
A Braille Conversion Service Using GPU and Human
Interaction by Computer Vision ∗

Roman Graf
Digital Memory Engineering

Safety & Security Department
AIT Austrian Institute of Technology GmbH

Vienna, Austria
roman.graf@ait.ac.at

Reinhold Huber-Mörk
High Performance Image Processing

Safety & Security Department
AIT Austrian Institute of Technology GmbH

Seibersdorf, Austria
reinhold.huber@ait.ac.at

ABSTRACT
Scalable systems and services for preserving digital content
became important technologies with increasing volumes of
digitized data. This paper presents a new Braille converter
service that is a sample implementation of scalable service
for preserving digital content. The converter service facil-
itates complex conversion problems regarding Braille code.
Braille code is a method which allows visually impaired peo-
ple to read and write tactile text. Using a GPU with the
CUDA architecture allows the creation of a parallel process-
ing service with enhanced scalability. The Braille converter
is a web service that provides automatic conversion from the
older BRF to the newer PEF Braille format. This service
can manage a large number of objects. Speedups on the or-
der of magnitude of 5000 to 6900 (depending on the size of
the object) were achieved using a GPU (GTX460 graphics
card) with respect to a CPU implementation. An extension
involving an image processing system is used for human in-
teraction. Optical pattern recognition allows Braille code
creation using Braille patterns. No special input device and
skills are needed, only familiarity with Braille code is re-
quired.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: System issues; I.5.5 [Pattern
Recognition]: Interactive systems; H.3.5 [Online Infor-
mation Services]: Web-based services

General Terms
Algorithms

∗This work was supported in part by the EU FP7 Project
SCAPE (GA#270137) www.scape-project.eu. We would
like to thank Susan Jolly from www.dotlessbraille.org for
providing useful information regarding Braille formats.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. iPRES2011, Nov. 1 to 4, 2011, Singapore.
Copyright 2011 National Library Board Singapore & Nanyang Technolog-
ical University.

Keywords
digital preservation, CUDA, performance measurement, in-
formation retrieval, image processing, haptic I/O

1. INTRODUCTION
We describe a scalable Braille conversion web service us-

ing CUDA GPU parallel processing. CUDA is a technology
developed by NVIDIA [9] and could be used by a conver-
sion service to increase performance and enhance scalabil-
ity. CUDA programming requires a specific hardware. In
this work, a GTX460 graphics card was used.

Scalability plays an important role with increasing vol-
umes of digitized data. One of the goals of the SCAPE
project is to create scalable services for digital preservation
of large amounts of data. The SCAPE platform will include
a storage infrastructure and an execution environment for
performing sustainable, data-intensive and scalable digital
preservation activities through parallel processing.

The Braille code [4] conversion service available through
a web server is a sample implementation for such a scalable
service. There is a lack of public Braille services and still no
proper solution to the problem of automating Braille con-
versions [6]. Automatic migration of Braille files in BRF file
format [3] to the newer and more flexible PEF format is a
practical implementation of a service that needs scalability.
The output of the conversion service is a PEF file which
can further be used for embossing or for presentation using
standard Braille display. A demo workflow was implemented
based on the Planets Workflow Engine [10]. Customized
workflows support the definition of service parameters that
manage workflow execution.

Braille [4] is a system which enables visually impaired per-
sons to read text from tactile patterns by touch. The same
system is also suitable for writing tactile text. The Braille
code is a set of tactile patterns combined from raised dots.
A physically tactile pattern is presented as a cell of six dots
arranged in two columns and three rows. Letters, numer-
als and punctuation can be represented using different dots
combinations.

Interactive and automatic Braille recognition from images
was successfully performed with different acquisition setups,
various algorithms and different output format and media
[2], [8]. We will describe a system with a fixed camera, edge
based segmentation and recognition of Braille characters.

This paper is organized as follows. Section 2 describes
the challenges associated with Braille encodings. Section 3
introduces a web-service for conversion of Braille between

190



Figure 1: Representation of a sample text in BRF and PEF format.

BRF and PEF encodings and Sec. 4 demonstrates scalability
based on GPU processing. Section 5 describes image based
Braille pattern recognition. Section 6 concludes the paper.

