
The first step in the workflow is to make images of the hard
drive or drives that contain the environment that you wish
to replicate in emulated or virtualized hardware. There are
two ways of doing this: It can be done intrusively by taking
the hard drive out of the old hardware and attaching it to
modern hardware, or non-intrusively, by running modern
software in the memory on the old hardware and making an
image of the drive(s) over a network connection.

Intrusive Disk Imaging. Intrusive disk imaging involves
removing the target hard drive(s) from the original com-

1An x86 IBM server machine containing a hardware raid of
three SCSI disks was dumped running in single user mode
with network connection and file system set to read only.
The resulting image was converted to VMware image type
and the hardware driver changed to Buslogic [13, p. 165].

Figure 2: Formalized work flow diagram

puter hardware. For this reason is both difficult for some-
one without specialist training to undertake and potentially
quite risky as the hardware may be damaged during the
process. There are two initial steps involved in this method:

1. Detach and remove the hard disk from the computer
case.

2. If the connector is IDE or SATA there are then two
secondary options:

(a) Connect the hard disk to an USB-IDE/SCSI adap-
ter and plug this one into a machine running Linux
that the image is to be ”dumped” (written) to.

(b) Directly connect the drive to a machine that has
a compatible IDE/SATA/SCSI connector on its
motherboard or has an appropriate extension card
installed and can run Linux.

150



A computer may need to be switched off to attach or remove
a disk so is a good idea to have a dedicated computer to do
this with in order to avoid complications. Option 2a may
be preferred in many cases as it is easier due to not having
to open up the modern hardware in order to connect the
old hard drive to it. However it may be substantially slower
than option 2b which may be important in some contexts.

Copying the content. Once the disk is connected to a ma-
chine running Linux it is then possible to run a command to
copy the entire contents and structure of the hard disk into
an image file. In Linux the program that performs the imag-
ing procedure is dd. To initiate the process the full command
used is as follows: dd if=/dev/sdb of=imagename.img

Where sdb is the logical device identifier of the attached disk
in the Linux system. The disks are enumerated starting from
letter a. Thus additionally attached disks are labeled in al-
phabetical order. Using the fdisk -l /dev/sdb command
helps to identify the disk by its size if several are attached.

The dd tool reads the disk contents directly from the de-
vice blockwise from the absolute beginning to the end and
thus requires administrator permissions in order to be exe-
cuted. Directing dd to image /dev/sdb is the simplest imag-
ing method as it creates a copy of the entire disk and any
partitions on it. However it is possible to just make an im-
age of the content of any relevant partitions such as imaging
the second partition with /dev/sdb2 to save on size of the
resulting disk image. In the latter case the boot sector and
partition table are lost though, as the disk layout is changed
from a partitioned one to a linearly used disk without par-
titioning on it. This in turn makes running the image in an
emulator much more complicated.

If dd encounters problems because of bad sectors then the
dd_rescue program can be used as an alternative to help to
produce an image from the readable sectors. The resulting
image will be usable in many cases provided the sectors con-
taining significant portions of the boot sector or operating
system have not been affected.2

The time taken to image a disk using this method will vary
depending on the type of connection, the size and the speed
of the disk being imaged. It can take from less than one
minute to more than an hour for very large disks. The pro-
cess is reasonably straight forward for standard disk configu-
rations such as those that are likely to be found in standard
desktop office machines. It becomes more challenging when
involving hardware or software RAID setups which might
be present in servers. In these cases it might be possible
to access the disks via non-intrusive imaging. Furthermore
this process will likely be greatly simplified for many current
day servers which are often already running from virtual disk
images as virtual machines.

Non-Intrusive Disk Imaging. The least intrusive disk ima-
ging method is to boot a ”live” distribution of the Linux op-
erating system into the memory of the computer, and image

2The dd_rescue program, unlike the dd program, is not nor-
mally included by default in Linux distributions.

