The Enduring Value of Social Science Research:
The Use and Reuse of Primary Research Data

Amy Pienta
ICPSR, University of Michigan
PO Box 1248
Ann Arbor, MI, USA 48106-1248
011.1.734.615.7957
apienta@umich.edu

George Alter
ICPSR, University of Michigan
PO Box 1248
Ann Arbor, MI, USA 48106-1248
011.1.734.615.7652
altergc@umich.edu

Jared Lyle
ICPSR, University of Michigan
PO Box 1248
Ann Arbor, MI, USA 48106-1248
011.1.734.763.6075
lyle@umich.edu

ABSTRACT
The goal of this paper is to examine the extent to which social science research data are shared and assess whether sharing is associated positively with number of publications resulting from the research data. We construct a database from administrative records containing information about thousands of social science studies that have been conducted over the last 40 years. Included in the database are descriptions of social science data collections funded by the National Science Foundation and the National Institutes of Health. Using a subset of these awards, we conduct a survey of principal investigators (n=1,021). We find that very few social science data collections are preserved and disseminated by an archive or institutional repository. Informal sharing of data in the social sciences is much more common. The main analysis examines publication metrics that can be tied to the research data collected with NSF and NIH funding – total publications, primary publications (including PI), and secondary publications (non-research team). Multivariate models of the count of publications suggest that data sharing, especially sharing data through an archive, is associated with many more times the publications compared to not sharing data. This finding is robust even when the models are adjusted for PI characteristics, grant award features, and institutional characteristics.

Categories and Subject Descriptors
Scientific databases, Statistical databases, Economics, Sociology

General Terms
Management, Measurement, Economics

Keywords
Research Data Sharing, Scientific Productivity, Digital Preservation

1. INTRODUCTION
Federal funding for scientific research has always been a highly competitive endeavor with only a small proportion of research grant submissions receiving awards from the National Institutes of Health (NIH) each year. The impact of a funded research project is measured, partly, by the research productivity of the PI and his or her research team who publish findings from primary data collection activities. Increasingly, NIH and the National Science Foundation (NSF) have become interested in data sharing as a means of supporting the scientific process and ensuring the highest return on competitive investments. However, there has been little investigation of research productivity that extends beyond the primary analysis of hypotheses outlined in the original data collection project. We proposed to redress this gap by examining data-related research productivity of the research team and secondary use by others.

This research question is particularly salient for the social sciences because social science disciplines have been among the earliest to organize efforts to share research data. Avenues for sharing data have been fairly well known, especially in the social science disciplines of political science, sociology and economics. Social science research occurs in other social and behavioral disciplines, as well. So, there is tremendous heterogeneity in data sharing in the social sciences.

The largest share of social science research is conducted with federal support. The National Science Foundation (NSF) and the National Institutes of Health (NIH) have supported a significant share of social science data collections and the trend continues today (Alpert, 1955; Alpert 1960; Kalberer, 1992). This paper focuses on analyzing information from grant awards made by NSF and NIH making it possible to enumerate the bulk of the major social science data collections that exist today. Also, NSF and NIH keep electronic records about grant awardees that have been culled into a single database useful for understanding the scope and breadth of social science research that has produced research data. Thus, this research topic is both timely and practical.

2. BACKGROUND
Data sharing has been an important topic of debate in the social sciences for more than twenty years, initially spurred by a series of National Research Council Reports and more recently the publication of the National Institutes of Health Statement on Sharing Research Data in February 2003 (NIH 2003). Despite this formal written statement from NIH and a similar one from the National Science Foundation (NSF-SBE n.d.) that give official support for the long held expectations placed on grantees to share their research data, little is known about the extent to which data collected with support from NIH or NSF have been shared with other researchers. The limited work done suggests considerable variability in the extent to which researchers’ share and archive
research database. Our research fills this gap in knowledge and creates a research database. Our research fills this gap in knowledge and creates a research database. Our research fills this gap in knowledge and creates a research database. Our research fills this gap in knowledge and creates a research database.

NIH’s policy is designed to encourage data sharing with the goal of advancing science. The benefits of sharing data have been widely discussed and understood by researchers for years. An important part of Kuhn’s (1970) scientific paradigm is the replication and confirmation of results. Sharing data is at the core of direct replication (Anderson et al. 2005; Kuhn 1970; Freese 2006). The foundation of the scientific process is that research should build on previous work, where applicable, and data sharing makes this possible (Bailar 2003; Louis, Jones & Campbell 2002). The argument has been made, and there is some evidence to support it, that sharing data and allowing for replication makes one’s work more likely to be taken seriously and cited more frequently (King et al., 1995). In fact, Glenditsch, Petter, Metelits, and Strand (2003: 92) find that authors who make data from their articles available are cited twice as frequently as articles with “no data but otherwise equivalent credentials, including degree of formalization.”

