
Emulation as a Business Solution: the Emulation
Framework

Bram Lohman
Tessella

President Kennedylaan 19
Den Haag, The Netherlands

bram.lohman@tessella.com

Bart Kiers
National Library of the

Netherlands
Postbus 90407

Den Haag, The Netherlands
bart.kiers@kb.nl

David Michel
Tessella

26 The Quadrant
Abingdon, United Kingdom

david.michel@tessella.com

Jeffrey van der Hoeven
National Library of the

Netherlands
Postbus 90407

Den Haag, The Netherlands
jeffrey.vanderhoeven@kb.nl

ABSTRACT
Emulation is often considered a technically very complex
subject. The association with complexity has long prevented
it from being considered in an end-to-end business solution
for long-term preservation and access to digital collections.

The Emulation Framework solves this problem by automat-
ing the steps required to render an unknown digital object
in its original environment: characterising the object to de-
termine its type; determining the environment required to
render that type of object; setting up the required software
and emulators providing the hardware; and configuring the
environment to properly render the digital object. Automat-
ing these steps allows a novice user to easily render a digital
object in an environment for accessing it in its original form.

Each of the four steps of the emulation workflow are de-
scribed in detail, providing a simple tool for managing a
complex decision making process.

Keywords
Emulation, framework, digital preservation, workflow, busi-
ness solution, KEEP, characterisation, technical environment,
viewpath, software

1. INTRODUCTION
Long-term preservation of digital objects not only implies
looking after their conservation, but also necessitates the
development and execution of strategies to ensure these ob-
jects remain accessible and understandable in the future.

The KEEP [6] (Keeping Emulation Environments Portable)
project is a research project co-funded by the European
Union under the Seventh Framework Programme (FP7). It
does research into media transfer, emulation and portabil-
ity of software from a technical and legal perspective [15].
The project extends previous work on emulation, such as the
Dioscuri project that developed an x86 emulator [1], and the
Planets project which amongst others created emulation and
migration services [8]. Emulation is a vital strategy for per-
manent access, but it requires several more steps to become
mature [2]. KEEP aims to deliver a strategy that provides
permanent access to multimedia content (such as computer
applications and console games), not only now but also in
the long term.

2. WHY EMULATION?
Emulation recreates a computer environment (target) on
top of another computer environment (host) [11]. It is a
proven technology that can be used to cope with obsoles-
cence of hardware and software. By rendering a digital ob-
ject within an environment running original software, an au-
thentic recreation of that object in its native computer envi-
ronment is given. The advantage of such a strategy is that
no change to the digital object is required which offers better
conditions for displaying it in its original form. Another ad-
vantage of emulation is that it also works for complex digital
objects such as software applications (e.g. games), websites
or visualisations of data sets.

3. AN END-TO-END EMULATION WORK-
FLOW

One of the main problems facing emulation is the lack of
knowledge in identifying and configuring the technical en-
vironment required to render a digital object. The KEEP
project recognises this issue, and in May 2011 released the
Emulation Framework (EF), an open source solution for ap-
plying emulation as an access strategy for files and computer
programs. It is released under the open source Apache 2.0
license and is freely available [3]. When a user requests an
item from a digital collection and this item requires an ob-

167

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are


not made or distributed for profit or commercial advantage and that


copies bear this notice and the full citation on the first page. To copy


otherwise, or republish, to post on servers or to redistribute to lists,


requires prior specific permission and/or a fee.


iPRES2011, Nov. 1–4, 2011, Singapore.


Copyright 2011 National Library Board Singapore & Nanyang 
Technological University



Figure 1: Emulation Framework workflow.

solete computer environment to render, the EF offers a solu-
tion that does not require any in-depth knowledge, following
the workflow steps depicted in Figure 1.

The EF automates the identification of an (unknown) dig-
ital object; the need to know what application, operating
system (OS) and hardware is required to emulate the ob-
ject; preparing the selected environment for use; and config-
uration of the environment for rendering the digital object.
These four steps are explained in more detail in the following
sections.