Figure 3: Booting Damn Small Linux on an x86
Compaq desktop machine to allow non-intrusive disk
dumping

the hard disk over a network connection directly to another
machine (Fig. 3). These ”live” distributions do not use the
internal hard disk and thus preserve its original state and
leave it free (not in use) to be imaged. The ”live” distribu-
tions come in a number of forms that can be run on varied
sets of hardware. Linux includes a wide range of popular
hardware drivers. Support for standard IDE and SCSI disks
will be included in most distributions; many hardware RAID
controllers are also supported. Most versions of ”live” Linux
distributions consist of a CD-ROM which can be booted
from. It is also possible to find distributions that include
a boot-floppy disk for machines that require this to be run
first in order to boot from the CD-ROM. For machines that
can boot from USB, Linux distributions that run from USB
drives can be found. If the machine is an older one with-
out a CD-ROM drive, a compact Linux distribution can be
used that will run from one or more floppy disks such as
MuLinux.3

Once an appropriate Linux distribution has been selected it
needs to be booted in ”live”mode on the original hardware to
a point where the command line is accessible. The hardware
needs to be connected to a dumping target machine via a
network connection and the connection has to be established
between the two.4 The Linux commands ifconfig or ip can
be used to setup the connection, assign an IP address to the
hardware containing the target hard disk. The connection
can be tested using the ping command. If there is no Linux
hardware support available for a given disk configuration it

3See: http://www.micheleandreoli.it/mulinux
4We keep a selection of Linux supported NICs: PCI, Card-
bus, ISA to install them into the target if required.

151



Tool / Image type dd-raw vmdk vdi
QEMU x x x
VirtualBox – x x
VMware – x –

Table 1: Compatibility list of container formats un-
derstood by the different x86 virtualization tools or
emulators.

would be possible to find other disk imaging tools which
produce similar results.5

Copying the Content. As when imaging a hard drive that
is directly connected to modern hardware, the command to
use on the just started Linux is dd. To initiate the process
the full command used for the machines that is to send the
image, via SSH (a secure data exchange protocol), to the
image storage computer over the network will be similar to
this:

dd if=/dev/hda|ssh username@ip.of.target.machine

dd of=imagename.img

Where the username was the username to be given for the
remote machine, the ip.address.of.target.machine is the IP
address of the computer the image data is being sent to,
and the imagename.img is the name that was to be given to
the file to that the image was to be written to. Some older
Linux kernels might use different naming for IDE disks like
hda instead of sda. fdisk -l usually gives the information
on the installed disks of a computer.

The time taken for this process will vary significantly de-
pending on the throughput of the network connection and
the size of the hard disk being imaged, from minutes to
hours.

4.2 Emulation Software Preparation
Once a copy of the original hard disk has been written to an
image file the steps to resurrect the environment in emulated
or virtualized hardware can be begun. The first step in this
sub-process is to identify the hardware requirements of the
software environment that is being replicated. In order to
select an appropriate emulation or virtualization application
it is first necessary to identify the hardware requirements of
the software environment to be replicated so that they can
be correlated to those provided by the different emulation
and virtualization applications. The choice of software to
be used to provide the virtualized or emulated hardware to
replicate the imaged application and information environ-
ment on will depend on a number of factors.

Hardware Provision. Availability of necessary virtual or
emulated hardware is one of the primary considerations when
selecting a virtualization or emulation application for long
term preservation/access purposes. For example, if the en-
vironment being replicated is to be used to access networked

5Open Source solutions like Clonezilla, http://clonezilla.org
or commercial products Norton or Symantec Ghost and alike

resources such as old websites, then it will be necessary
for the emulation or virtualization application to provide
a virtual or emulated network card that is compatible with
the operating system of the environment that is being repli-
cated. Depending on the virtual/emulated machine, numer-
ous hardware configuration options are available:

• QEMU6 supports numerous different graphic cards like
Cirrus gl5446, generic VESA or the VMware SVGA
II and different sound and network adapters (ne2000,
AMD PCnet, rtl8029, rtl8139, Intel e1000, ...)

• Virtual PC offers S3 Trio32/64 graphics adapter

• VMware Workstation provides an SVGA adapter with-
out a real world counterpart and different kind of net-
work adapters: the AMD PCnet, the Intel e1000 and
virtual IO.