Additionally, the nature of large datasets virtually guarantees that a single researcher or group of researchers will not be able to use the dataset to its full potential for a single project. It may be the case that those who collect the data are not the best at analyzing them beyond basic descriptive analyses (Bailar 2003). Sharing data in this way ensures that resources spent on data collection are put to the best use possible and the public benefit is enhanced.

Finally, the use of secondary data is crucial in the education of undergraduate and graduate students (Fienberg, 1994; King, 2006). It is not feasible for students in a semester-long course to collect and analyze data on a large scale. Using archived datasets allows students to gain experience firsthand. Instructors can use the metadata accompanying shared data to teach students about “good science” and the results obtained from even simple analyses to illustrate the use of evidence (data) in support of arguments (Sobal 1981).

2.1 Policies about data sharing

Most institutes and organizations that finance research, especially data collection, have a policy about sharing data once the initial project is completed. The National Institutes of Health (NIH 2003) and National Science Foundation (NSF-SBE n.d.), for example, require a clearly detailed plan about data sharing as part of research proposals submitted for review. Plans must cover how and where materials will be stored; how access will be given to other researchers; and any precautions that will be taken to protect confidentiality when the data are made public. These requirements are not, however, evaluated in the review process nor are there formal penalties for non-compliance after the award. Most professional organizations also include a statement in their “best practice” or ethics guidelines recommending that research reports be detailed enough to allow for replication, and that data and assistance be made available for replication attempts (e.g., American Sociological Association, American Psychological Association, American Association for Public Opinion Research).

In addition to such general statements that data collected with public funds must be shared with other researchers and that individuals should be willing to assist others replicating their work, some fields, such as Economics, have taken steps to make the data sharing policy more concrete. In an attempt to allow for direct replications as well as full-study replications, the American Economic Review and other major economics journals have instituted the practice that any article to be published must be accompanied by the data, programs used to run the analyses, and clear, sufficient details about the procedures prior to publication (Freese 2006; Anderson et al. 2005). The requirement to include not only the data but also statistical code written to perform analyses requires that individual researchers thoroughly and carefully document decisions made during the analysis stages of the project and allows other researchers to more easily use these as starting points for their own work. This has led to increased use and citation of work that has been published in journals where this type of information is required (Anderson et al. 2005; Glenditsch et al. 2003).

2.2 Sharing Social Science Data

Data are currently shared in many different ways ranging from formal archives to informal self-dissemination. Data are often stored and disseminated through established data archives. These data generally reach a larger part of the scientific community. Also, data in formal archives typically include information (metadata) about the data collection process as well as any missing data imputations, weighting, and other data enhancements. These archiving institutions have written policies and explicit practices to ensure long-term access to the digital assets that they hold, including off-site replication copies and a commitment to the migration of data storage formats. These are the characteristics that define data archives.

Another tier of data archives have more narrowly focused collections around a particular substantive theme such as the Association of Religion Data Archives (www.thearda.com). The data in these kinds of thematic archives are not necessarily unique, though some of their holdings are, but the overlap between archives makes data available to broader audiences than might be captured by a single archive. The ARDA, for instance, has a broader non-scientific audience who are interested in analysis and reports as well as the micro-data files for reanalysis. These archives expend resources on the usability of the collection and make some commitment to long-term access through migration and back-ups.

Some data archives are designed solely to support the scientific notion of replication. Journal-based systems of sharing data have become popular in Economics and other fields as a way of encouraging replication of results (Anderson et al. 2005; Glenditsch et al. 2003). The longevity of these collections is sometimes more tenuous than the formal archives particularly if the sustainability of their archival model relies on a single funding source.

Some examples of less formal approaches include authors who acknowledge they will make their data available upon request or who distribute information or data through a website. Researchers often keep these sites up to date with information about findings from the study and publication lists, in addition to data files and metadata. These sites are limited to those who know about the study by name or for whom the website has shown up in a Web search (see also Berns, Bond & Manning 1996). Typically, the commitment to preserving this content lasts only as long as the individual has resources available.

2.3 The Reluctance of Researchers to Archive Data

The time and effort required to produce data products that are useable by others in the scientific community is substantial. This extra effort is seen by many as a barrier to sharing data (Birnholz & Bietz 2003; Stanley & Stanley 1988). In addition to the actual data, information must be added to assist secondary users in identifying whether the data would be of value to them and in the
analysis and interpretation of results. Such metadata includes complete descriptions of all stages of the data collection process (sampling, mode of data collection, refusal conversion techniques, etc.) as well as details about survey question wording, skip patterns and universe statements, and post-data processing. All of these factors allow subsequent researchers to judge the quality of the data they are receiving and whether it is adequate for their research agenda. Therefore, substantial effort is required of those sharing data, while the lion’s share of the benefits seem to accrue to the secondary user.