2. BRAILLE CODING CHALLENGES
There are a number of different formats for digital rep-

resentation of Braille, two of which are considered in this
section. A BRF file [3] is an ASCII file where the ASCII
characters simply transliterate the Braille cells according to
some convention (consider the the North American ASCII
Braille BRF example in Fig. 1).

The more recent format for Braille files called PEF (Portable
Embosser Format) [5] was developed in 2005 by the Swedish
Braille library. PEF is not-yet widely adopted but has some
advantages when compared to the BRF file format because it
contains information about file content, proper Braille pub-
lishing standard, file sharing ability, and long term archive
preservation safety. PEF files have a header which references
the print source and other important metadata like title,
author and so on. Customized metadata are also possible.
The PEF is a document type that represents Braille pages
in digital form, accurately and unambiguously; regardless
of language, location, embosser settings, Braille code and
computer environment. PEF uses Unicode Braille patterns
which are widely accepted as a part of Unicode standard.

Braille files are Braille translations [3] of printed texts
produced manually by experienced translators. Braille cod-
ing utilizes various combinations of contractions, markup,
direct representation, and whitespace formatting. Each lan-
guage has one or more different Braille codes for converting
text to Braille (literature, technical material, music, com-
puter and so on). Currently there is no way to uniquely
identify which Braille system has been used to produce the
Braille file. Furthermore, a Braille code is characterized by a
context-sensitive grammar and, even if we know the correct
specification for the used Braille system, it is impossible to
regenerate the print text completely accurate. ASCII Braille
represents Braille cells by ASCII characters instead of Uni-
code and has an advantage that it is easier for humans to
use. The disadvantage of ASCII Braille is that the encoding
has to be defined. The Unicode advantage is that it is an
international standard.

3. WEB SERVICE FOR CONVERSION BE-
TWEEN BRF AND PEF FORMATS

The workflow engine provides the functionality of Braille
data conversion from the BRF format to the PEF format us-

ing a predefined conversion workflow and the Planets digital
object model [10]. The functionality to manage Planets dig-
ital objects is provided through the Braille conversion web
service written in Java and deployed with the JBoss appli-
cation server. This service implements methods that allow
the workflow engine to read data from a BRF file, to convert
it and to write data to a PEF file.

The Braille conversion use-case describes the performed
activities during the processing of the normalization strat-
egy. The main goal of this service is the conversion of the
source content from its original BRF data format into an
open, preservation-friendly and compatible, PEF format.
The conversion service performs the following actions:

1. The use-case starts with a user call of the conversion
service providing the Braille data of a collection in
BRF.

2. The service generates a preservation plan for each item
in the data collection.

3. The normalization strategy processing starts with BRF
content evaluation. Binary files of the processed item
will be harvested based on their URL. Information is
collected from content providers and integrated into a
representation of the objects in the preservation tasks.

4. Metadata is evaluated in order to build a PEF file
header. Expected header should contain following terms:
”title”, ”date”, ”format”, ”description”, etc.

5. Create error report.

6. Run the migration accordingly to the preservation plan.

7. Store migration results into the PEF file.

8. Generate report.

4. SCALABILITY ENHANCEMENT USING
GPU

Scalability could be achieved by parallel processing, e.g.
using OpenMP on multicore processors, distributed process-
ing or using OpenCL or CUDA on general purpose graphics
cards. In this work we describe a CUDA [9] implementation
which utilizes GPU parallel processing. The implementation
extends the Braille conversion service in order to enhance
scalability. In an experimental setup BRF files of different
sizes were converted to PEF files using a GPU processing
application. In the experiment two implementations of the
conversion service are compared. One implementation uses
traditional CPU processing whereas the second implemen-
tation uses GPU parallel processing. Pure calculation pro-
cessing time and total processing time were measured.

191



Figure 2: Speedup achieved using GPU parallel pro-
cessing.

Figure 3: Dependency between file size and execu-
tion time.

