
A Framework for Automated Verification in Software
Escrow

Elisabeth Weigl
SBA Research
Vienna, Austria
eweigl@sba-
research.org

Johannes Binder
SBA Research
Vienna, Austria
jbinder@sba-
research.org

Stephan Strodl
SBA Research
Vienna, Austria
sstrodl@sba-
research.org

Barbara Kolany
ITM Münster

Münster, Germany
barbara.kolany@uni-

muenster.de

Daniel Draws
SQS Research

Cologne, Germany
daniel.draws@sqs.com

Andreas Rauber
Vienna University of

Technology
Vienna, Austria

rauber@ifs.tuwien.ac.at

ABSTRACT
If a business is in need of customized software it often or-
ders it from a third party developer. This can lead to a
dependency on this developer regarding maintainability and
development of the product. Software Escrow offers a miti-
gation to this as it includes a trustable escrow agent in the
business relationship. The agent is responsible for deposit-
ing all material that is needed to develop the software, like
source code, documentation, and licenses for software ar-
tifacts. If a predefined trigger event occurs, the agent is
obliged to hand out the objects to the customer. Thus the
material needs to be of a quality that allows the customer
to further maintain and develop the software. To guarantee
this, all artifacts deposited are verified for their maintain-
ability. As this verification is a time consuming and costly
factor, we propose a Technical Software Escrow Framework
that supports the reviewing process by highlighting parts of
the software that can pose a problem regarding their main-
tainability. We also analyze an exemplary use-case software
to show the applicability of our framework.

Keywords
Software Escrow, Software Quality, Evaluation, Verification
Framework, Case Study

1. INTRODUCTION
For their daily work, businesses are in need of customized
software. Thus they order the development and customiza-
tion of software from other businesses, which commonly sell
them a license for its usage. For the customer this then
represents an asset of value, as he uses it for his day-to-day
business. In order to adopt and adjust the software or to add

new features, usually a service and maintenance contract is
set up with the developer. This introduces a high depen-
dency on the developer. In case he goes bankrupt or refuses
to maintain the program, the customer will be negatively
affected or in the worst case sustain severe financial effects.
As common software licensing only includes the object code
and not the sources of the software, the customer does not
have access to the source code and thus will not be able to
further develop or fix the software.

Software Escrow offers a mitigation to this scenario by plac-
ing a trustable party between the IT partner and his cus-
tomer. The material relevant for the software development
is deposited at the agent. To be able to further develop the
software, it is important that the material gets checked. The
agent is responsible for this verification and the subsequent
storing for later re-use. During the depositing process, he
has to ensure the physical security of the material. In case a
trigger event occurs (e.g., bankruptcy), he is obliged to hand
out the material to the customer, who wants to develop and
maintain the software.

A successful escrow has several considerations to take into
account. It has to be legally ensured that the future devel-
oping party has the rights for development, e.g., they have
the right to use the source code and the libraries. These
points are agreed on in the escrow contract, which is an
extension to the commonly used license and maintenance
contract and which has to be aligned with both of them.
Other parts of the agreement involve decisions on the ma-
terials to be deposited, notification obligations, and trigger
events that entail the release of the materials. With the
trigger events clearly specified, the escrow contract helps to
quickly release material and avoid delays in the procedure
and legal uncertainties.

From a technical point of view, the escrow agent has to ver-
ify the completeness and evaluate the quality of the material
relevant to the software project put into escrow, according
to the agreements made in the contract. Completeness of
material is needed because missing software artifacts can
prevent a developer from maintaining the software [10]. Cur-



rent escrow approaches only focus on material consisting of
source code and documentation, without detailed verifica-
tion (e.g., only virus check of the data). Software projects,
however, consist of more than that. Different artifacts like
compilers, test scripts, external resources like Web services,
or databases are also part of a software development project.

Maintainability of the deposited software is an important
indicator for future maintenance and development processes
and thus also has to be evaluated. Up until now main-
tainability of the deposited material is not promoted to be
considered in escrow agreements. Standards like [6] only
propose quality checks that do not evaluate maintainabil-
ity comprehensively, including tests for e.g., readability of
the data, random samples of the documentation, virus-free
data, or compilation. These tests do not check all artifacts
relevant for software projects.

The check for completeness and quality of the deposited ma-
terial has to be done by a reviewer. A manual review con-
ducted by the escrow agent requires sustainable effort and
causes high costs. To increase the efficiency of the reviewer
we developed a framework to support the verification pro-
cess with automated artifact analysis. Thus we propose a
Technical Software Escrow Framework implemented in Java
that supports a manual review with automatic checks of
the deposited software development project. For this pur-
pose it pre-screens all artifacts, performs automatic checks
and assessments, and highlights parts of the software project
that need further examination by the reviewer (e.g., complex
classes with minimal documentation).

