
Simulating the Effect of Preservation Actions on
Repository Evolution

Christian Weihs, Andreas Rauber
Vienna University of Technology

Vienna, Austria
{weihs,rauber}@ifs.tuwien.ac.at

http://www.ifs.tuwien.ac.at/dp

ABSTRACT
One of the most important challenges in planning and main-
taining a digital repository is to predict the needed resources
on a long term basis, especially storage size and processing
power. The main problem emerges from the need to mi-
grate the data at certain times to newer file types, which
takes time and alters the needed storage space, potentially
branching into several migration paths for individual ob-
jects. Understanding the effect of different policy decisions,
such as when to migrate or whether to stay within a format
family or branching into several format families turns into
a complex task, specifically when considering non-trivial in-
gest structures and assumptions on format evaluations. In
this paper we present ReproSim, a framework that simulates
the evolution of a digital repository and helps predicting
these factors. We demonstrate the complexity and power of
simulation to assist in preservation decisions in a set of sce-
narios involving different ingest and preservation planning
profiles.

1. INTRODUCTION
Designing and operating a digital repository is a complex
task. Especially estimating the scaling of the repository sys-
tem, i.e. estimating the required storage space and compu-
tational power, across time considering a range of environ-
mental options poses non-trivial challenges. While assump-
tions about the number and expected size of new objects to
be ingested can be made with some diligence, the need for
preservation actions to keep digital objects accessible adds
significantly to the complexity. Following a migration strat-
egy as one feasable way to maintain objects accessible, ob-
jects are converted to (potentially several) new formats at
certain intervals in time, where the frequency of such migra-
tions usually will depend on the validity and accessibility of
a specific format (family). Thus, after a certain number of
iterations, each object may exist in several versions, branch-
ing into a tree of different format (families), each of which
again will be subjected to subsequent migrations. Identify-
ing the effect of certain migration policy decisions, i.e.

• when to migrate: at ingest? when a specific format
version is due to loose support? two months after the
next-plus-one generation of the format comes into be-
ing?

• in how many paths to migrate: just within the format
family? convert into more stable alternative formats
that require fewer subsequent migrations? combina-
tions?

• which tool (complexity) to use for migration: e.g. com-
putational requirements such as more resource-demanding
better-quality tools vs. simpler tools for mass-migration,
effects on storage efficiency of the resulting objects

• for which files to apply these strategies, depending on
file size, ingest type,..

is a complex issue. Identifying when peaks in computational
resources for mass migrations are to be expected, or how
storage requirements will grow, and how these change as a
consequence of more risk-averse or risk-taking preservation
policies requires detailed simulation of a repositories behav-
ior based on explicitly modelled assumptions and specifica-
tions. This allows to understand the effect of certain policy
decisions, specifically with respect to the branching factor
of migrations into several target formats, providing a better
basis to understand the trade-off between less risk (several
copies in different formats) vs. more focused strategies.

Given the complex dependencies of such format decisions,
bundled with non-linear growth both of the number as well
as the size of objects to be ingested results in repository
configurations that make straighforward calculation of its
evolution unfeasible. Simulation offers a powerful approach
to better understand the characteristics of a repository as
it evolves under certain assumptions. Specific scenarios can
be modelled and compared against each other, the effect of
different policies can be analyzed, with subsequent decisions
being based on the result of clearly specified simulation pa-
rameters rather than mere estimates. These, in turn, allow
a monitoring of the validity of the simulation, as the actual
evolution of crucial parameters such as ingest volumes, for-
mat validity periods, as well as the computational and stor-
age costs of specific actions are tracked. This provides solid
guidance in managing complex repository systems dealing
with large volumes of heterogeneous material that are to be
preserved over time.

62

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

iPRES2011, Nov. 1–4, 2011, Singapore.