• Virtual Box is flexible regarding the chip set (PIIX3,4
and ICH) and other options like Soundblaster 16 and
ICH AC97 audio.

• DosBox7 implements S3, et3000, et4000 and other gra-
phics adapters, various sound cards and a higher layer
networking.

Operating Systems and Hardware Drivers. Hardware
and operating systems were once tightly matched for a num-
ber of older computer platforms such Motorola or PowerPC0-
based Macintoshes or Atari home computers. This was not
the case the with x86 architecture (”PCs”). The system
BIOS of modern computers provides a number of standard
APIs for the operating system to access the hard disk, floppy
drive and graphic adapter. The operating system only needed
specific hardware drivers to exploit the full feature set of
other components like network and audio adapters or a gra-
phic card’s 3D capabilities.

Figure 4: Driver support in standard x86 operat-
ing systems compared to provided emulated network
adapters

6A popular Open Source multi-platform emulator for X86,
PowerPC, ARM, S390 and others, see http://wiki.qemu.org.
See for DP considerations [14].
7Open Source x86 and DOS emulator for BeOS, Linux, Mac
OS X, OS/2, and Windows, http://www.dosbox.com.

152



Unfortunately, the driver situation of commercial operating
systems for older x86 architecture computers is rather di-
verse [13, p. 190-195]. There is no driver support in DOS or
early Windows versions for modern hardware. The emulated
or virtualized hardware set must match the era the operat-
ing system was available and so emulators have to provide
a wide range of different hardware configurations if they are
to be able to host the x86 operating systems covering more
then two decades. (Fig. 4).

Tool Considerations. Another major consideration is lon-
gevity. Software that provides emulated hardware is the only
viable option for digital preservation as emulating hardware
does not require running the emulator application on hard-
ware that is compatible with the emulated hardware. Virtu-
alization, on the other hand, relies (for the most part) on the
underlying hardware, which the software that provides the
virtualized hardware runs on, to be compatible with the vir-
tualized hardware (e.g. to run an application that provides
virtualized PowerPC hardware the underlying hardware on
which the application is run must also be PowerPC compat-
ible). A further consideration is licensing cost: Those vary
amongst virtualization and emulation vendors and over their
numerous products and services, and in some cases this may
restrict available options. However in other cases it may be
advantageous for institutions that already use particular vir-
tualization software to continue to use this software for their
digital preservation needs over the medium term (over the
long term emulation is the only option as identified above).

Modify Disk Image Format for Emulation or Virtual-
ization Software. The QEMU tool suite provides a tool
”qemu-img” to handle disk image files from a wide range of
virtualization tools and of course QEMU itself. The termi-
nal command used to convert a raw image file using qemu-
img would look similar to this depending on the expected
outcome: qemu-img convert -O qcow2 nameOfImageFile-

ToConvert.img nameOfConvertedImageFile.qcow2.

This produces a converted image file in the most recent
QEMU disk container format. It can also be given a param-
eter that turns on compression to reduce the file space taken.
For converting to formats compatible with VMware and Vir-
tualBox, qemu-img convert -O vmdk nameOfImageFileTo-

Convert.img nameOfConvertedImageFile.vmdk produces
disk images usable by the VMware virtualization tool suite
or by Virtual Box. Conversion directly to the native for-
mat of Virtual Box and Virtual PC is also possible, however
in tests run in the laboratory VirtualBox often failed when
emulating older operating systems and Virtual PC is mostly
deprecated. For all experiments involving the alteration of
the hard disk image file it is a good idea to also keep the
original. Some experiments such as starting QEMU directly
on a container file to check if the installed operating system
boots, may render the image unusable for further experi-
ments.

After producing the proper container format for the particu-
lar virtual machine or emulator the next step is to configure
the virtual or emulated machine to boot from the image.
The steps involved in this process depend heavily on the

tool in use: While QEMU is normally configured solely via
a command line most of the tools require a setup proce-
dure using some sort of Graphical User Interface (GUI) and
these are available for QEMU also). The virtual hardware
configuration should match to the capabilities of the original
operating system and it’s supported hardware components.
For example it is easier to adapt a Windows 95 based sys-
tem to the emulated PCnet network adapter than the Intel
e1000 network adapter as the PCnet adapter is of the same
era as Windows 95 and has driver support included with the
operating system.