The presented framework extends Software Escrow by Dig-
ital Preservation aspects of software development projects,
like identifying dependencies to external resources of soft-
ware such as Web services, which is needed to ensure long
term availability of the service and its functionality. With
this we introduce a framework capable of supporting the
execution of Software Escrow by supporting manual evalu-
ation actions of the reviewer with automatically executable
processes and thus reducing the time needed for verification.

In this paper we will explain the different steps of Software
Escrow and the technical verification in detail. With an ex-
emplary use case, based on a Java open source project, we
will go through the evaluation process and show the appli-
cability of our framework. We will start with the related
work on software quality important for Software Escrow in
Section 2. An overview of Software Escrow and the escrow
process follows in Section 3. An evaluation of our use case
can be found in Section 4. In Section 5 we summarize the
lessons learned and give a conclusion.

2. RELATED WORK
From a technical point of view the CEN Workshop Agree-
ment 13620-5 - ESCROWGUIDE [4] offers a comprehensive
information on Source Code Escrow and will be the basis for
our investigation of Software Escrow. It comprises of five dif-
ferent parts: introducing Software Escrow, the view for each
of the participants (developer, customer, agent), and one fo-
cusing on the audit process. Concerning technical aspects,
the guide for developers [5] is the most interesting part for
all parties regarding setting up a proper escrow contract. It

describes what material to deposit, which will be necessary
for our completeness check, where to put the escrow process
in the software life-cycle, and gives an overview of the legal
considerations for the developer.

As a theoretical concept for verification of the deposited
material, the Escrowguide dedicated to the escrow agent
[6] mentions three different levels. A standard verification
only verifies the readability of the data, its completeness,
or random samples of documentation. The full verification
involves practical verification methods, including a compila-
tion of the program and a test for functionality of the soft-
ware. A few checks require the assistance of the software
owner or client as well, which increases the effort for the
affected parties. The third verification, the bespoke verifica-
tion, may include tests from the standard or full verification
together with additionally agreed tests. As not everything
needed for the development of the software project is checked
in the full verification, maintainability related checks can be
agreed on here. In practice, a verification is done in more
detail, including for instance the comparison between the
compiled deposit materials and the executables running at
the customer’s site [13], or simulating a release event sce-
nario [19].

A general introduction to the difficulties that arise can be
found in [10]. It argues that the benefits of escrow do not
compensate the time, legal fees, and other resources spent.
We focus on the statement mentioned there that the material
escrowed often is not usable after releasing it and try to
approach this by extending common quality measurement
methods.

Over time different standards were developed to describe
and classify software quality. Whereas the ISO 9126 [15]
set six main quality objectives, its successor and the current
standard ISO 25010 [14] defines two quality models: one
for quality in use, with five characteristics that relate to the
outcome of interaction when a product is used in a particular
context; the other for product quality, comprising of eight
characteristics that relate to static properties of software
and dynamic properties of the computer system. Important
for Software Escrow are the two quality in use attributes
portability and maintainability, which are in the focus of
our framework.

For the quality tests we therefore focused on metrics that
indicate maintainability and portability. Cyclomatic Com-
plexity can be used to determine maintainability of source
code. It was developed by Thomas J. McCabe in 1976 [17],
based on the idea that humans can understand source code
only until a certain amount of complexity of the code is
reached. Instead of looking only at the syntactic elements
in it, source code is seen as a directed graph with nodes and
edges, nodes representing commands and edges representing
direct connections between commands. According to Mc-
Cabe a “reasonable, but not magical” [17] upper limit for
the cyclomatic complexity is ten. Our framework will not
stick to this number but we will compare our results to other
popular open source projects. Related measures are Hal-
stead’s software metrics [9], including metrics like Program
Volume, Difficulty, and Effort-To-Implement. Contrary to
the cyclomatic complexity proposed by McCabe these met-



rics are based on lexical measures. Our framework uses this
measurement to give an indication of understandability of
the source code.

Regarding the measurement of quality in the source code
comments, there are different metrics we used in the frame-
work. The first one is comment density, which calculates
the percentage of comments compared to lines of code and
which we will combine with Cyclomatic Complexity to pro-
pose a new measurement . Arafat and Riehle [1] found that
the average comment density in over 5000 successful open
source projects was 18.67%.

As a second option to evaluate documentation quality, our
framework also checks language for consistency and gram-
matical errors, which can make text hard to understand.
Determining the language of a text and thus categorizing
comments can be done with the usage of n-grams, as de-
scribed by Cavnar and Trenkle in [3]. To proof text for
correct spelling and grammar can also be an essential task
in text analysis. Part-of-speech syntactic patterns as men-
tioned in Heyer et al. [11] or word sequence patterns that
are compared to entries in error corpora as described in [18]
can support this process.