Copyright 2011 National Library Board Singapore & Nanyang
Technological University

To facilitate this process we have developed a simulator, that
can show how a certain repository configuration will look
like after several decades under a range of conditions that
can be specified flexibly as a set of simulation parameters.
It supports the specification of a repository configuration
(file types, sizes and ingest timestamps/frequency, as well
as future evolution of these) based on configuration files, as
well as based on an existing collection profiles. Different
migration rules can be specified, and the effect of these sub-
sequently verified when running the simulation. The state
of the archive at each point in time in terms of computa-
tional resources, storage requirements, and the number of
versions of each object as well as of entire subcollections can
be evaluated from the resulting data structures and logs.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews related work on preservation planning and
collection profiling, forming the basis of simulating a repos-
itory’s evolution. Section 3 describes the architecture and
simulation parameters for the repository simulator. Exem-
plary simulation runs are presented in Section 4, followed by
a short summary and outlook on future work in Section 5.

2. RELATED WORK
While being commonly used to understand the behavior of
complex systems, modeling and simulation do not have a
strong history in the analysis of digital repository systems.
One of the few systems simulating aspects of a repository
is ArchSim [7]. Focusing on storage technology, it allows to
simulate the mean time to failure of an archive based on a
library of failure distributions. The probability of not being
able to interpret a format as it ages and becomes obsolete,
for example, is modeled by a Weibull distribution. Different
failure models can be assumed for different storage technolo-
gies. Using a complex architecture of triggers allows efficient
modelling of failure probabilities over long periods of time.
ArchSim/C [8] explicitly models costs associated with oper-
ating archival storage, including costs for creating, operat-
ing, monitoring and repairing a complex storage system. In
a related line of work, a modeling approach is presented in [6]
to analyze the reliability of system configurations for digi-
tal preservation. Again, the focus is on understanding the
effect of component failures within a storage system. While
these studies focus on understanding system failure charac-
teristics and associated costs, the simulator presented in this
paper focuses on understanding the evolution of individual
files across a series of migrations into multiple branches, and
the associated requirements in terms of storage and compu-
tational resources.

Testing and evaluating the effect of preservation action has
been more intensively addressed from a planning perspec-
tive [2, 4]. Specifying the requirements for a specific preser-
vation challenge (also referred to as objectives) and measur-
ing how well different tools perform on selected sample data
provide solid evidence for decisions on which preservation
action component to deploy, and that component’s effect on
the object (in terms of significant properties retained), the
storage space required, as well the the complexity of the de-
ployment with respect to system and human resources that
need to be provided. Preservation planning thus, on the one
hand, provides valuable input to the simulator, concerning
information on the processing requirements of certain types

of preservation action tools as well as the resulting changes
in object storage size. These can be obtained either directly
from measurements obtained in preservation planning [3]
or dedicated benchmark experiments measuring tool per-
formance and the effect of preservation actions in controlled
settings [1]. On the other hand, the repository simulator
presented in this paper provides valuable input to a preser-
vation planning process by providing a basis to estimate the
costs associated with a certain preservation action, thus ef-
fectively closing the loop between planning and evaluation
in these criteria.

In addition to the model parameters specified for a simula-
tion run, more realistic initial configuration can be obtained
from collection profiling services, as well as format registries
such as PRONOM [5], which provide consolidated informa-
tion on the lifetime/support time for selected formats, as
well as offering a basis for analyzing the evolution of for-
mats.

3. SIMULATING REPOSITORY EVOLUTION
The goal of the repository simulator is to offer the possibility
to specify the content and ingest behaviour of a repository,
then simulate migration rules on the files in the repository
based on preservation plans, and collect statistical informa-
tion about the changes in the repository.

During the simulation basically three different types of events
get processed:

• Ingest of new objects: New files are added to the
repository. The characteristics of this input stream,
specifically date, initial file type and object size can
be configured.

• Migration of a file: A file needs to be migrated to
one or several other file types. The moment a migra-
tion has to take place can be specified by a set of rules
depending on a range of factors, for example the expi-
ration date of the file type or the size of the file.

• Collect statistics: On a regular basis statistical in-
formation is collected and stored in a file for later eval-
uation. This includes average file size, the number of
executed migrations and so on.