4.3 Test Booting of Images
Once the emulator or virtual machine is properly configured,
and the disk image file correctly linked to it, an attempt can
then be made to boot the original system in the emulator
or virtualization software. If the virtual environment boots
successfully with no errors then pending further tests the
process has been successful and is now complete. There is
a possibility that the environment may simply fail to boot
from the beginning. This can often be caused due to changed
disk geometries or different BIOS capabilities of the original
and the virtual machines. When this occurs the boot sector
may need to be re-enabled.

The system can often be made bootable by using a valid op-
erating system boot medium such as a Windows boot floppy
disk or, for newer systems, the optical installation medium
(e.g. the Windows CD-ROM). Another option when these
issues are encountered is to create a system boot disk on the
original system that was imaged. This has the advantage
of matching exactly with the installed software. Alterna-
tively disk images of boot-media for most operating systems
can be download from the Internet. In the experiments that

Figure 5: Reinstallation of drivers on emu-
lated/virtualized hardware

were conducted, almost all of the system images were able to
be booted directly within a QEMU-emulated machine and
the other virtual machines tested. Only the Windows 98
system required a boot floppy disk to be used to restore
the boot loader. This was achieved by loading the image
with the boot disk in the emulated floppy drive, and typing:
a: followed by sys c:. This reinstalled the necessary por-
tion of the operating system core files and made the image
bootable again. These actions might differ for other operat-
ing systems and could be more complex for newer systems
like Windows XP, OS/2 or Linux. The next issue that may
arise is an incompatibility between the installed hardware
drivers and the new hardware provided by the emulation or
virtualization software.

153



4.4 Finalize the Migration
Typically the emulator or virtual machine being used will
get to a point at which it produces errors about missing
hardware, or wrong drivers or will not boot into the original
system’s GUI at all. In order to rectify this, the next step
required is to re-run the operating system’s hardware setup
procedure to re-detect the hardware configuration (Windows
95 and above). This usually triggers the reinstallation of
drivers (Fig. 5) which in turn should give improved VGA,
sound output and network access. As the drivers are often
not part of original installation these need to be provided
either by preinstalling them on the disk image or by making
them available via the virtual/emulated CD or floppy drives.

Other systems such as Windows 3.X can require the Win-
dows setup procedure to be run before loading the oper-
ating system in order to swap the video driver back to a
basic VGA driver (Fig. 7, otherwise it may be impossible
to load the OS in a meaningful way). If a higher resolu-
tion and/or color depth is desired this can then be achieved
through changing the settings via the GUI once VGA mode
has been enabled (Fig. 6). Unfortunately, successfully mak-

Figure 6: Alterations to Operating System Config-
uration

ing the image bootable does not always mean the operating
system will be able to completely load from the image. Hard-
ware compatibility errors will often arise from attempting to
run an operating system configured for one set of hardware
on a different set of hardware. Typically the emulated ma-
chine being used will get to a point at which it produce er-
rors about missing hardware, wrong drivers or will not boot
into the original system’s Graphical User Interface (GUI) at
all. The solution to this (for Windows 95 and above) is to
run the operating system’s hardware setup procedure to re-
detect the hardware configuration. This usually triggers the
re-installation of drivers which in turn should give improved
VGA, sound output and network access. As the drivers are
often not part of original installation these need to be pro-
vided either by preinstalling them on the disk image or by
making them available via the virtual or emulated CD or
floppy drives.

For newer proprietary operating systems, the original instal-
lation media or some equivalent is usually require to pro-
vide the standard driver set. Additionally, if the hardware
changes the license might needed to reactivated. This re-

Figure 7: Altering Display Drivers in Windows 3.11

quires the license key to be available to be re-entered. In
order to make this step easier it is often possible to find
software tools to read license keys read from the hard drive
image from where they are stored on the disk, for example
from the Windows system registry.