Regarding the legal perspective of Software Escrow, [20] de-
scribes types of escrow agreements and release conditions.
In [21] a short overview of the legal and technical aspects is
presented. A detailed discussion of legal aspects regarding
Software Escrow can be found in [12]. In this work we will
highlight the most important aspects that have to be taken
into account when setting up an escrow agreement.

3. SOFTWARE ESCROW
The subject of Software Escrow is a software produced by
a developer for a customer and thus it refers to contractual
agreements about the deposit of materials relevant for said
software at a neutral third party. In case a contractually
recorded trigger event occurs, the third party is obliged to
hand over all materials to the customer.

Software Escrow agreements involve three parties:

• the customer, who has a need for a software in his
business, wants to ensure that he is able to use the
software for a longer time, and secure his investments
in it

• the software developer, who makes the compiled ob-
ject code available to the customer and hands over the
sources and all other necessary artifacts to the escrow
agent

• the escrow agent, who is responsible for depositing
the material and releasing it, and who has to verify
that the submitted material meets the requirements
as contracted, e.g., that all objects are available, ac-
cessible, and fulfill specified quality measurements

Figure 1 shows an illustration of the relationship between
the parties.

Figure 1: Relationship between escrow parties

There are technical and legal issues to be considered in a
Software Escrow. From a legal point of view the contract
needs to specify the obligations and rights of all three par-
ties, the material to deposit at the agent, and the release
events and procedure. It is important to exactly specify
the events that entail the release of the deposited material
to avoid legal uncertainties. The verification procedure and
its success criteria also need to be stipulated. Licenses and
rights to the material are as well part of the contract.

From a technical point of view, the completeness and quality
of the deposited material have to be examined. The com-
pleteness of the material is crucial when the software has to
be enhanced or maintained later. Thus all artifacts neces-
sary for development have to be identified. This includes
source code, libraries, compiler and compile instructions,
test data, databases, and documentation amongst others.
Availability of external dependencies of the software is nec-
essary for preserving the functionality. Thus it is important
to identify all external dependencies, like Web services or bi-
naries used, in order to preserve them and therefore ensure
the full functionality of the software over time.

Other technical considerations deal with the software’s qual-
ity. Not mistakes or bugs are in the focus of Software Es-
crow, as they are part of the functional quality and thus
part of an acceptance test by the customer. Maintenance
aspects are important when depositing artifacts. All mate-
rial has to be of a quality that ensures that it will be useable
again. This also includes supplementary material needed for
understanding certain artifacts, like documentation. These
considerations are key drivers for our framework and will
be explained in detail in Section 3.2, where the material is
evaluated.

The escrow process can be divided into three phases: plan-
ning, execution, and redeployment. The focus of the Soft-
ware Escrow planning phase (Section 3.1) lies on drafting
the escrow agreement. The main task of the execution phase
(Section 3.2) is the validation of the material against con-
tractual requirements and its safe storage, as well as repeat-
ing those steps for each new version and update. The rede-
ployment phase (Section 3.3) has to ensure the quick release
of the deposited material once a contracted trigger event
occurs.



3.1 Planning Phase
The planning phase is the first step in the escrow agreement
and focuses on establishing an escrow contract. Prepara-
tions for an escrow contract should already be considered
during the licensing contract negotiations. As certain costs
are associated with setting up a Software Escrow, the first
step should be an assessment of financial and business im-
pacts if the software is unavailable. Then an appropriate
escrow agent has to be selected. He has to be trustwor-
thy for both parties. In the past a lawyer or notary was
commonly chosen, however they often did not provide the
necessary technical background needed. Nowadays special-
ized Software Escrow agents have been established, who are
able to provide the knowledge needed for escrow as well as
an appropriate technical infrastructure for evaluating and
storing the deposited material.

In this phase the escrow agreement is composed and all parts
of the contract are agreed on. The deposit material and its
quality requirements have to be specified in the contract.
As software can be a custom-made product, the artifacts
needed for the deposit have to be specified for each project,
including (based on [8]):

• Source code (including source code and libraries)

• Intellectual Property (especially licenses for different
software components)

• Documentation (system and user documentation)

• Test environment (test cases, test scripts)

• Design environment (especially design models)

• Build environment (compilers, runtime environments,
configuration files)

• Applications (databases or binary files that are used
by the software)

Regarding the quality of these artifacts, the escrow agree-
ment includes certain thresholds that have to be fulfilled. On
the one hand this can be numerical boundaries, like compli-
ance to a certain maximum source code complexity, and on
the other hand the check for the fulfillment of requirements
needed for immeasurable artifacts, like the requirements for
a documentation of sufficient quality. The deposit proce-
dure, including deadlines for the deposit, and the method of
verification to fulfill the stipulated quality goals are agreed
on as well [16].