3.1 Characterising an unknown digital object
Characterisation is a subject in digital preservation that has
been researched in depth. This research has resulted in sev-
eral tools that can characterise an unknown digital object,
i.e. determine its file format. Harvard University Library
Office for Information Systems released a tool, called the
File Information Tool Set (FITS) [4], which acts as a wrap-
per for several proven open source tools. FITS identifies,
validates, and extracts technical metadata for various file
formats. It normalises, consolidates, and reports any errors
in the output of the wrapped tools. FITS currently uses
Jhove, National Library of New Zealand Metadata Extrac-
tor, DROID, FFIdent, Exiftool and File Utility [4]. It was
an obvious choice to use this tool for characterisation in the
EF.

The tools have no problem identifying the top 10 most com-
mon file types used in memory institutions [13]. Unfortu-
nately, they lack support for most objects used in the em-
ulation community: computer games, cartridges and disk
image files created by that community. These disk images
include, for example, common Amiga and Commodore 64
formats. During EF development, support for some of these
formats was added by reconfiguring the FITS tool.

The FITS software also provides a novel selection method:
it returns the number of tools that agree on the determined
file format. This can be used as a measure of success, along
with validation, and is used within the EF to automatically
select the digital object’s file format. Once the file format
has been identified, the next step is to select an environment
that provides the dependencies to render it in its original
context.

3.2 Determining a rendering environment for
a known digital object

The EF defines a rendering environment in a similar way as
a viewpath [14] (or emulation pathway), of which two ex-
amples are shown in Figure 2. This is a structured descrip-
tion of the complete hardware and software stack needed
to render a digital object. For today’s PC architectures it
consists of four layers (digital object, rendering application,
OS, hardware platform), although for other architectures,
not all layers are required. Console games, for example,
usually only have two: digital object and hardware platform
(including embedded software).

This is the simplest approximation of a rendering environ-
ment. Although it works for simple cases, in practice the
connections between layers are more complicated: file for-
mats require certain versions of applications to render prop-
erly; integration of application and OS requires specifics such
as drivers and libraries; integrating OS and hardware plat-
form depend on specific firmware to work together. In the
current design, these more complicated cases are not sup-
ported and the EF uses the simple four-layer model of digital
object file format, application, OS and platform.

Keeping the model simple does have an advantage. As com-
plexity is increased exponentially at every layer – for each
format there is often more than one application to support
it; each application can run on different OS’s, and each OS
usually supports many hardware configurations (or emula-
tors) – a model with fewer layers has lower complexity.

Technical metadata links each of the layers, and thus a di-
rected graph can be generated with the digital object file for-
mat as the root node. The EF relies on an internal database
containing metadata but can also interface with technical
registries such as PRONOM [9] or PCR [16] to retrieve this
metadata. To address the lack of publicly available reg-
istries, KEEP is addressing this issue [12] as well.

The EF is currently prototyping a novel method of com-
bining information from different registries to ensure more
robust information is used to create technical environments.

Figure 2: Environmental dependencies of digital ob-
jects.

168



3.3 Preparing the hardware and software stack
The main technical problem is merging the four distinct
components defined by the digital object and its dependen-
cies into one assimilated environment: to view a digital ob-
ject, the bit stream has to be interpreted by an application,
which in turn has to be configured specifically (i.e. installed)
on an OS that is configured for a particular piece of hard-
ware. At rendering time, the stack is difficult to view as
individual components.

There are several approaches to generate an environment:

• Use an automated method to merge the four compo-
nents at runtime.

• Prepare a complete environment beforehand to be used.

• Use a combination of these.

Although for simpler environments, such as MS-DOS, the
‘merging’ step can relatively easily be automated, software
and hardware systems have in recent years become increas-
ingly complex. Environments running on today’s desktop
are based on customised hardware running a specifically set
up OS that has applications that are tightly coupled to it
(e.g. registry entries, library versions, etc.). Setting up such
an environment requires a high number of complex choices
to be made. The problem is not so much that it can not
be done, but there are so many corner cases and exceptions,
that the effort of creating an automated method that can re-
liable generate any selection of environments far exceeds the
benefits. The University of Freiburg is continuing research
into this area [17].