Fortunately, there is not a huge degree of variance between
most hardware components in the different emulated hard-
ware environments. Because of this, it should be possible to
create additional disk image containers for each emulator or
virtualization tool containing all of the relevant files that are
needed to revive an arbitrary imaged original environment.
Typical files which should be included are the installation
files, relevant drivers and additional utilities which might
help later users of the imaged systems. In most cases these
files could be copied to a blank formatted hard disk image
and such a hard disk could be attached as a further device
to the virtual/emulated machine which would be automat-
ically recognized by most, if not all, operating systems. At
this point the environment should be ready for use.

5. POTENTIAL FOR AUTOMATION
The research conducted in order to inform the creation of
the workflow outlined in this paper also enabled the test-
ing of the general feasibility of dumping complete machines
to be run in emulated hardware environments. One result
of these investigations was the realisation that some of the
tasks may be seen to be somewhat complicated for a non-
technically trained practitioner (such as the use of the com-
mand line). Another finding was that there are many steps
in the workflow outlined above that have the potential to be
fully or partially automated, often by rather simple batch
scripts run within an average Linux environment. Future
research would be required to establish the best techniques
for handling a wider range of systems and for dealing with
more variable hardware. It would be beneficial to allocate
resources to investigate how to automate some of the steps
within the original environments. Here it might worthwhile
to investigate whether the results of previous research into
handling of interactive environments could be applied for
automating some of these steps.

Step 1(.2) (Non-Intrusive) Disk Imaging could be automated
through the creation of customized Linux distributions that
are setup solely for the purpose of imaging old media. Linux
distributions designed for digital forensics workflows [5] could

154



be modified for this purpose. This part of the process could
be highly automated to a point where it would simply be a
matter of inserting the disk or CD into the target computer,
connecting a network cable and typing a few short com-
mands, or making a few selections, to adjust the settings for
the particular situation.

Step 2 Identify Hardware Requirements could be automated
through the creation of an application to scan the disk image
to identify most or all of the hardware requirements of the
software environment installed within it. For example Win-
dows operating systems often store information about the
hardware that the operating system is installed on within
the system registry files and these files could be queried to
provide information on the appropriate emulation environ-
ment. If the machine is accessed via Linux for dumping, than
listing of hardware components by using standard hardware
detection tools like hwinfo or lspci is pretty straight for-
ward.

Step 3 Select Emulation or Virtualization Software will al-
ways be a decision point, however intelligence could be added
to make the decision as simple as possible by having the
results of step 3 automatically compared to a database of
virtual and emulated hardware provided by the different ap-
plications. Extended tool registries like [10] or [11] should
be able to support this in the future.

Step 4 Modify Disk Image Format for Emulation or Vir-
tualization Software could also be automated through the
creation of an application that took the results of step 3 and
automatically converted the disk image to the appropriate
format. As this is run on a today’s machine it is just a line
to be added to a script running on the emulator hosting
computer.

Step 5 Setup Emulated or Virtualized Hardware could be
partially automated by mapping the results of the hardware
identification in step 2 to the settings in the virtualization
or emulation software being used. There will still likely need
to be some decisions made about the configuration for each
different environment but where generic enough this may be
able to be fully automated.

Step 6 Test Boot of Image in Emulated or Virtualized Hard-
ware has the potential for automation through a number of
mechanisms. The error logs of the virtualization or emu-
lation software could be analyzed to check for any boot-
problems. It may also be possible to identify drivers by
analyzing the disk image file to ascertain hardware conflicts
in the installed operating system after an initial boot test, or
by applying image analysis using the I/O interface (such as
VNC or RDP) of the emulation or virtualization software to
check for errors being presented in the virtual or emulated
environment.

Step 7 Add Drivers could be further automated by the cre-
ation of custom applications for each operating system and
virtual/emulated hardware combination that could be run
on the virtualized/emulated environment to install the nec-
essary applications. Media containing the necessary drivers
could be attached to the virtual/emulated system and the
relevant options could be automatically selected when the

operating system asks for the necessary driver files.