The alignment of the licensing and maintenance contract
with the escrow agreement (e.g., the specification of main-
tenance obligations) needs to be done in this phase as well.
The escrow contract also needs to specify the transfer of
rights, e.g., the allowance to use the source code or libraries
needed for the maintenance of the software project. Rights
exceeding the limitations of the original software contract,
like commercial distribution of the program by the former
customer, will have to be agreed on in the escrow contract
separately.

3.2 Execution Phase
The execution phase is the second phase of the escrow pro-
cess and depicted as the second step in Figure 1. It in-
cludes the deposit of the software, its verification, and the
safe storage at the escrow agent, as well as the delivery of
the program to the customer. As updates and new versions
are released for the software, this process will be done re-
peatedly: With every update delivered to the customer, the
material at the escrow agent has to be updated, verified,
and deposited again. First the software, respectively a bi-
nary version of it, is delivered to the customer. At the same
time the software development project and all its materials
necessary for developing and maintaining the software are
handed over to the escrow agent, where they get verified. If
the verification is successful, the material gets stored safely,
otherwise it gets rejected and the developer has to re-submit
a revised version. These procedures have to be defined in
the escrow contract.

The verification of the software has two main purposes: to
ensure the completeness of the software development ma-
terial and to verify the quality of each artifact. Both are
necessary to guarantee the maintainability of the software
once it gets handed out to the customer. The completeness
check has to verify that each artifact agreed on and listed
in the escrow agreement is part of the deposited materials.
The quality evaluation includes verifications of the artifacts,
like the quality of the documentation or that the sources do
not exceed a predefined value for complexity. Each artifact
has to be analyzed for its level of quality as specified in the
escrow contract. To support this time-consuming process we
developed a technical framework in Java that partly auto-
mates the verification process. It analyzes the artifacts and
reports back to the reviewer those parts of the software that
do not reach the required level of quality.

Our framework contains an extendable evaluation part with
which various measurements can be conducted. It builds
on the design of a Software Quality tool, which includes
different static code analysis tools like Checkstyle1, Find-
Bugs2 or PMD3. These support our maintainability evalua-
tion because they are able to find source code sections that,
e.g., contain code layout issues or flaws like unused vari-
ables that can make the source code difficult to understand.
A tool combining these code analysis programs and differ-
ent statistic code measurements is Sonar4, an open source
platform for continuous quality inspection, that forms the
basis for our technical framework. Sonar supports the anal-
ysis of programs in several languages. With its client-server
model the analysis can be run on a local system and the
server provides different check modules for the client [2]. A
project’s quality is measured using metrics and rules, result-
ing in numerical values and violations, respectively. Sonar
provides many measurements out of the box but can also be
extended by integrating custom plugins. A description of
the plugins developed for our Software Escrow scenario can
be found below.

1http://checkstyle.sourceforge.net
2http://findbugs.sourceforge.net
3http://pmd.sourceforge.net
4http://www.sonarsource.org

http://checkstyle.sourceforge.net
http://findbugs.sourceforge.net
http://pmd.sourceforge.net
http://www.sonarsource.org


In a Software Escrow scenario, the escrow agent first config-
ures the framework according to the requirements agreed on
in the escrow contract. The framework then processes the
artifacts. Once it has finished it presents the reviewer with
an overview of its findings, classifying the results according
to their impact on the quality.

The following categories of quality checks related to main-
tainability, used to determine the quality of the deposit ma-
terial, were implemented in our framework:

Completeness of artifacts. A reliable way to ensure com-
pleteness of the deposited source code material is to rebuild
the software. Our prototype executes a build script and re-
ports errors that may arise when doing so. The existence of
other artifacts agreed on in the contract, such as additional
documentation or specifications, can be assured either man-
ually or using automatic checks as part of the build process.

Consistency of sources and released binary. The soft-
ware put into escrow has to be the same as the one delivered
to the customer. To verify this, the sources at the escrow
agent have to be built and compared to the binaries delivered
to the customer. Our implementation checks if the output
generated by building the software matches a provided set
of reference artifacts.

Quality of documentation. Documentation about the soft-
ware development project is required to understand consid-
erations and decisions made during the design and develop-
ment phase in natural language. It is especially important
if the software in question has to be maintained and possi-
bly enhanced at an unknown time in the future because the
programmer needs to understand the structure and design of
the software. Thus the documentation has to be adequate,
easily readable, and easily understandable. The following
considerations apply to source code comments as well as ad-
ditional documentation and specification, like architecture
descriptions, requirement documents, manuals, etc.

One aspect that affects understandability is the language
that has been used for the documentation. It needs to be
ensured that all documentation is available in the agreed
language. Our implementation detects the language of com-
ments and reports if unexpected languages are found. To do
so, the comments are extracted using SSLR5 and analyzed
using the Java Text Categorizing Library6, which uses an
algorithm based on n-grams [3]. To minimize the number
of false positives, short comments can either be ignored or
checked using a word list.