3.1 Architecture
The Repository Simulator is realized as a Java application.
The simulated archive is stored in a MySQL database, ac-
cessed via Hibernate. The following objects are mapped into
the database model:

• StoredFile: Each ingested object is stored as a file
stub (i.e. a file’s profile) in the database. If a file gets
migrated, a new file instance’s profile is stored to the
archive.

• FileType: Describes the available file types. Every
file type consists of a type family name (ie. “Word
Document”) and a subtype name, which specifies the
exact type version (ie. “Word 6.0”), as well as the
average date of validity and the periodicity with which
new versions are released.

63

• MigrationTool: The main properties of a migration
tool are the duration of the process and how the file
size is altered during the migration.

• MigrationRule: A migration rule defines when and
how a migration should take place. This includes con-
ditions which need to be met for the rule to be trig-
gered (e.g a rule should only trigger for files small-
er/larger than a certain size), the scheduled moment of
the migration, the destination type (or a list of types,
if for example a word document should be transformed
into a PDF and a plain text file) and the used tools.

The model provides all information on the processes in the
repository. On each migration event the new file is linked
with its direct ancestor and with the tool element of the mi-
gration path. Additionally a generation counter gives direct
insight how often a certain file got migrated. Furthermore,
each file carries the information when it has been generated,
by which tool and which rule. This makes it easy to track
down the complete history of a certain file and allows to an-
alyze the number of versions present of each original file or
group of files, the percentage of active (ie. leaf versions in
the migration tree) or inactive (ie. files that have already
been migrated to newer versions) as well as the storage space
used by these. (Note that this distinction between active and
inactive files is currently rather basic. More complex repre-
sentations may need to be modeled to account for the fact
that an object may be migrated to a different format fam-
ily to mitigate potential risks by having two different active
versions in two format families. Extensions such as these are
currently being implemented as part of the first evaluation
cycle of the system. Similarly, delete orperations are cur-
rently being added to account for specific delete operations
on migration, e.g. always keeping the original but deleting
intermediate versions.)

3.2 Configuration
The configuration of a repository is done in plain text ini-
files. There are basically four types of configuration files
needed to specify all aspects of the simulation. In the follow-
ing the core configuration possibilities are listed. To make
the configuration flexible, many fields in the configuration
are parsed with an expression language library, which means
that any mathematical term can be used. Those fields are:
the quantity and file size in the ingest configuration, the
term and condition fields of the migration rule, and resulting
change in file size and the computational cost of the migra-
tion process for each tool, expressed either in computation
time or e.g. processor cycles (both of which can subsequently
be normalized across time as the computational power of the
underlying hardware infrastructure evolves). Note that file
sizes in the configuration have no special magnitude (bytes,
kilobytes etc.) associated with them. They can be specified
in any magnitude, as long as it is in all configuration files.

• Repository: In this file the start and the end of the
simulation is configured, as well as (the sequence of) all
ingest events. It basically describes the characteristics
of the repository to be simulated.

The base configuration can either be obtained by a
collection profile from an existing archive, by provid-

ing a list of file profiles, or by specifying groups of
objects and their ingest characteristics by listing the
number of objects, the mean and standard deviation
in file size. This will create the according set of objects
following e.g. a Gaussian or Weibull distribution. Sim-
ilarly, the timeline of the ingest process can be mod-
elled, so not all files are ingested at the beginning of
the simulation, but the repository can grow step by
step via ingest of original objects (in addition to the
migrated ones) during the simulation process. in the
case of modelling an existing repository for simuation
purposes, the state of the repository needs to be pro-
vided as a collection profile detailing either the indi-
vidual objects and their characteristics (format, sizes,
ingest timestamps), or as a more compressed represen-
tation creating a model of the repository. Furthermore,
parameters allow the specification of the growth char-
acteristics of an archive, both in terms of number of
objects and the average file size. These parameters can
either be estimated or taken from the current history
of a repository, e.g. the increase in average filesize of
a collection of digital photographs or powerpoint files
across the years, as well as the increase in numbers.
These can be specified via almost arbitrary complex-
ity, ranging from simple linear growth to more complex
functions fitting real-life growth curves. Additionally,
in combination with the format family configuration
described in more detail below, the ingested objects
will be of a specific version of the given file type fam-
ilies according to the timstamp within the simulation
progress. Starting the simulation then creates the re-
spective“files”as simulated entities with the respective
ingest timestamps in the database.