Another significant barrier in the sharing of data is the risk of breaching the confidentiality of respondents and the potential for the identification of respondents (Bailar 2003). The issue of protecting confidentiality has become more salient as studies collect information about social context, which may include census tract or block group identification to allow researchers to link the data collected with information about the context. Not only are data about social and community contexts being collected and included in datasets but also global positioning coordinates and information about multiple members of a household, all of which could make identification of any single individual easier. Additional information about biomarkers and longitudinal follow up are also hallmarks of new data collection efforts. Both methodological innovations make it more difficult for Institutional Review Boards to allow for the wide redistribution of data.

Other reasons individuals give for withholding data include wanting to protect their or their students’ ability to publish from the data as well as the extra effort involved in preparing data for sharing (Louis et al. 2002). Retaining the ability to publish from one’s data is a significant concern among scientists, both for fear of others “scooping” the story and that others will find mistakes in their attempt to replicate results (Anderson et al. 2005; Bailar 2003; Freese 2006; Bachrach & King 2004).

Current publication and academic promotion practices act as another barrier to sharing data – or, put another way, those who “hoard” their data are likely to be rewarded more than those who “share”. There are often few, if any, rewards to sharing data, especially given the expense in terms of time and effort required to prepare clean, detailed data and metadata files. Researchers are not typically rewarded for such behavior, particularly if the time spent on data sharing tasks infringes on one’s ability to prepare additional manuscripts for publication. Academic culture does not support the scientific norm of replication and sharing with tangible rewards. (Anderson et al. 2005; Berns et al. 1996). As an example, in discussing the notion that researchers might share not only data but also analytic/statistical code, Freese (2006:11) notes that a typical reaction to a “more social replication policy would be to expend less effort writing code, articulating a surprisingly adamant aversion to having [one’s] work contribute to others’ research unless accompanied by clear and complete assurance in advance that they would be credited copiously for any such contribution.” It is unlikely that attitudes about data sharing will change without strong leadership and examples set by senior scientists and the commitment of scientific institutions such as universities and professional societies who facilitate and enforce such sharing (Berns et al. 1996).

2.4 Extending Research Productivity to Include Data Reuse

Research productivity is often thought of as something that scientists accomplish by publishing their research discoveries. The second part of research productivity is not how many times your ideas are published, but also how often the idea is cited in the work of others (Matson, Gouvier, Manikam 1989). This is an analysis of citation counts of a scientist’s publications – how widely cited their publications are. Thus, the impact of a scientist’s scholarship is derived directly from their own published work. However, details about there has been movement in the scientific academy to recognize the importance and value of research data. We consider the possibility that research data may have enduring value on scientific progress as scientists use and reuse research data to draw new analysis and conclusions. This idea is rooted in the idea of a data life cycle – where research data can often have use beyond its original designed purpose (Jacobs and Humphrey 2004). This is not farfetched given that research productivity measures have also been used to assess institutional productivity across universities (Toutkoushian, Porter, Danielson, and Hollis, 2003). Here, we consider the research productivity resulting from research data collected by a scientist with federal funding.

In summary, while the social sciences share in the normative expectation that research data must be shared to foster replication and reanalysis, there is little to suggest that it is a wide spread practice. Federal institutions and professional organizations underscore these normative expectations with implicit and explicit sharing policies. The advantages of sharing data with the research community are large and cumulative. Yet, with the exception of leading journals in Economics, there are few cases in which these normative statements are coupled with penalties or incentives to reinforce them. The institutional, financial, and career barriers to data sharing are substantial as noted. What remains an open empirical question is the extent of data sharing across social science disciplines and the value this has for the social sciences.

3. Methods

To address this question we construct a database of research projects – the ‘LEADS’ database -- is comprised of social and behavioral science awards made by NSF and NIH. From the National Science Foundation online grants database, we include in our study research grant awards that matched prominent search terms relating to the social sciences (We used the following search terms to select possible awards from NSF for inclusion in LEADS: SOC*, POLIT*, and/or STAT*). We further restrict this set of awards to awards that include descriptions of research activity that (1) relate to the social and/or behavioral sciences and (2) reflect original (or primary) data collection (including assembly of a new database from existing or archival sources). From the National Institutes of Health online CRISP (Computer Retrieval of Information on Scientific Projects) database (http://crisp.cit.nih.gov/), we include extramural research grant awards from the top 10 NIH institutes engaging in social and behavioral research. In additional to screening for social and behavior science content in these awards, these awards also were restricted to the collection of original quantitative data. This strategy differs from the NSF award review in that strictly qualitative studies were not identified as such and excluded from LEADS (because the database was constructed from an earlier project that explicitly excluded qualitative studies). Because mixed method studies were screened in - the potential impact of this difference is small.