In order to prove the advantages of GPU parallel pro-
cessing the input data from the BRF file was divided into
chunks and loaded to the device memory. In order to map
algorithms to the GPU each chunk represents a BRF ele-
ment that can be converted to PEF Unicode values using a
conversion table. Then chunks are processed in parallel by
the GPU kernels and results copied back to the host. Paral-
lelization, i.e. thread and memory management, is provided
by CUDA. Each natural language requires a special conver-
sion algorithm. In the experiment a conversion algorithm for
American English was implemented. The resulting output
data is written to a PEF file. Performance measurements
were computed to evaluate GPU and CPU processing times
(used graphics card: GTX460). The relation of the pure
GPU processing time in respect to pure CPU processing
time, see Fig. 2, reveals the application processing time
without taking in account memory management time. Fig-
ure 3 indicates the relation of the total processing times for
both implementations including memory management from
the start of the conversion service calculations to the com-
pletion of the content conversion process.

Files of larger sizes achieve higher speedups, where file size
is measured in KB and time in milliseconds. Figure 3 de-
picts the dependency between the time needed for the BRF
file content reading, converting and writing to PEF file using
GPU and the time consumed by the same operations using

CAMERA

BRAILLE DOTS 
SURFACE

BRAILLE ELEMENT

Figure 4: Image acquisition of Braille elements.

CPU. The memory management and file read/write opera-
tions have been taken into account. In order to evaluate the
dependency of performance on file size a sample of eleven
files having sizes between 25KB and 13MB were converted.
The migration process on CPU mostly takes more time as
the content conversion process on GPU. With the larger file
size the CPU time consumption increases almost proportion-
ally but the GPU time consumption remains approximately
the same.

The gain from using the GPU starts with a file size of
about 50KB because for smaller files, the overheads associ-
ated with allocating GPU memory dominate the compu-
tation time. While GPU parallel processing achieves its
maximum speedup (6900 times) for Braille calculations for
the file sizes starting from about 13MB. The parallel imple-
mentation can be improved by overlapping communication
with computation. The reason for the significant speedup
is that calculation task normally (with CPU) computed se-
quentially was broken down to the sub tasks and processed
in parallel. The GPU comprises hundreds of cores (336 for
GTX460 graphics card). The higher is the cores number the
higher is the achieved speedup. Each core supports multiple
threads that can be executed in parallel. Each thread has a
subtask to execute. Therefore more resources are devoted to
data processing rather than data caching and flow control.
Web service and workflow engine overhead time consump-
tion is independent from conversion time.

5. EXTRACTION OF BRAILLE CODE
FROM IMAGES AND CONVERSION

This section describes an extension to the presented con-
version service. Image processing is applied to Braille code
extraction. Images are acquired using an area camera mounted
at some fixed distance to the surface holding the Braille el-
ements as shown in Fig. 4. Perspective distortions are
avoided by the setup and geometric lense distortion is cor-
rected. The camera provides gray-scale images of the surface
holding physical Braille patterns.

The goal of this extension is to enable Braille coding for
the users which are not familiar with Braille devices cur-
rently used as a computer interface. Currently, Braille code
creation in digital form is only possible using specific Braille
input devices. By interaction with a computer vision setup
a user could arrange Braille pattern manually using physical

192



Braille elements, i.e. physical building blocks, representing
Braille codes. The user identifies the meaning of each ele-
ment scanning tactile pattern by moving the finger upon it.
Visual impaired people are familiar with this technique and
use it for Braille reading of printed books. Once Braille code
creation is completed on a predefined surface the user starts
imaging of the surface holding the Braille patterns. Sub-
sequently, using a pattern recognition algorithm pins and
semantics of Braille patterns are identified and delivered in
ASCII code or Unicode standard. The output of pattern
recognition and conversion provides an input for Braille con-
version service described in Sec. 3.

In order to extract Braille elements in the image Braille
and raster dots are initially segmented from the background
[11]. Point and edge based features are regarded to be more
robust against lighting variants [7]. In the suggested method
the Canny edge detection algorithm was employed [1] in the
segmentation step. The Braille pattern dots (see Fig. 1)
used in the experiment consists of black points on a white
surface. In the experimental setup the dot diameter is about
10 pixels. The placeholders for empty Braille pattern dots
are depicted as smaller circles. The placeholder diameter is
about 6 pixels. The placeholder dots are also important in
Braille pattern calculation. The separation between Braille
and placeholder dots is based on expected Braille dot height,
width and maximal pixel count.

The Braille pattern recognition and conversion algorithm
is summarized as follows:

1. Retrieve a Braille pattern image and apply geometric
undistortion.

2. Segmentation of the retrieved image using the Canny
edge detector. The output of segmentation is an array
of detected points.