Also spelling, grammar, and other errors in documenta-
tion influence readability. Our implementation uses the text
proof tool LanguageTool [18] to find issues of various cate-
gories like misspellings, wrong grammar, uncommon phrases,
etc. in comments. It is possible to ignore specific issue types
to filter frequently occurring mistakes that do not influence

5https://github.com/SonarSource/sslr
6http://textcat.sourceforge.net

the readability, e.g., multiple whitespace characters, caused
by specific formatting styles of comments. For each doc-
ument the ratio of words compared to the number of is-
sues detected in the comments is determined. This gives
an overview of documents containing proportionally more
errors than others.

Quality of source code. Software metrics can be used to
assess the quality of the software, i.e., maintainability. An
adequate level of quality is required for further develop-
ment of the software. Sonar already implements a number
of metrics for quality verification that can be used for our
maintainability approach, such as the Cyclomatic Complex-
ity. As mentioned in Section 2, Halstead’s software metrics
are a similar measurement method. As they are not imple-
mented in Sonar, we provided a plugin for calculating the
Halstead’s software metrics Difficulty, Effort, Volume, Time
to Program, and Bugs Delivered. For object oriented lan-
guages like Java there is no standardized way to calculate
those metrics [7], therefore we implemented them to the best
of our knowledge. Furthermore rule checks of Sonar can be
used to verify the adherence to coding standards and best
practices.

To support the verification of project specific requirements
our implementation provides the possibility to calculate a
measure using a custom defined formula that can make use
of other measures and violation counts. The evaluation of
this formula is done utilizing the Math Expression Parser of
the Symja project7. For Software Escrow we propose CCC,
a metric that sets Cyclomatic Complexity (CC) and com-
ment lines density (C) in relation. Cyclomatic Complexity
indicates the effort of an external developer to understand
source code, documentation tends to ease understandability:

CCC = CC/(1 + (C/100))

Usage of third party resources. We further extended the
framework by some digital preservation concerns that are
also useful for escrow such as ensuring the availability of ex-
ternal sources. References to external third party resources,
like libraries or Web services used in the software, can af-
fect the functionality of the software. If the provider of the
service is not available anymore, this can lead to a non-
functioning program. Therefore external references have
to be identified and properly inspected when verifying the
source code. It has to be ensured that the service they are
using is available in the long term. A potential strategy
of the escrow agent is to deposit the library or materials
needed for a Web service as well. If this is not possible,
e.g., in the case of proprietary Web services, it has to be en-
sured that the executing source code sections are identified
and reported as a risk to the customer. The use of exter-
nal services should be specified in the licenses and escrow
contract. Our implementation supports the escrow agent in
identifying those external resources by reporting matches of
a text-based regex search over source files which looks for
Web service calls, system calls, etc.

7https://code.google.com/p/symja

https://github.com/SonarSource/sslr
http://textcat.sourceforge.net
https://code.google.com/p/symja


A scenario that the escrow agent needs to be aware of is
potential hiding of functionality in compiled libraries that
limit the possibility to maintain the software. Instead of
providing the source code, developers could supply compiled
libraries to hide implementation details. Unknown libraries
or those that are not available in public repositories are po-
tential candidates for hiding code. To verify libraries our
implementation performs a hash based lookup in the Maven
Central Repository8 of the JAR files that are part of the
software. Other artifacts are looked up in the National Soft-
ware Reference Library9, a database containing hash values
and other metadata of files that are part of software packages
like Adobe Photoshop, Red Hat Linux, etc. Libraries which
are not found in the corresponding database are reported
and need to be checked against the agreements specified in
the contract.

Legal certainty. Licenses are essential as they specify the
legal foundation for the usage of the software. Thus the es-
crow agent needs to determine the licenses of the software’s
artifacts, as it has effects on the allowed usage in case of a
release of the material. Our implementation extracts and
identifies license information embedded in source files us-
ing the Perl script licensecheck10. For the licenses of the
included libraries we use the License Maven Plugin11 to de-
termine the license information.

3.3 Redeployment Phase
The redeployment phase is the third phase of Software Es-
crow. Its main task is to ensure the quick release of the
deposited material once a contracted trigger event occurs.
The objective is to prevent a potential downtime of the cus-
tomer’s software. The events leading to the release of the
software were agreed on in the Planning phase (cf. Section
3.1). If one of them occurs, the customer has to inform the
escrow agent, who needs to check the contractual correct-
ness, and verify the event. The agent is then obliged to re-
lease the material to the customer. Trigger events that lead
to the release of the deposited materials to the customer can
be the insolvency of the software developer, the liquidation
of the developer’s company, or an unjustified refusal of the
developer to maintain the software.