Step 8.1 Re-Enable Boot Sector could be automated using
the I/O interface of the emulation or virtualization software.
This could be accomplished by the use of methods similar to
those identified in previous papers published by one of the
authors on using emulation for bulk migration [13]. This
method uses an program running outside of the emulated or
virtualized environment to automatically interact with the
environment and select the relevant options when necessary
during the boot-sector re-enabling process.

6. OTHER CONSIDERATIONS
Besides the technical procedures a number of additional is-
sues should be considered by memory institutions dealing
with emulation of original environments.

Technical Expertise. As in other domains of non-digital
and digital preservation, specific expert knowledge is re-
quired to execute the workflow outlined above. This includes
a basic understanding of computer architectures like x86 or
the different Apple Macintosh platforms. Skills for disas-
sembling old desktop or rack mount computers or laptops of
various kind are needed to handle the hardware and in par-
ticular the hard disks with the required care. In order to suc-
cessfully execute this workflow, future digital archivists and
archaeologists will need to have a good knowledge of the op-
erating systems of the past, at least to the degree that they
are able to identify the vital parts to make them executable
again on the emulated or virtualized hardware. The authors
were able to handle the aforementioned DOS and Windows
environments. Nevertheless dealing with OS/2 and BeOS
(two other operating systems popular on the x86 platform
mid to end of the 1990s) was placed out of scope of the tests
as specific expert knowledge was not available. While the
x86 and Motorola CPU based Apple platforms were reason-
ably mainstream, the preservation of other architectures like
Sun Solaris on Sparc or DEC Alpha would require experts
both of the platform itself and of the emulators involved.

Legal Issues. Beside the technical challenges a range of
legal implications need to be considered. While in theory
the moving of a software installation from one computer to
another without duplicating it was not prohibited by the
original license terms of many older software applications
and operating systems, the whole domain is fairly undefined
as yet [12]. Newer licensing terms are more restrictive and
often require a re-licensing action when changing hardware.
Only the license agreements of newer operating systems tend
to explicitly deal with the option of virtualization. Fur-
thermore, the preservation of entire original environments
requires additional workflows beside the technical ones de-
scribed in this paper. Not only does the hard disk need
to be copied, but all the licenses of the installed software
components need to be transferred to the receiving memory
institution. This shouldn’t be a problem in most cases, as
the software is typically deprecated and not used anymore by
the donor or transferring agency. But it implies or requires
additional procedures to cover such things as the transfer-
ring over of license material and software keys. Those items
need to be stored with the metadata of the original environ-

155



ment in order to best ensure their long-term preservation.
The possibility and implications of running several instances
of the same machine need to be considered also as this, while
potentially very useful, will likely be illegal in most jurisdic-
tions without the purchase of additional license keys.

A completely different legal issue exists regarding the pri-
vacy concerns of the donors. There are unlikely to be many
privacy issues for government archives taking transfers of of-
ficial government equipment, as users are and were typically
prohibited from using their machines for private matters.
Unfortunately it is a completely different situation regarding
computers donated by famous authors or politicians. As the
system imaging uses well established procedures of computer
forensics the contents of resulting image file is often complete
in a way that is beyond the imagination of the original user
[7, 5]. Depending on the file-system and applications orig-
inally used, a great deal of additional information can be
included than might be expected by a donor. Files are not
deleted instantly in many file-systems but blocks containing
them simply marked as empty. They don’t get overwrit-
ten until the file space is required. Thus many deleted or
other types of temporary files can easily be restored from
the disk image files by experts. Thus special routines might
be required to ”clean” the resulting file image.

Authenticity Challenges. Part of the intent of the proce-
dure suggested in this paper is to ensure the ability to pre-
serve access to versions of digital objects that can be verified
to have maintained their significant properties and thus ver-
ified to be authentic. [3]. In general there is a greater like-
lihood that digital objects preserved using this method will
have full information integrity due to the objects being pre-
sented to users using their original software environments.
This outcome is challenged to a varying degree in three ways:

• The original system can be altered by the re-installation
of necessary hardware drivers and required adaptations
to the new virtual hardware environment.