Listing 1 shows a sample repository configuration. In
this case the simulation runs over 40 years starting in
2010/01/01 and ending 2049/12/31. In the beginning
1000 files of the type “doc” are inserted. They have
an average size of 10000 with a deviation of 500. The
next files are added in the year 2020: 3000 jpg files with
average size 25000, deviated by 700. This ingest group
has also specified the attributes “successive interval”
(with value 2) and “successive count” (value 10). This
way it is possible to specify a repetitive ingest, in this
case every 2 years the same ingest is repeated for a
total of 10 times.

To make the configuration easier there is a simple col-
lection profiling tool included that takes the reposi-
tory structure from an existing archive, allowing one
to operate on a real-life object type distribution. This
currently reads objects from a mounted files system
and can be adapted to meet API requirements of spe-
cific repositories. Alternatively, a statistics report that
may be exportable from a repository can be converted
to match the configuration file. Currently, the evolu-
tion parameters have to be estimated from an existing
collection profile manually, with plans to provide this
as an integrated module being currently evaluated.

Listing 1: Repository Configuration

[r e p o s i t o r y]
s i m u l a t i o n s t a r t =2011/01/01

64

s imulat ion end =2050/12/31

[i n g e s t 1]
Type=doc
quant i ty =1000
f i l e s i z e = Dist : normal (10000 ,500)
i n g e s t d a t e =2011/01/01

[i n g e s t 2]
Type=jpg
quant i ty =3000
f i l e s i z e = Dist : normal (25000 ,700)
i n g e s t d a t e =2020/01/01
s u c c e s s i v e i n t e r v a l l =2
s u c c e s s i v e c o u n t =10

• Filetype: This describes a file type family. Each file
type family consists of a family name and several sub-
types with a specified time frame of how long they are
supported, as well as how frequently new subtypes are
generated. This results in a set of available file types
at each point during the simulation, with objects being
ingested as new originals usually being created in the
most recent version of a file format family available.
More complex configurations of mixes during overlap
periods of format version validity are in principle pos-
sible using a number of distribution functions such as
Gaussians or Weibull distributions.

Listing 2 provides the configuration for the format type
family “video”. A subtype “xvid01” is created which is
valid from the year 2000 to 2011. To model a sequence
of consecutive subtypes a repetition group with the
last two properties in the example can be specified. In
this case 50 subtypes are created, shifted by 5 years,
so the second one is valid from 2005 to 2017. Note
that these subtypes can be specified at different levels
of granularity, either, as shown in the example below,
simple in the form of “AVI” files, or at a more detailed
level, representing a range of video codecs embedded in
an AVI container as individual subformats. This allow
a realistic recreating of repository settings. Again, in
principle the specifications of format version validities
need to be specified in the simulation model. These
settings could, in principle, also be imported from for-
mat registries.

Listing 2: file type configuration
[Fi leType]
name=video
extens i on =. av i
type=video

[subtype1]
subtype=xvid01
created =2000
exp i red =2012
s u c c e s s i v e i n t e r v a l l =5
s u c c e s s i v e c o u n t =50

• Migration rule: The migration rule is the most im-
portant part of the configuration. Each rule has an
effective date, a source type for which the rule should

be triggered, and a condition (for example “current file
size is smaller than 5000”) that determines for which
files the rule should be executed. This allows for a
rather fine-grained specification of migration policies,
e.g. migrating smaller objects to multiple formats,
whereas very large files might be migrated only within
a single format family strand. Furthermore, migra-
tions can either be based always on the most recent
format version of each object, or always be based on
the originally ingested objec, i.e. the root object, by
setting the “source” parameter of the migration rule.