Of the 235,953 eligible NSF and NIH awards in the LEADS database, 12,464 matched our initial screening criteria (i.e., social/behavior science & collected research data). We then select awards from 1985-2001 (n=7,040). We selected this range of years because we wanted to inquire about completed research that could have led to publications and data archiving. But, we did not want to select awards that were completed so long ago that recall of information about the publications related to the award would
be unreasonable. From this set of awards, we found 4,883 unique principal investigators (PIs). We attempted to invite all 4,883 PIs to complete a web survey (excluding deceased PIs and PIs where we could not verify an email address).

The PI survey consisted of questions about research data collected, various methods for sharing research data, attitudes about data sharing and demographic information. PIs were also asked about publications tied to the research project including information about their own publications, research team publications, and publications outside the research team. We received 1,217 responses (24.9% response rate). For the analytic sample we select PIs and information about their research award if (1) they confirm they collected research data as part of the selected award (86.6% of the responses) and (2) they did not collect data for a dissertation award.

3.1.1 Publication Measures
Research productivity is typically assessed by either citation or publication analysis. The outcome measures used in this analysis are various measures of publication counts. Publication counts are based on self-reported information provided by PIs of the research grant awards at NSF and NIH. PIs are asked to report number of publications related to the data they collected, including estimates for: own publications, publications of the research team, extant publications not related to the research team, and the number of publications (in each of the three previous categories) that include students. We include in this analysis count of publications where the PI is one of the authors (range 0 – 100). This is one measure of primary publications. A second measure of primary publications is created that also includes counts of publications where the PI may or may not be an author, but at least one member of the research team is an author (range 0-350). Secondary publications are publications where none of the original research team (PI, co-investigators, students or other researchers) is an author or co-author of the publication (range 0-700). This measure indicates the extent of reuse (or secondary use) of research data beyond its original collection purpose. Next, total publication count is constructed by adding count of all primary publications with count of secondary publications (range=0-713). Finally, the number of publications where a student was author or co-author is defined (range 0-160).

Because the publication measures are self-report measures, we conducted a separate publication search (using Web of Science, Google) for a sub-set of awards to verify that PI self-reports were correlated with an objective set of publication counts. In analyses not reported here, we find that self-report and objective publication counts are highly correlated. On average, PIs report more publications regardless of the publication count measure (primary, secondary and so on). Thus, they tend to over report all kinds of publications, not just their own

3.1.2 Data Sharing Status
The main independent variable used in the analysis is self-reported data sharing status. We ask the question about data sharing in the PI survey. PIs are asked if they have ever shared data from their selected award through either an archive or more informal venue. Informal data sharing is a summary of information reported by the PI indicating either data were made available at the request of another researcher and/or they distributed the data through a personal or departmental website. Data sharing status is defined as whether research data have been shared (1) formally through a data archive (or institutional repository), (2) informally, not through a data archive (including shared upon request, personal website, departmental website), or (3) not shared.

3.1.3 PI Characteristics
To ensure that data sharing is not “standing in” for other known predictors of productivity, we include covariates describing characteristics of the individuals who collect the data, the award mechanism used to fund the data, and the institutional home of the original data collection. Research productivity has been linked to departmental prestige (Long 1978), age (Levan and Stephan 1991) and gender (Penas and Willet 2006) among other factors. We begin by describing PI characteristics we are able to measure.

We expect that characteristics of the PIs themselves will be associated with both data sharing status and various publication counts. Some researchers have more time for archiving and publishing whereas others may be more likely to engage in training and service. We attempt to control for this by including various social and demographic characteristics of the PIs in the models. The gender of the PI is male (=1) or female (=0). The self-reported race/ethnicity of the PI is defined as white (=1) versus non-white (=0). Age (in years) at time of initial award is calculated by subtracting year of birth from year at start of initial award (range 27-75). Self-reported faculty status/rank at time of initial award is defined as senior (tenured faculty), junior (tenured faculty), and non-faculty (including students, postdocs, research staff). Self-reported discipline is classified from an open ended question and collapsed into the following categories: (1) health sciences (nursing, medicine, public health) and psychology, (2) core social science (political science, sociology, and economics), and (3) other social science-related discipline (anthropology, film, communications). Finally, the number of federal grants awarded throughout one’s career is defined as number of self-reported federal research grants (range 1-100).

3.1.4 Institutional Characteristics
Next, we construct a set of measures about the institutions awarded the research grant – the institution of the PI at time of initial award. First, we use the Carnegie Classification to differentiate research institutions from non-research institutions. Research institutions include research universities, doctoral granting universities, and medical schools/centers. Non-research institutions include 2- and 4- year colleges, colleges and universities, and medical schools/centers. Non-research institutions are divided into private research organizations and other non-Carnegie institutions. A second institutional characteristic defined is the region where the institution is located (northeast, south, midwest and west).