• Privacy concerns might require the removal of sets of
files or ultimately, the cleaning of certain file-system
blocks.

• Legal restrictions may require the removal of once in-
stalled applications or software components.

These threats to the authenticity and integrity of the envi-
ronments, and the objects that are viewed and interacted
with using them, are important but are not devastating to
the outcome. In most cases the changes that need to be
made to the driver files, or system set-up files, will not cause
any difference to be manifested in the final performance of
the replicated environment. Furthermore, in the cases where
the aim of the system replication is to produce a represen-
tative desktop environment from an organization, it can be
argued that such environments ought only pass the same
tests of compatibility with the new hardware as the original
environments did. In such cases it may be sufficient to con-
firm that the operating system is adequately running on the
new emulated hardware as that would have been the only
test any particular PC had to pass in the organization from

which the replicated environment was representing an ex-
ample. Usually most of those adaptations do not affect the
rendering experience of objects. Nevertheless lower or higher
screen resolutions, different color depth or the availability of
3D rendering may alter the overall experience of certain ob-
ject classes. One counter argument to this is provided by
the fact that in most organisations that created older dig-
ital objects, any particular user was only expected to have
a representative rendering environment for the objects that
they dealt with. For example in a most organisations there
would have been many different hardware environments be-
ing used to render the same digital objects through the use
of sharing technologies such as floppy drives and/or network
connections. For this reason it can be argued that preser-
vation practitioners should not have to fulfil any greater re-
quirements when undertaking the preservation of the objects
created in such environments. In other words, it can be ar-
gued that preservation practitioners only need to provide a
representative rendering environment as that is all that an
average user from the time of the creation of the objects was
expected to have.

For the other two challenges, the redaction procedure could
be built in to transfer/donor agreements such that memory
institutions had the donor or transferring agencies approve
any data redaction or software redaction that had to take
place. Furthermore challenge three may well end up not
being an issue for some institutions if laws can be changed
to enable emulation to take place without the burden of
license payments.

7. CONCLUSION
By demonstrating the feasibility of x86 system imaging and
reproducing the imaged information environments (Fig. 8)
in emulated hardware environments, the authors demon-
strated an alternative understanding of complex objects that
required a specific type of preservation solution. The focus
is shifted from the characterisation of objects in attempts
to make them reproducible in completely different digital
ecosystems, to the preservation of the whole original environ-
ment in which the objects were created, managed or viewed.
Using this new technique no specific knowledge of the ob-
ject and creating application is required. As emulation and
virtualization of the x86 architecture is well established, the
described method might be used to simplify certain preser-
vation workflows. By utilizing this approach the current
diverse methods for the handling of different types of digital
object have the potential to be simplified into a standard
procedure for preserving a whole computer.

Preserving significant properties and object experience us-
ing emulation is discussed in [2], [8] or [9]. Depending on the
object it may be desirable to alter the emulated hardware
configuration to its needs instead of adapting the original
environment to the hardware set provided by the emulator.
This would be achieved by writing additional components
for emulators so that they emulate the specific hardware of
the environment that has been imaged. This is definitely a
more costly option: if the demand for emulation increases
more funding will be sought and found to provide just such
solutions. It is also true that there is potential to share the
costs in any such endeavour so as to get great benefits for all
involved for little relative cost to any particular contributor.

156



Figure 8: Imaged mid-1990ies Compaq desktop (Fig.
3) Windows 3.11 system running in QEMU

There is little difference between preserving a representa-
tive Windows 3.11 PC desktop from a government agency
and preserving the system images of the portable computers
of famous authors or important politicians. The workflow
outlined in this paper can be applied to both situations.

The number of operating system and computer architecture
combinations is much smaller than the number of file formats
or complex digital objects like computer games to be consid-
ered. And, the emulation expertise could be easily shared
between memory institutions. The workflow for replicating
installed application and information environments onto em-
ulated or virtualized hardware that is outlined in this paper
should be able to be immediately tested and integrated into
the digital preservation business processes of organizations
where the necessary expertise and equipment already exist.
For those where the workflow appears daunting or difficult it
may be possible to obtain staff with the necessary expertise
either temporarily or permanently if this is likely to be a
regular process. For those where expertise is not likely to be
available for some time, it should still be considered as an
option when acquiring digital objects as there is significant
potential to automate much of this workflow such that the
expertise required will be minimal at a future date.