Beyond that one or more destination types along with
the tools to be used for the simulated migration can
be listed. For each destination type one can again
specify a condition, so complex migration policies can
be mapped into the simulation model.

Listing 3 provides a rule to migrate all files of the type
family “doc” to the format families “pdf” and/or “rtf”.
The property “term” describes when the rule has to
trigger, in this case two months before the respective
sub-version of the file format expires. Two destination
types are specified. The first one is a type of the fam-
ily “pdf”. The subtype is not specified directly, but
with the keyword “maximal step” it is indicated that
we want to migrate to a type from that format fam-
ily which is available at migration time and has the
longest expiration time. The destination subtype for
rtf is specified as“minimal step”, which means that the
subtype with the next higher expiration date should be
taken.

Both destinations have a condition specified. The mi-
gration to each destination is only executed if it eval-
uates to true. In this example files smaller than 15000
are migrated only to rtf and files larger than 10000 only
to pdf. Files with a size between 10000 and 15000 are
migrated to both destination formats. (This example
is only supposed to demonstrate the flexibility of con-
figurations, allowing to address space considerations
that may appear in real preservation planning scenar-
ios, when certain objects types that may be in demand
by different user communities should be made available
in different formats, whereas other, potentially very
large files, should not be kept in duplicate versions. It
is not supposed to represent a recommended preserva-
tion plan within the scope of this paper. The same
applies to the timing settings provided, i.e. whether a
migration should happen 2 months prior to the expiry
date.)

Listing 3: migration rule configuration
[m ig ra t i on ru l e]
d e s c r i p t i o n=migrat ion f o r doc f i l e s
term=subtype exp i red −2∗month
source Type=doc

[de s t ina t i on fo rmat1]
des t inat ion Type=pdf
dest inat ion SubType =[maximal step]
cond i t i on=f i l e s i z e > 10000
t o o l=doc2pdf
source=current

65

[d e s t ina t i on fo rmat2]
des t inat ion Type=r t f
dest inat ion SubType =[minimal step]
cond i t i on=f i l e s i z e < 15000
t o o l=do c2 r t f
source=root

• Migration tool: For each virtual migration tool one
can specify how the size of the file is changed dur-
ing the migration process and how long the migration
will take. Both the file size and migration duration are
specified using mathematical expressions. Thus, one is
not bound to simple linear changes but more complex
effects can be simulated. Both units are dimension-
less, i.e. as for th especification of the file sizes, these
can be given in Bytes, Kilobytes, etc. More impor-
tantly, for the simulation of computational resources,
either computation time or e.g. processor cycles may
be specified. The latter may proove useful when more
realistic estimates of the computational requirements
are required. By mapping operation cycles in a vir-
tual unit, normalization factors may be applied to ac-
count for improvements in processing power over time.
Still, in first experiments, specifying actual processing
time, and then applying a normalization factor to ac-
count for improved computational facilities, seemed to
be more easily accepted. Note, that the primary use
of the effort simulation is not a precise determination
of the HW requirements at a specific point in time
in the future, but to capture the potential of cumu-
lative effects resulting from certain preservation poli-
cies. These may stem, for example, from the difference
of migrating on-ingest (usually leading to a more even
spread of subsequent migrations) or on-expiry - result-
ing in strong peaks if all objects of a specific format
version need to be migrated to, e.g. the subsequent
version.

Two examples:

– size=currentsize * Math:log(currentsize): This
specifies a logarithmic growth of the file. (The
keyword “Math” in this string references the Java
class java.lang.Math, which has methods for many
mathematical operations, all accessible through
this keyword.)

– duration=Math:max(currentsize * 3, 18000):
The migration should take three times as long as
the file is big, but at least 18000ms.