3.1.5 Grant Award Characteristics
First, we differentiate awards made by the National Science Foundation (=0) from the National Institutes of Health. NSF has had in place a data sharing policy for a longer time and it is expected that data will be shared and archived more frequently when funded by NSF. The other award measure is the duration of the award, measured in years (range =0-8 years).

3.2. Analysis Plan
Descriptive statistics are calculated using univariate and bivariate statistics. Because the outcome measures are publication counts, Poisson regression models are estimated. Overdispersion led us to the choice to estimate negative binomial regression models of publication counts for longitudinal data (offset by the amount of time between initial award and the survey). We estimate two sets of models for each outcome. First, we estimate models that
include only a three category data sharing status measure. The second set of models adds the various PI, institution, and award characteristics. We do not include any covariates in the final models shown (model 2) that were not statistically significant across all outcomes. The hierarchical set of models (model 1 and model 2) allows us to understand the extent to which differences by data sharing status might be attributed to other characteristics of PIs, institutions and the awards.

4. RESULTS

Descriptive sample characteristics are presented in Table 1. The sample of PIs is fairly evenly divided between males (51.9%) and females (48.1%). The majority of the sample is white (86.8%) and tenured (54.3%). Only 20 percent of the PIs is non-faculty. The mean number of Federal grants the PIs have been awarded throughout their careers is 6.2. The majority of PIs come from either the psychological or health sciences (62.5%). Just over a quarter of the sample are PIs in the core social science disciplines (sociology, economics and political science).

Table 1. Descriptive Sample Characteristics (n=930)

<table>
<thead>
<tr>
<th>PI Characteristics</th>
<th>Total</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (%)</td>
<td>48.1</td>
<td></td>
</tr>
<tr>
<td>White (%)</td>
<td>86.8</td>
<td></td>
</tr>
<tr>
<td>Age @ award time(mean)</td>
<td>43.4</td>
<td>27-75</td>
</tr>
<tr>
<td>Faculty Status @ Award - Senior (%)</td>
<td>54.3</td>
<td></td>
</tr>
<tr>
<td>Faculty Status @ Award - Junior (%)</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>Faculty Status @ Award - Non-Fac (%)</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Discipline - Core Social Science</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>Discipline - Psychology & Health</td>
<td>62.5</td>
<td></td>
</tr>
<tr>
<td>Disciple - Other</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td># Fed Grants in Lifetime (mean)</td>
<td>6.2</td>
<td>1-100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institutional Characteristics</th>
<th>Total</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region - NorthEast (%)</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>Region - MidWest (%)</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td>Region - South (%)</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td>Region - West (%)</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>Carnegie-Research (%)</td>
<td>78.7</td>
<td></td>
</tr>
<tr>
<td>Carnegie-Non Research (%)</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Carnegie-Other, PRO (%)</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Carnegie-Other, Other (%)</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>NSF Award (%)</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>Duration of Initial Award, Years</td>
<td>3.1</td>
<td>0-8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Sharing Status</th>
<th>Total</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Formally, Archived</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>Shared Informally, Not Archived</td>
<td>44.6</td>
<td></td>
</tr>
<tr>
<td>Not Shared</td>
<td>43.9</td>
<td></td>
</tr>
</tbody>
</table>

PIs are represented in all four major regions of the U.S. The largest numbers of grant awards are made to institutions located in the northeast (36%) and the fewest number of grant awards are made to institutions located in the west (18.7%). The vast majority of PIs of the research grant awards are working at institutions classified by the Carnegie classification as research institutions (78.8%). The second largest institution type represented in the PI survey is private research organizations (12.3%). Few awards were made to non-research institutions and other types of organizations not classified by Carnegie (6.5% and 2.5% respectively). Only 27.3 percent of the awards come from the National Institutes of Health (72.7%). The mean duration of an award is 3.1 years. Few awards produce research data that are shared formally – either in a data archive or institutional repository (11.5%). Of the rest, half the data from the awards are shared informally, not in an archive (44.6%) and half are not being shared beyond the research team (43.9%).