The second approach requires setting up the OS, application
and digital object as required by the selected environment in
advance. The only reliable way is a human initiated, time-
consuming process, but it only needs to be done once for an
environment; it can then be stored and accessed whenever
required.

The EF has tested the third approach as a proof of concept.
In general, the digital object (top layer) and the hardware
platform (bottom layer), are only loosely coupled to the lay-
ers in between. Those layers, the application and OS, how-
ever, are so interdependent, that only by setting these up
beforehand can be guaranteed that it is done correctly. To
address this, the EF created a ‘Software Archive’, a web ser-
vice that holds prepared application/OS disk images along
with metadata containing details of the OS, applications and
hardware requirements. Using technical registry metadata,
an appropriate disk image can be selected from the database
that fulfils the environmental requirements.

Similarly, a separate web service, the ‘Emulator Archive’,
holds the emulators that can be used to represent the hard-
ware. It also contains metadata to match the required hard-
ware selected in the technical environment, along with the
type of software image it supports, and thus a match can be
made between the emulated hardware and the OS/application
layer.

Figure 3: The Emulation Framework rendering a
digital object in its original environment.

3.4 Configuring the environment to render the
digital object

Configuration of a hardware platform, despite there being
many different variations, can be made much simpler by cre-
ating a high-level hardware component model of it. Making
the model sufficiently generic allows it to be used for multiple
emulators. Although the low-level details for each hardware
set may be different for each emulator (even if they address
the same platform!), using a single model greatly simplifies
the problem. The EF currently manages to configure 7 emu-
lators covering 6 platforms using a single abstracted model.

To generate an emulator-specific configuration, the EF makes
use of a template processor, a software component designed
to combine a data model with a template to produce a result
document [5]. Each emulator specific template contains the
grammar for configuring that emulator, which when com-
bined with the emulator-agnostic data model, generates the
emulator specific hardware configuration that the software
requires. Given the configuration options for the environ-
ment (such as number and type of floppy drives, hard disk
parameters, CPU settings, etc.) a customised configuration
can be created for each emulator.

The last part of this step is providing the digital object to
the application within the disk image. Because the applica-
tion and OS disk image is prepared prior to the process, the
digital object cannot easily be inserted into it. However, it
can be attached to the emulated hardware as a separate disk
image that with the right configuration can allow the appli-
cation within the disk image to access the digital object. For
example, a disk image containing MS-DOS and WordPerfect
is provided to an x86 emulator as a hard-disk, and a floppy
disk image containing the accompanying WordPerfect file is
also provided to the platform. Within the rendering envi-
ronment, it is possible to boot the OS from the hard-disk,
start the application, and read the digital object from the

169



attached floppy disk from within the application.

This completes the last step of the workflow to render an
unknown digital object in its original environment, as can
be seen in Figure 3.

4. BUSINESS INCENTIVES
With the release of the EF using emulation tools has be-
come more accessible, bypassing difficult setups or technical
restrictions. The EF runs on Java, making it compatible
with all mainstream computer platforms. Moreover, man-
agement of required emulators and software packages has
become more organised by using the service-oriented Em-
ulator and Software Archives. With the large number of
freely available emulators, most computer platforms can be
emulated by including them in the EF. However, care must
be taken when using old applications and emulators as soft-
ware licenses and hardware patents can restrict limitations
of use [15]. For this reason the current release of the EF
only uses open source emulators and applications.

5. ONGOING RESEARCH
Building on the first release of the EF (May 2011), the KEEP
project is working on improving the software. Two new
releases are planned before the end of the KEEP project
in February 2012. These will incorporate the user feed-
back from tests performed by the Bibliothèque nationale de
France, Dutch National Archives, Computerspiele Museum
Berlin, research institute CERN and the Netherlands Media
and Art Institute. Altogether these organisations represent
five major domains: library & archiving, culture, research
and art.