From this set of configurations the simulation of a reposi-
tory’s evolution is started. For each (set of) files specified
in the repository configuration, the according sets of files
are “created” as database entries with the respective times-
tamps. For each of these the respective migrations based
on the preservation planning triggers as specified in the mi-
gration rules setting are executed consecutively. Thus, for
each file specification in the database meeting a migration
condition the respective new file(s) are generated with new
ingest timestamps and file sizes considering the migration
time needed and the file size change incurred as specified in
the respective migration tool specification. From these, the

resulting hypothetical computational load (i.e. the num-
ber of files to be migrated at any specific point in time)
and the required storage space for the accumulated archive
can be calculated. (Currently, the simulator only supports
single-processor migration, i.e. all pending migrations are
executed consecutively. An extension allowing the specifica-
tion of a (growing) multiprocessor architecture or simulated
cloud support to scale with the repository is under investi-
gation).

4. EVALUATION
For evaluation we performed a series of simulations to see
whether the simulation works correctly, and to what extent
the available configurations are flexible enough to support
realistic scenarios. In the following one of our sample config-
urations is presented along with the results of the simulation.

4.1 Configuring a repository
In this simulation, we defined 6 format families. Note that
the types may not conform to reality, because they are just
an assumption to provide a simple simulation example - in
principle, these could also be modeled as entirely abstract
format types that have certain characteristics such as sta-
bility, support, etc. that are relevant for the aspects covered
by the simulator. The same applies to the migration tools,
which can be specified in an equally abstract way. We de-
cided to choose real file types for the sake of clarity and ease
of discussion. Please note, again, that the validity periods
specified do not correspond to real values, which would need
to be obtained from format registries or from an analysis of
the evolution of object formats in an existing repository. The
same applies to the file sizes. The types are the following:

• jpg: for compressed pictures; every subtype is valid
for 28 years and every 15 years a new subtype becomes
available.

• tiff: for uncompressed pictures; valid for 44 years with
a new subtype every 30 years.

• wordDoc: for proprietary text documents; valid for
15 years, new subtype every 5 years.

• openDoc: for editable text in a free format; valid for
8 years and every 4 years a new subtype.

• pdf: valid for 16 years and a new subtype every 8
years.

• rtf: valid for 12 years and a new subtype every 6 years.

The simulation runs for 100 years and every year there are
100 wordDoc files with average size of 500 and 100 jpg files
with average size of 1600 are added to the repository.

Several rules specify the migrations:

• jpg: The compressed pictures are migrated to the tiff
format. The file size multiplies by 10 during the mi-
gration.

66

Figure 1: Number of migrations to be expected at
each time interval

• wordDoc: Word Documents get migrated both to
openDoc, rtf and pdf. The file size grows 20 percent
in case of openDoc and decreases by 5 percent to rtf
and 10 percent to pdf.

• pdf, tiff, rtf and openDoc: These types get mi-
grated to a newer version in the same family several
months before they expire. All are migrated with max-
imal step size and the file size varies several percent
downwards in case of tiff, upwards for the other ones.

For all migrations tools are created with the size changes as
described above and named following the pattern“<source>2
<destination>” (eg. “jpg2tiff”).

4.2 Simulationg migrations
Figure 1 shows the number of migrations performed as the
archive grows and format versions trigger migration. There
are very few migrations in the first years of the simulation,
but the number increases as time passes and more format
versions expire. There are several peaks that show the mo-
ments multiple types expire at the same time. These peaks
are a good hint that the preservation plan may be revised to
avoid them or to plan for appropriate resources for mass mi-
gration projects at regular intervals. It also allows a more
detailed evaluation of slight modifications of certain rules,
e.g. starting migrations at earlier points in time, migrating
always to the most recent version, potentially suffering from
lower-quality tools available vs. migrating to a more stable
version that already exists for a longer period of time, and
others.

Figure 2 shows the storage space needed by the repository.
The total size is growing constantly, with several boosts cor-
relating partially to the peaks in Figure 1. Note that the two
very big steps in the years 41 and 71 have no special spike
in Figure 1. These two steps are the result of the expiring of
a sub-version of the tiff format. We do not have especially
many tiff files in the repository, but the files are significantly
larger than the other files, so the migration of those files has
a drastical impact on thel archive size assuming that the
original files are not deleted.