Table 2. Bivariate Relationships: Data sharing status by PI Characteristics, Institutional Characteristics, and Grant Award Characteristics

<table>
<thead>
<tr>
<th>Data Sharing Status</th>
<th>NSF Award (%)</th>
<th>NIH Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Formally, Archived</td>
<td>22.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Shared Informally, Not Archived</td>
<td>43.7</td>
<td>45.0</td>
</tr>
<tr>
<td>Not Shared</td>
<td>33.9</td>
<td>47.6</td>
</tr>
<tr>
<td>Duration of Award, Years</td>
<td>2.9</td>
<td>3.3</td>
</tr>
</tbody>
</table>

4.1 Characteristics of PIs Sharing Research Data.

Turning to Table 2, we next examine how various characteristics of the PIs, institutions and grant awards are related to data sharing status. Women are more likely to archive data than men (12.0% and 8.1% respectively; chi-square is statistically significant). We see that senior faculty are more likely than others to archive data (12.0%) – nearly twice as often as junior faculty (7.1%) and non-faculty (8.6%). There are strong disciplinary differences as well. The core social science disciplines archive data at the highest rate (27%). Psychologists and health scientist archive data least often (4.6%). PIs at institutions located in the south are also less likely to archive data (8.5%). However, the Carnegie classification of the institution awarded a research grant to collect data is not associated with data sharing status. Data funded by NSF research grants are nearly three times more likely to be archived than data funded by NIH.
Table 3. Bivariate Results: Data Sharing Status by Publication Counts

<table>
<thead>
<tr>
<th>Publication Count</th>
<th>Total Archived n=935</th>
<th>Archived n=111</th>
<th>Informal n=415</th>
<th>Not Shared n=409</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Publications (w/ PI)</td>
<td>4 (0.123)</td>
<td>6 (0.128)</td>
<td>6 (0.415)</td>
<td>3 (0.443)</td>
</tr>
<tr>
<td>Primary Publications (w/any Research Team Member)</td>
<td>5 (0.080)</td>
<td>8 (0.079)</td>
<td>6 (0.276)</td>
<td>3 (0.284)</td>
</tr>
<tr>
<td>Secondary Publications (no Team Member)</td>
<td>0 (0.130)</td>
<td>0 (0.130)</td>
<td>-1.107 (0.467)</td>
<td>-1.07 (0.463)</td>
</tr>
<tr>
<td>Total Publications including Students</td>
<td>2 (0.058)</td>
<td>4 (0.222)</td>
<td>-1.314 (0.206)</td>
<td>-2.418 (0.794)</td>
</tr>
</tbody>
</table>

4.2 Data Sharing is Positively Associated with Number of Publications

Table 3 shows the distribution of various publication counts for the full sample and by data sharing status. The median number of publications for an award producing data that PIs author or co-author is 4. However, the median number of publications that PIs who archive data formally write is 6 – compared to PIs who do not share data (3 primary publications). Research teams are also more productive when they archive the data. The median number of research team publications is 8 when data are archived compared to 3 when data are not shared outside the research team.

Large numbers of research data produce no secondary publications beyond the PI and research team. Thus, across all categories, the median number of secondary publications is 0. For this outcome we examine the mean. A research grant award produces 2 secondary (non-research team) publications on average. However, when data are archived, 4 secondary publications are reported on average. We turn to the total number of publications next. A research grant award produces a median of 5 total publications. However, when data are archived a research grant award leads to a median of 10 publications. When data are shared informally a research grant is linked to a median of 7 publications. And, when data are not shared outside the research team, the research data lead to a median of only 4 publications overall. The same pattern is found for publications with student authorship as well.

Multivariate results are presented in Table 4. Dispersion differs from 0 across all outcomes and models leading us to estimate negative binomial regression models. Log-likelihood estimates are presented in Tables 4 & 5 (standard errors appear in parentheses). Both archiving data and sharing data informally are related positively to count of total publications (b=1.094 and b=1.020 respectively). Both associations are statistically significant (p<.01). This can be interpreted (by taking the exponential of the log-odds) as archiving data leading to 2.98 times more publications than not sharing data. When data are shared informally (compared to not shared at all), 2.77 times the number of publications are produced.

Turning to model 2, additional covariates are added to the model to account for potential differences in PIs, institutions, and the grant awards. The coefficients for archiving data and informally sharing data are positively associated with number of total publications in comparison to not sharing data at all. These two coefficients are smaller than in model 1, but still statistically significant. This can be interpreted (by taking the exponential of the log-odds) as archiving data leads to 2.42 times more publications than not sharing data. Informally sharing data leads to 2.31 times more publications than not sharing data at all. Thus, the effect of data sharing, formally or informally, is not explained by differences in the PI themselves, the awards or the institutions that were given the awards to conduct the research. Research productivity benefits clearly from data sharing, particularly archiving data.