4. EVALUATION
As an exemplary use case the review of aTunes12, an open
source audio player and media library, is tested. The case
study performs a verification by using the criteria described
in Section 3.2, similar to those done by an escrow agent.
Figure 2 shows the Sonar overview presentation of the results
from the technical framework, presenting the metrics and
checks of the software. aTunes 3.0.8 consists of 81,915 lines
of code and 1,499 classes. As material to deposit we used
the sources in the SCM repository13. As software binary

8http://search.maven.org
9http://www.nsrl.nist.gov

10http://www.beathovn.de/licensecheck
11http://mojo.codehaus.org/license-maven-plugin
12http://www.atunes.org
13http://sourceforge.net/p/atunes/code/HEAD/tree/tags/
aTunes 3.0.8

release that has been handed over to the customer we used
the official release package14.

Completeness of artifacts. The check for completeness of
artifacts was done by building the software. All essential
artifacts needed for the development of the software were
contained in the deposit. Some documentation like require-
ments documentation, coding guidelines, and user documen-
tation was available in the aTunes Wiki15. Other docu-
mentation for developers, like architecture description, was
not found by manual inspection. Depending on the re-
quirements, all documentation should be available in the
deposited materials.

Consistency of sources and released binary. In order to
compare binaries it is important to use the same compiler
version for all builds. Otherwise the resulting binaries can
differ even if the same sources have been used. After using
the correct compiler and ignoring files that hold metadata
like build count, build time, etc., there are still some files
missing. Those are related to builds for other platforms
than Linux, which we did not execute, and are not required
when running aTunes in Linux. Besides that, the rebuilded
artifacts match the reference artifacts.

Quality of documentation. The documentation of aTunes
only consists of the comments in the source files, thus only
these were evaluated. The 18.7% comment line density near-
ly matches the average of comment line density found in
open source projects as determined in [1]. Further inspec-
tion showed that there are two abstract classes and 17 other
classes with public methods that do not have any documen-
tation. Interfaces and enumerations seem to be commented
the most, which is good common coding practice. From the
1,441 source files in aTunes, the framework reported four to
contain comments in Hungarian when expecting comments
in English only. Manual inspection showed that all of the
reported files actually contain comments written in English,
so those were false positives. Other comment quality issues
have been identified by our framework using the text proof
tool LanguageTool. To reduce issues with little impact, like
warnings about duplicate whitespaces, a reduced set of Lan-
guageTool categories has been used to check for readability
issues. The framework reported 133 text proof issues, which
indicates a good overall quality compared to the length of
the documentation.

Quality of source code. aTunes showed a Cyclomatic Com-
plexity of 1.6 per method, 9.0 per class, and 9.4 per file.
We compared the complexity of aTunes to the average com-
plexity of the projects listed in the public Sonar instance
Nemo [22]. At the time of evaluation Nemo contained 204
projects, 177 of them were Java projects, amongst others in-

14http://sourceforge.net/projects/atunes/files/atunes/
aTunes 3.0.8

15http://www.atunes.org/wiki/

http://search.maven.org
http://www.nsrl.nist.gov
http://www.beathovn.de/licensecheck
http://mojo.codehaus.org/license-maven-plugin
http://www.atunes.org
http://sourceforge.net/p/atunes/code/HEAD/tree/tags/aTunes 3.0.8
http://sourceforge.net/p/atunes/code/HEAD/tree/tags/aTunes 3.0.8
http://sourceforge.net/projects/atunes/files/atunes/aTunes 3.0.8
http://sourceforge.net/projects/atunes/files/atunes/aTunes 3.0.8
http://www.atunes.org/wiki/


Figure 2: The extended Sonar dashboard showing aTunes’ results

cluding the OpenJDK 716, JFreeChart17, and several projects
from the Apache Software Foundation18. The average Cy-
clomatic Complexity of those projects was 2.5 per method,
16.2 per class, and 19.5 per file. So considering other open
source projects the results of this metric indicate a low com-
plexity of aTunes. The Cyclomatic Complexity and Hal-
stead’s Difficulty metric of aTunes show similar results.

In our experiments we used a custom measure that takes into
account the complexity and the comment density, with the
idea that complex code should be easier to understand if it
is commented properly (see Section 3.2). A list of the worst
performing files gives a good starting point for a manual
inspection of the software by the reviewer. Figure 3 shows
the resulting poorest performing classes of this metric.

Figure 3: The most incomprehensible classes of
aTunes according to the CCC metric

16http://openjdk.java.net/
17http://www.jfree.org/jfreechart/
18http://apache.org/

Usage of third party resources. aTunes fetches most of
its libraries through the build and dependency management
tool Maven. Those libraries are considered trusted as they
are provided from a central, public repository, which also
provides the library’s sources if available. Maven allows in-
cluding additional repositories, which should be examined
by the reviewer to verify their trustworthiness. From the
nine libraries that are not obtained using Maven but al-
ready included in the deposited material, five have been
reported as unknown, due to the fact that they were not
available through the Maven repositories or that their hash
value did not match one library there. All of them are used
to create installation routines. The further investigation of
the libraries depends on the agreements made in the escrow
contract.