3. Verification of detected placeholder points using a Braille
code grid, as placeholder dots are more accurately lo-
calized than Braille dots. A suitable maximal pixel
count value for dot discrimination using the described
setup was found to be 14.

4. Remove false positive detections. Extracted detections
that do not match the predefined grid are removed.

5. Merge spatially adjacent placeholder dots from step
3. This step rejects pixels that are part of already
detected Braille dots.

6. Detect Braille dots using the grid derived from place-
holder dots.

7. Compute Braille patterns from detected Braille points.
Braille patterns (for example 1-2-5) that are suitable
for further processing are obtained.

8. Compute ASCII Braille code or Unicode values.

The resulting Braille encoding is used as input to the web
conversion service described in Sec. 3.

6. CONCLUSION
A new scalable open Braille conversion web service for

preserving digital content was created. The service provides
conversion of Braille files into the new PEF format from the
widely spread BRF format. Braille conversion service scal-
ability is improved by application of CUDA GPU parallel
processing. Measurements of conversion times for different
BRF file sizes and comparison of results for GPU and CPU
processing were given. Speedup enhancements up to 6900

times were achieved. The GPU parallel processing efficiency
depends on the file size. For example 50KB file achieves
speedup about 5000 times whereas 13MB file speedup is
more than 6900 times. Apparently GPU processing is more
efficient then CPU processing in terms of Braille conversion
for large file sizes (50KB - 13MB) and enhances scalability
of conversion service for large files collections.

The scalability improvement is that BRF files in the range
between 50KB and 13Mb can be more efficient converted to
the PEF files athrough GPU parallel processing and a web
service. This acceleration is needed to efficiently migrate
large amounts of currently widely used BRF file archives
into PEF. Future work will include evaluation of scalability
involving larger collections.

Image processing and pattern recognition can be used to
enable Braille coding without Braille input device and to
create input data for the Braille conversion service. Images
of physical Braille patterns are acquired and automatically
recognized and can also make use of the described web con-
version service.

7. REFERENCES
[1] Canny, J.: A computational approach to edge

detection. IEEE Trans. Pat. Anal. Mach. Intell. 8(6),
679–698 (1986)

[2] François, G., Calders, P.: The reproduction of Braille
originals by means of optical pattern recognition. In:
Proc. Int. Workshop on Computer Braille Production.
pp. 119–122 (1985)

[3] Frees, B., Strobbe, C., Engelen, J.: Generating braille
from Openoffice.org. In: Proc. Intl. Conf. Computers
helping people with special needs. LNCS, vol. 6179,
pp. 81–88 (2010)

[4] Jiménez, J., Olea, J., Torres, J., Alonso, I., Harder,
D., Fischer, K.: Biography of Louis Braille and
invention of the Braille alphabet. Survey of
Ophthalmology 54(1), 142–149 (2009)

[5] Leas, D., Persoon, E., Soiffer, N., Zacherle, M.: Daisy
3: A standard for accessible multimedia books. IEEE
Multimedia 15(4), 28–37 (2008)

[6] Manohar, P., Parthasarathy, A.: An innovative Braille
system keyboard for the visually impaired. In: Proc.
of UKSim: Intl. Conf. on Comp. Modelling and
Simulation. pp. 559–562 (2009)

[7] Marr, D., Hildreth, E.: Theory of edge detection.
Proc. of the Royal Soc. London B-207, 187–217 (1980)

[8] Mihara, Y., Sugimoto, A., Shibayama, E., Takahashi,
S.: An interactive Braille-recognition system for the
visually impaired based on a portable camera. In:
Proc. of CHI’05 extended abstracts on Human factors
in comp. systems. pp. 1653–1656 (2005)

[9] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M.,
Krüger, J., Lefohn, A.E., Purcell, T.: A survey of
general-purpose computation on graphics hardware.
Comput. Graph. Forum 26(1), 80–113 (2007)

[10] Schmidt, R., King, R., Jackson, A.N., Wilson, C.,
Steeg, F., Melms, P.: A framework for distributed
preservation workflows. Intl. J. of Digital Curation
5(1), 205–217 (2010)

[11] Sezgin, M., Sankur, B.: Survey over image
thresholding techniques and quantitative performance
evaluation. J. Electron. Imaging 13(1), 146–165 (2004)

193