Table 4. Multivariate Results: Negative Binomial Regression Models of Publication Counts

<table>
<thead>
<tr>
<th>Data Sharing Status</th>
<th>Total # Publications, Self-Reported Model 1</th>
<th>Model 2</th>
<th>Total # Secondary Publications, Self-Reported Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Publications (w/ PI)</td>
<td>1.094 (0.123) ***</td>
<td>0.884 (0.128) ***</td>
<td>2.515 (0.415) ***</td>
<td>1.919 (0.443) ***</td>
</tr>
<tr>
<td>Shared Informally-Not Archived</td>
<td>1.020 (0.080) ***</td>
<td>0.837 (0.079) ***</td>
<td>2.375 (0.276) ***</td>
<td>1.565 (0.284) ***</td>
</tr>
<tr>
<td>Not Shared</td>
<td>ref</td>
<td>ref</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>PI Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at award</td>
<td>0.025 (0.004) ***</td>
<td></td>
<td>0.037 (0.016) ***</td>
<td></td>
</tr>
<tr>
<td>Discipline - Health and Psychology</td>
<td>-0.254 (0.102) **</td>
<td></td>
<td>-0.977 (0.370) ***</td>
<td></td>
</tr>
<tr>
<td>Discipline - Other (vs Core Soc Sci)</td>
<td>-0.190 (0.130)</td>
<td></td>
<td>-1.107 (0.463) ***</td>
<td></td>
</tr>
<tr>
<td>Institutional Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnegie-Non Res University</td>
<td>-0.685 (0.157) ***</td>
<td></td>
<td>-0.623 (0.584) ***</td>
<td></td>
</tr>
<tr>
<td>Carnegie-Other</td>
<td>1.169 (0.246) ***</td>
<td></td>
<td>1.602 (0.840) *</td>
<td></td>
</tr>
<tr>
<td>Carnegie-PRO (vs Res Univ)</td>
<td>0.230 (0.113)</td>
<td></td>
<td>1.230 (0.387) ***</td>
<td></td>
</tr>
<tr>
<td>Grant Award Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH (vs. NSF)</td>
<td>0.075 (0.093)</td>
<td></td>
<td>-0.202 (0.358)</td>
<td></td>
</tr>
<tr>
<td>Duration of Award, Years</td>
<td>0.163 (0.027) ***</td>
<td></td>
<td>0.115 (0.102)</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.646 (0.058)</td>
<td>0.199 (0.222)</td>
<td>-1.314 (0.206) ***</td>
<td>-2.418 (0.794) ***</td>
</tr>
<tr>
<td>Dispersion</td>
<td>1.186</td>
<td>1.052</td>
<td>13.649</td>
<td>11.241</td>
</tr>
</tbody>
</table>

*p<.1; ** p<.05; ***p<.01
Other coefficients in the model demonstrate that being older at the time of award is associated with increasing log-odds of total publications. Being older at time of award may translate into a measure of writing and publishing experience – and in turn older PIs may have a publishing advantage that is not explaining by other factors. One of the surprising results is that faculty status (senior, junior, and non-faculty) at time of award was not statistically significant in the model. This covariate (and gender, race and number of federal grants) are not included in model 2. Turning to model 2, additional covariates are added to the first model to account for potential differences in PIs, institutions, and the grant awards. The coefficient for archiving data is positively associated with secondary publication count in comparison to not sharing data at all, but is smaller than in model 1 (b=1.919 in model 2 compared to b=2.515 in model 1). This can be interpreted (by taking the exponential of the log-odds) as archiving data leads to 6.81 times more secondary publications than not sharing data. Both archiving and informal sharing are odds of primary PI publications (b=.743). Both associations are statistically significant (p<.01). This can be interpreted (by taking the exponential of the log-odds) as archiving data leading to 4.78 times more secondary publications than not sharing data. Adding the additional covariates in model 2 does not explain the data sharing effects. In the last set of models we saw private research organizations (PROs) produce data that lead to greater numbers of secondary publications. Here, in model 2, we see that PROs produce data that lead to lower log-odds of primary PI publications compared to research universities (b=-.216). Also in this model, we see that NIH data increase the log-odds of primary publications compared to NSF data. Much like the other publication metrics, the number of publications including students is related to data sharing status. Archiving (b=.700) and sharing data informally (b=.763) increase the log-odds of publications including students in comparison to not sharing data. The other PI characteristic that affects total publications is PI’s discipline. Compared to data collected by core social scientists, data collected by health scientists and psychologists have lower log-odds of leading to overall publications (b=-.254).

Only one measure of the institutional climate surrounding the award that produced data is retained in model 2. Carnegie classification is associated with total publication count. Compared to data collected at research universities, data collected at non-research institutions reduce the log-odds of overall publications (b=.685). Data collected at other non-Carnegie classified institutions (but not private research organizations which were classified separately), compared to data collected at Carnegie research universities, are actually associated with increased log-odds of publications (b=.230). Finally, the greater the length of the initial award period the greater the log-odds of publication (b=.199).

The next set of models examines the number of secondary publications. Secondary publications are publications by researchers outside the research team. We find that secondary publications are also related to data sharing status. Both archiving data and sharing data informally are positively related (increase the log-odds) of secondary publications (b=2.515 and b=2.375 respectively). Both associations are statistically significant (p<.01). This can be interpreted (by taking the exponential of the log-odds) as archiving data leads to 12.37 times more publications than not sharing data. When data are shared informally (compared to not shared at all), 10.75 times the number of publications are produced.