In our experiments our framework brought up 88 files that
are assumed to contain external calls, 71 of them Web ser-
vice calls and 17 binary calls. The number of Web service
calls can be explained by further examination, which showed
that the source of the calls are for instance modules that
fetch additional meta data about the media from services
like Last.fm. As we considered these modules optional, none
of the Web service calls are an issue in this case. For a full
functionality though, these Web service calls would pose a
problem as they cannot be deposited as well. Inspection of
the reported files showed further that many times operat-
ing system processes are spawned in order to execute exter-
nal tools. One example of such a binary is mplayer19, one
of the supported audio playback engines. Other externally
executed tools handle importing audio CDs to aTunes and
encoding different audio formats. The deposited material

19http://www.mplayerhq.hu

http://openjdk.java.net/
http://www.jfree.org/jfreechart/
http://apache.org/
http://www.mplayerhq.hu


contains binaries of the external tools for Windows and Mac
OS. In Linux aTunes expects those tools to be installed in
order to use the full functionality of the program. As men-
tioned in Section 3.2, externally called binaries are difficult
to maintain so the reviewer should deposit those dependen-
cies which are a necessity.

Legal certainty. All source files of aTunes contain license
information (GPL in this case), but the framework could
not find licenses in the JAR files that are part of the source
distribution. In six cases the JAR files contained no licenses
and in three cases the format of the license text could not
be handled due to formatting issues. The licensing of those
libraries need to be clarified in order to avoid legal conse-
quences when releasing and further developing the software.

Summary. The applicability of the framework was shown
in this Section. The framework supported review of aTunes
showed that all artifacts required to build the software are
available. External runtime dependencies are provided as
artifacts, except those for Linux environments, which were
missing. As discussed this could lead to problems in the
future and the missing binaries should be put into escrow.
Dependencies to Web services are used for optional features
of the software. Depending on the requirements, these need
to be put into escrow as well to preserve the full functionality
of the software. The review also indicated that core parts
of the software are well documented in general, which helps
developers to familiarize with the software in a fine grained
level. The lack of documentation of the architecture slows
down understanding the big picture of the software design.
Comparison to other software projects indicates that aTunes
is not overly complex. There are no severe legal issues to be
expected, as licensing of the artifacts is clearly specified with
the exception of some installer tools that can be replaced
without endangering the functionality of the software.

5. CONCLUSIONS
Software Escrow is a mitigation strategy when using a soft-
ware developed by a third party. This paper aimed at pre-
senting the necessary aspects needed for a successful Soft-
ware Escrow, pointing out shortcomings of current practice,
and presenting legal and technical considerations of this pro-
cess. We also looked into the three different phases of Soft-
ware Escrow, beginning with planning and setting up an
agreement, executing the escrow by depositing the escrow
material and verifying its quality with regard to maintain-
ability, and finally redeploying the software. We further ex-
tended escrow by some Digital Preservation aspects, such as
the use of external services that can be unavailable in the
future. For the execution phase and its verification part we
developed a Technical Software Escrow Framework by ex-
tending Sonar, an open source Software Quality tool, with
escrow specific checks. This framework is able to check all
kinds of material necessary for a successful deposit, from li-
censes over source code to documentation. By highlighting
and reporting artifacts that have low quality it is able to
support the verification of requirements agreed on in the es-
crow contract. We applied our framework for demonstration
purposes to the open source software aTunes and analyzed
the performance of our tool. It can be shown that Soft-

ware Escrow critical parts of the software are found and
reported back. These reports can then be used to easily
find potentially problematic sections that need further im-
provement. Our framework thus achieves the objective to
support a reviewer in analyzing the deposited material by
partly automating the search for common software project
issues.

6. ACKNOWLEDGMENTS
This work has been co-funded by COMET K1, FFG - Aus-
trian Research Promotion Agency and by the TIMBUS pro-
ject, co-funded by the European Union under the 7th Frame-
work Programme for research and technological develop-
ment and demonstration activities (FP7/2007-2013) under
grant agreement no. 269940. The authors are solely respon-
sible for the content of this paper.

7. REFERENCES
[1] O. Arafat and D. Riehle. The commenting practice of

open source. In Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented
programming systems languages and applications,
OOPSLA ’09, pages 857–864, New York, NY, USA,
2009. ACM.

[2] C. Arapidis. Sonar Code Quality Testing Essentials.
Community experience distilled. Packt Publishing,
Limited, 2012.

[3] W. B. Cavnar and J. M. Trenkle. N-Gram-Based Text
Categorization. In In Proceedings of SDAIR-94, 3rd
Annual Symposium on Document Analysis and
Information Retrieval, pages 161–175, 1994.