At the same time, the proportion between the active files
(representing the most recently migrated version of each file
in each migration branch) and the old files (the copies left be-
hind after migrating a file to a newer subtype) changes dras-
tically. This provides a good impression whether a cleanup

Figure 2: Number of files in the repository, subdi-
vided in active files as well as earlier interim migra-
tion copies

Figure 3: Tool usage, depicted as data volume han-
dled by a tool and number of times it was called

strategy for the old data may be necessary to save on storage
costs, potentially adapting preservation policies at an insti-
tution. (Different delete policies for inactive file formats,
such as deleting the last-but-one, every second version, or
keeping only the original and the most recent version, etc.
are currently being evaluated as an additional configuration
setting.)

In Figure 3 the usage of the tools is analyzed. The first
bar for each tool family shows the percentage of the aggre-
gated size of all files generated with this tool. The second
bar shows how often this tool-family is called. In the dia-
gram it is easy to see that the tools “odt2odt”, “jpg2pdf”and
“rtf2rtf” have the biggest potential to save space as they are
responsible for 71% of the whole archive content. But one
should keep in mind that “odt2odt” and “rtf2rtf” are called
many times. In comparison “jpg2tiff” is called infrequently,
so it might be ok to exchange it with a tool that is slower
but has a smaller output.

Beside the statistics generated by the simulator, it is also
of interest whether the simulation process is finished in rea-
sonable time. For this simulation 259400 migrations were
executed and the total process needed less than 15 minutes
on a simple workstation, showing the feasibility to run suf-
ficiently complex simulations.

4.3 Comparing policies
In the following example we assume an archive ingesting files
from two format families. For ease of discussion, let’s call
them documents and images. We further assume that two
different image subformats exist (e.g. jpeg and tiff), one

67

with a rather rapid release cycle of 3 years, the other with a
slower cycle of 7 years, whereas for the document file formats
we assume a single format family with a replacement cycle
of 5 years. The individual format versions receive between
13 to 25 years of support, defining at each point in time a
number of potential migration versions. To keep the graphs
simple, ingests are kept growing linearly for all formats, with
annual ingests. For preservation, jpegs are migrated both
to jpeg and tiff, whereas both tiff and the documents are
migrated within their respective formats. The two different
policy strategies, and thus the only parameters varied in this
simulation, concern the step-width for the migrations, i.e.
whether we prefer to migrate each object to its next available
version (min-step) or to the newest version available at the
time of migration (max-step).

The results of this scenario are shown in Figure 4. The Min-
step scenario obviously requires many more migrations, as
multiple versions of each file are generated at rather short
cycles whenever a format version expires, with the subse-
quent version expiring soon after. This results in increas-
ingly high peak loads, especially in years when two format
versions happen to expire at the same time. It also leads to
a much higher number of ”old” files, i.e. interim migration
versions that soon surpass the number of objects actively
used (note the different scales in the two graphs), calling
for the evaluation of suitable deletion strategies, which are
currently being added to the simulator.

5. CONCLUSIONS
Planning and operating a repository tasked with preserv-
ing heterogeneous sets of objects over long periods of time
poses severe challenges when it comes to estimating growth
in storage space as well as processing power required to run
the required preservation actions. Also, from a preservation
planning perspective, the effects of certain policy decisions
such as when to migrate and how many copies to retain,
are difficult to certain due to the complex behaviour emerg-
ing from multiply branching migration paths. Two different
policies are devised, both relying on migration at ingest. In
one case, objects are only migrated within the tiff family
using the maxstep, i.e. migrating to the most recent format
version available.

In this paper we presented ReproSim, a tool to simulate
repository evolution over time. the strength of the approach
lies in the flexibility offered by the configuration of the sys-
tem, both in terms of modelling the content as received from
the producers over time, as well as the content produced
as a result of preservation actions, specifically migrations.
Based on explicitly modelled assumptions of format stabil-
ity, changes in object size induced by migrations, and others
that can be explicitly specified (or, preferably, should be
modeled based on an analysis of the history to date for the
respective format types), different scenarios can be evalu-
ated and compared, and the effect of different policies can
be demonstrated. This, in turn, provides a better basis
for policy, design, and structural planning decisions, help-
ing both in the set-up and operation of a repository, as well
as supporting preservation planning to evaluate the effect of
certain recommendations.