Table 5. Multivariate Results: Negative Binomial Regression Models of Publication Counts

<table>
<thead>
<tr>
<th>Data Sharing Status</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Publications (w/ PI)</td>
<td>0.620 (0.111) ***</td>
<td>0.729 (0.112) ***</td>
<td>0.700 (0.156) ***</td>
<td>0.936 (0.165) ***</td>
</tr>
<tr>
<td>Not Shared</td>
<td>ref</td>
<td>ref</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Shared Informally-Not Archived</td>
<td>0.743 (0.073) ***</td>
<td>0.67 (0.069) ***</td>
<td>0.763 (0.103) ***</td>
<td>0.665 (0.100) ***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI Characteristics</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at award</td>
<td>0.024 (0.004) ***</td>
<td>0.022 (0.006) **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discipline - Health and Psychology</td>
<td>0.161 (0.089) *</td>
<td>0.324 (0.125) ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discipline - Other (vs. Core Social Sci)</td>
<td>0.141 (0.113)</td>
<td>0.276 (0.165) *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institutional Characteristics</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnegie-Non Res University</td>
<td>-0.558 (0.142) ***</td>
<td>-0.888 (0.205) ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnegie-Other</td>
<td>0.901 (0.211) ***</td>
<td>1.091 (0.335) ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnegie-PRO (vs. Res Univ)</td>
<td>-0.216 (0.099) **</td>
<td>-0.981 (0.147) ***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grant Award Characteristics</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIH (vs. NSF)</td>
<td>0.226 (0.081) ***</td>
<td>0.234 (0.113) **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Award, Years</td>
<td>0.200 (0.024) ***</td>
<td>0.207 (0.034) ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.444 (0.053) ***</td>
<td>0.989 (0.075) ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersion</td>
<td>0.902</td>
<td>0.75</td>
<td>1.832</td>
<td>1.559</td>
</tr>
</tbody>
</table>

*p<.1; **p<.05; ***p<.01
and sharing data. Even with this advantage, we confirm that the majority of social science data are not archived publicly (88.5%). Informal data sharing, though much more common (44.6%), does not ensure that the scientific information collected with public funding has enduring value beyond its original primary publications.

One of the central questions stemming from this disparity is whether research productivity varies by data sharing. We find strong and consistent evidence that data sharing, both formal and informal, increases research productivity across a wide range of publication metrics. Data archiving, in particular, yields the greatest returns on investment with research productivity (number of publications) being greater when data are archived. Not sharing data, either formally or informally, limits severely the number of publications tied to research data. We hypothesize that some of the data sharing advantage would be explained by PI characteristics and characteristics of the institutions and grant awards. We find that although this is true, large persistent advantages in research productivity accrue when data are shared.

Finally, we also include a large number of publication metrics to better understand how data sharing affects primary versus secondary publications. Data sharing is related to all publication metrics, even primary PI publications. However, data sharing has the largest effects on secondary publications, as expected. Data archiving, and informal data sharing, generate many more secondary publications than PI and research team exclusive use.

5.1 Limitations
The measures of publication counts in the paper are self-reported. This could lead to incorrect estimates of publications counts, particularly of secondary publications. However, the results reported here are consistent across counts of primary and secondary publications. Also, we collected publication counts based on our own citation search for a select number of grant awards. We confirm higher publication counts for data that are found to be archived (results available upon request from authors) with a more limited set of covariates.

Also, it is unclear whether larger numbers of primary publications lead to data sharing or if sharing data leads to more primary publications. While both are plausible, it is likely that the association we observe between data archiving and primary publications reflects the fact that PIs archive data when their research is complete and all primary findings are published. That said, we carefully selected a range of grant awards that would have been completed years ago.

Larger research projects probably lead to more publications and greater likelihood of data sharing. While we have included a measure of grant award duration to get at some of the variability in grant award size, a better measure of the size of the research project is total amount in dollars of the award. The largest social science data collections simply cost more money to collect, are intended for public dissemination, and have more information that would appeal to a larger number of scientists. Unfortunately this information is not available for NIH awards.

6. ACKNOWLEDGMENTS
We would like to acknowledge the National Library of Medicine (R01 LM009765). We also thank Darrell Donakowski, Myron Gutmann, Felicia LeClere, JoAnne O’Rourke, James McNally, Russell Hathaway, Kristine Witkowski, Kelly Zidar, Tannaz Sabet, Lisa Quist, Robert Melendez, and Jeremy Albright for their contributions to the LEADS database at ICPSR. The creation of the database was also supported by the following research projects at ICPSR: P01 HD045753, U24 HD048404, and P30 AG004590.

7. REFERENCES

222