[4] CEN Workshop Agreement. ESCROWGUIDE -
Source Code Escrow - Guidelines for Acquirers,
Developers, Escrow Agents and Quality Assessors.
European Committee for Standardization (CEN),
1999.

[5] CEN Workshop Agreement. ESCROWGUIDE -
Source Code Escrow - Guidelines for Acquirers,
Developers, Escrow Agents and Quality Assessors -
Part 3: A developer’s guide to taking part in source
code escrow. European Committee for Standardization
(CEN), 1999.

[6] CEN Workshop Agreement. ESCROWGUIDE -
Source Code Escrow - Guidelines for Acquirers,
Developers, Escrow Agents and Quality Assessors -
Part 4: A guide to providing a reliable escrow service.
European Committee for Standardization (CEN),
1999.

[7] D. De Silva, N. Kodagoda, and H. Perera.
Applicability of three complexity metrics. In Advances
in ICT for Emerging Regions (ICTer), 2012
International Conference on, pages 82–88, 2012.

[8] D. Draws, S. Euteneuer, D. Simon, and F. Simon.
Short term preservation for software industry. In
Proceedings of the 8th International Conference on
Preservation of Digital Objects (iPres 2011), pages
130–139, 2011.

[9] M. H. Halstead. Elements of Software Science
(Operating and programming systems series). Elsevier
Science Inc., New York, NY, USA, 1977.

[10] S. Helms and A. Cheng. Source Code Escrow: Are
You Just Following the Herd?



http://www.cio.com/article/187450/Source_Code_

Escrow_Are_You_Just_Following_the_Herd_?page=

1&taxonomyId=3000, 2008. [Online; accessed
13-June-2013].

[11] G. Heyer, U. Quasthoff, and T. Wittig. Text Mining:
Wissensrohstoff Text. W3L Verlag, Bochum, 2005.

[12] T. Hoeren, B. Kolany, S. Yankova, M. Hecheltjen, and
K. Hobel. Legal Aspects Of Digital Preservation.
Edward Eldgar Publishing, 2013.

[13] Iron Mountain Incorporated. Comprehensive Asset
Verification and Testing. http://www.ironmountain.
com/Services/Technology-Escrow-Services/

Escrow-Verification-Services.aspx. [Online;
accessed 17-June-2013].

[14] ISO 25010:2011. Systems and software engineering –
Systems and software Quality Requirements and
Evaluation (SQuaRE) – System and software quality
models, 2011.

[15] ISO 9126:2001. International Standard ISO/IEC 9126,
Part 1, Software engineering - Product quality -
Quality model, 2001.

[16] M. Karger. Software-Hinterlegungsverträge. In
Computerrechts-Handbuch. Kilian/Heussen, 2011.

[17] T. J. McCabe. A complexity measure. IEEE
Transactions on Software Engineering, 2(4):308–320,
December 1976.

[18] M. Mi lkowski. Developing an open-source, rule-based
proofreading tool. Software - Practice & Experience,
40(7):543–566, June 2010.

[19] NCC Group. Types of Verification.
http://www.nccgroup.com/en/our-services/

software-escrow-verification/

software-verification/types-of-verification/.
[Online; accessed 17-June-2013].

[20] M. R. Overly. A Guide to IT Contracting: Checklists,
Tools, and Techniques. Auerbach Publications,
Har/Cdr edition, Dec. 2012.

[21] V. Siegel. Software-Escrow. Informatik-Spektrum,
28(5):403–406, 2005.

[22] SONARSOURCE SA. Nemo - Sonar.
http://nemo.sonarsource.org/, 2013. [Online;
accessed 12-April-2013].

http://www.cio.com/article/187450/Source_Code_Escrow_Are_You_Just_Following_the_Herd_?page=1&taxonomyId=3000
http://www.cio.com/article/187450/Source_Code_Escrow_Are_You_Just_Following_the_Herd_?page=1&taxonomyId=3000
http://www.cio.com/article/187450/Source_Code_Escrow_Are_You_Just_Following_the_Herd_?page=1&taxonomyId=3000
http://www.ironmountain.com/Services/Technology-Escrow-Services/Escrow-Verification-Services.aspx
http://www.ironmountain.com/Services/Technology-Escrow-Services/Escrow-Verification-Services.aspx
http://www.ironmountain.com/Services/Technology-Escrow-Services/Escrow-Verification-Services.aspx
http://www.nccgroup.com/en/our-services/software-escrow-verification/software-verification/types-of-verification/
http://www.nccgroup.com/en/our-services/software-escrow-verification/software-verification/types-of-verification/
http://www.nccgroup.com/en/our-services/software-escrow-verification/software-verification/types-of-verification/
http://nemo.sonarsource.org/

	Introduction
	Related work
	Software Escrow
	Planning Phase
	Execution Phase
	Redeployment Phase

	Evaluation
	Conclusions
	Acknowledgments
	References