While the simulator offers a very flexible basis for configur-

ing different institutional settings, scenarios for object for-
mat evolution as well as preservation plans, a range of ad-
ditional parameter settings emerged as being desirable from
first case studies. Some of these, addressed already in the pa-
per, include the possibility to simulate different object dele-
tion policies, support for simulating multi-processor/cloud
environments when evaluating peak loads, and others. A
tighter integration with existing format registries, as well
as more sophisticated collection profiling will allow better
estimates for some of the core parameters in the system,
specifically file format evolution and stability, as well as the
characteristics of the ingest stream over time from different
consumers. This will also allow verification of the simula-
tion against existing repositories and their evolution to ver-
ify parameter settings and projections on file size growth. A
tighter integration with preservation planning frameworks
may help to provide closed feedback loops as well as offer
better estimates on tool behavior with respect to resulting
object sizes and processing times. Last, but not least, an im-
proved interface helps with specifying the different scenarios
and visualizing results in an integrated application.

6. REFERENCES
[1] Brian Aitken, Petra Helwig, Andrew Jackson, Andrew

Lindley, Eleonora Nicchiarelli, and Seamus Ross. The
planets testbed: Science for digital preservation.
Code4Lib, (3), June 2008.

[2] Christoph Becker, Hannes Kulovits, Mark
Guttenbrunner, Stephan Strodl, Andreas Rauber, and
Hans Hofman. Systematic planning for digital
preservation: Evaluating potential strategies and
building preservation plans. Intl Journal on Digital
Libraries (IJDL), 10(4):133–157, Dec 2009.

[3] Christoph Becker, Hannes Kulovits, Michael Kraxner,
Riccardo Gottardi, Andreas Rauber, and Randolph
Welte. Adding quality-awareness to evaluate migration
web-services and remote emulation for digital
preservation. In Proceedings of the 13th European
Conference on Digital Libraries (ECDL 2009), volume
5714 of LNCS, pages 39–50. Springer, September 2009.

[4] Christoph Becker and Andreas Rauber. Decision
criteria in digital preservation: What to measure and
how. Journal of the American Society for Information
Science and Technology (JASIST), 62:1009–1028, 2011.

[5] Tim Brody, Leslie Carr, Jessie Hey, Adrian Brown, and
Steve Hitchcock. PRONOM-ROAR: Adding format
profiles to a repository registry to inform preservation
services. International Journal of Digital Curation,
2(2), November 2007.

[6] Panos Constantopoulos, Martin Doerr, and Meropi
Petraki. Reliability modelling for long term digital
preservation. In Proceedings of the 9th DELOS Network
of Excellence Thematic Workshop on Digital
Repositories: Interoperability and Common Services,
Heraklion, Greece, May 11-13 2005.

[7] Arturo Crespo. Archival repositories for digital
libraries. PhD thesis, Stanford University, March 2003.

[8] Arturo Crespo and Hector Garcia-Molina. Cost-driven
design for archival repositories. In Proceedings of the
First ACM/IEEE Joint Conference on Digital Libraries
(JCDL’01, pages 363–372, Roanoke, Virginia, USA,
2001. ACM Press.

68

MaxStep: migrating to the newest available format version: (a) file count, (b) migrations

MinStep: migrating to the next available format version: (c) file count, (d) migrations

Resulting storage requirements: (c) MaxStep, (d) MinStep

Figure 4: Comparing migration step withs: Figs a and b show the number of files and migratons when
migrating to the newest available file format version; Figs c and d show these for migrations to the respective
next available versions. The resulting storage requirements and distributions between active and interim files
is given in Figs (e) for MaxStep and (f) MinStep.

69