Furthermore, KEEP is doing research into remote emula-
tion, with the goal of accessing the rendered digital envi-
ronment from a thin client. This will move the high re-
quirements emulators place on the underlying hardware to
a server specifically built for the task.

6. CONCLUSION AND BENEFITS
The EF has shown that an end-to-end business solution us-
ing emulation to render a digital object in its original en-
vironment is feasible. The EF is currently freely available,
allowing individuals and institutions to take advantage of
the possibilities to unlock their digital archive to the wider
public at a very low total cost of ownership. Especially those
digital objects for which migration, currently the main dig-
ital preservation strategy, provides no accessibility is this
solution an alternative.

Ongoing pilots at the National Library of the Netherlands,
the German Computerspielemuseum and integration with
Tessella’s Safety Deposit Box [10] show that in a wide range
of environments the EF offers access to a large set of digital
objects. With the Open Planets Foundation [7] in place, a
platform exists that will ensure this solution continues to be
developed, and also guarantees continual support.

All in all, the EF offers an effective way of ensuring long-
term access to practically any digital object, and can be put
to use by any user or institution regardless of the technical
knowledge available.

7. ACKNOWLEDGMENTS
KEEP has received funding from the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement no ICT-231954.

8. REFERENCES
[1] Dioscuri — the modular emulator.

http://dioscuri.sourceforge.net/. Accessed:
01-Sep-2011.

[2] Emulation Expert Meeting Statement.
http://www.kb.nl/hrd/dd/dd_projecten/

projecten_emulatie-eemstatement-en.html.
Accessed: 01-Sep-2011.

[3] Emulation Framework.
http://emuframework.sourceforge.net. Accessed:
01-Sep-2011.

[4] File Information Tool Set (FITS).
http://code.google.com/p/fits. Accessed:
01-Sep-2011.

[5] FreeMarker — Java Template Engine Library.
http://freemarker.sourceforge.net. Accessed:
01-Sep-2011.

[6] KEEP project. http://www.keep-project.eu/.
Accessed: 01-Sep-2011.

[7] Open Planets Foundation.
http://www.openplanetsfoundation.org. Accessed:
01-Sep-2011.

[8] Planets project. http://www.planets-project.eu/.
Accessed: 01-Sep-2011.

[9] PRONOM — the online registry of technical
information.
http://www.nationalarchives.gov.uk/PRONOM.
Accessed: 01-Sep-2011.

[10] Safety Deposit Box.
http://www.digital-preservation.com/solution/

safety-deposit-box. Accessed: 01-Sep-2011.

[11] What is Emulation? http://www.kb.nl/hrd/dd/dd_

projecten/projecten_emulatiewatis-en.html.
Accessed: 01-Sep-2011.

[12] D. Anderson, J. Delve, D. Pinchbeck, L. Konstantelos,
A. Lange, and W. Bergmeyer. D3.3 final document
analyzing and summarizing metadata standards and
issues across Europe. Technical report, KEEP project,
September 2010.

[13] S. v. Bussel and F. Houtman. Gap analysis: a survey
of PA tool provision. Technical report, Planets project.

[14] R. Diessen and J. Steenbergen. Long Term
Preservation Study of the DNEP Project. Technical
report, IBM, National Library of the Netherlands,
December 2002.

[15] J. v. d. Hoeven, S. Sepetjan, and M. Dindorf. Legal
Aspects Of Emulation. iPRES 2010 proceedings, July
2010.

[16] L. Montague and S. v. Bussel. PLANETS Core
Registry: Future Vision Document. Technical report,
The National Archives, National Library of the
Netherlands, May 2010. PLANETS project, PC3-D24.

[17] D. v. Suchodoletz, K. Rechert, J. Schroder, and
J. v. d. Hoeven. Seven steps for reliable emulation
strategies solved problems and open issues. iPRES
2010 proceedings, July 2010.

170