Automation of the aspects of the workflow that are identified
above should be a primary research and development objec-
tive for the digital preservation community. The options
and cost savings that the availability of replicated installed
application and information environments provide, though
not discussed in detail in this paper, are too large to be ne-
glected. In spite of all the benefits of the approach outlined
in this paper, a weak point still exists in the inability to
be sure of the permanent availability of suitable emulators.
While the number of short-term solutions in the virtualiza-
tion sphere is quite high, a long-term, comprehensive digital
preservation-aware emulator is still to be created. However
in the meantime the number of good open source emula-
tors could very well bridge the gap or grow into sustainable
solutions [14].

8. REFERENCES
[1] Geoffrey Brown and Kam Woods. Born broken: Fonts

and information loss in legacy digital documents.
International Journal of Digital Curation, 6(1), 2011.

[2] Mark Guttenbrunner, Christoph Becker, and Andreas
Rauber. Keeping the game alive: Evaluating strategies
for the preservation of console video games.
International Journal of Digital Curation, 5(1), 2010.

[3] Helen Hockx-Yu and Gareth Knight. Automation of
flexible migration workflows. International Journal of
Digital Curation, 3(1), 2008.

[4] Aaron Hsu and Geoffrey Brown. Dependency analysis
of legacy digital materials to support emulation based
preservation. International Journal of Digital
Curation, 6(1), 2011.

[5] Matthew G. Kirschenbaum, Richard Ovenden, and
Gabriela Redwine. Digital Forensics and Born-Digital
Content in Cultural Heritage Collections. Council on
Library and Information Resources, Washington,
D.C., 2010.

[6] Mary J. Loftus. The author’s desktop. Emory
Magazine, 85(4):22–27, 2010.

[7] Sumit Paul-Choudhury. Digital legacy: Respecting the
digital dead. New Scientist Online, 2011.

[8] Dan Pinchbeck, David Anderson, Janet Delve,
Getaneh Alemu, Antonio Ciuffreda, and Andreas
Lange. Emulation as a strategy for the preservation of
games: the keep project. In DiGRA 2009 – Breaking
New Ground: Innovation in Games, Play, Practice
and Theory, 2009.

[9] Thomas Reichherzer and Geoffrey Brown. Quantifying
software requirements for supporting archived office
documents using emulation. In Digital Libraries, 2006.
JCDL ’06. Proceedings of the 6th ACM/IEEE-CS
Joint Conference on, pages 86–94, june 2006.

[10] The National Archives TNA. The technical registry
pronom. Online,
http://www.nationalarchives.gov.uk/pronom, 2010.

[11] UDFR Interim Governing Body. Unified Digital
Format Registry – UDFR. Online,
http://www.udfr.org, 2011.

[12] Jeffrey van der Hoeven, Sophie Sepetjan, and Marcus
Dindorf. Legal aspects of emulation. In Andreas
Rauber, Max Kaiser, Rebecca Guenther, and Panos
Constantopoulos, editors, 7th International Conference
on Preservation of Digital Objects (iPRES2010)
September 19 - 24, 2010, Vienna, Austria, volume
262, pages 113–120. Austrian Computer Society, 2010.

[13] Dirk von Suchodoletz. Funktionale
Langzeitarchivierung digitaler Objekte –
Erfolgsbedingungen für den Einsatz von
Emulationsstrategien. Cuvillier Verlag Göttingen,
2009.

[14] Dirk von Suchodoletz, Klaus Rechert, and
Achille Nana Tchayep. QEMU – A Crucial Building
Block in Digital Preservation Strategies. In Wolfgang
Müller and Frederic Pétrot, editors, 1st International
QEMU Users’ Forum – DATE 2011 Workshop,
Grenoble, France, 2011.

157




