
An Analysis of Contemporary JPEG2000 Codecs for Image
Format Migration

William Palmer
British Library

96 Euston Road
London, United Kingdom
william.palmer@bl.uk

Peter May
British Library

96 Euston Road
London, United Kingdom

peter.may@bl.uk

Peter Cliff
British Library

96 Euston Road
London, United Kingdom

peter.cliff@bl.uk

ABSTRACT
This paper presents results of an analysis of different im-
plementations of the JPEG2000 standard, specifically part
1: JP2, an image format that is currently popular within
the digital preservation community. In particular we are in-
terested in the effect different JPEG2000 codecs (encoders
and decoders) have on image quality in response to lossy
compression. We focus on three main codec libraries for
analysis - Kakadu, JasPer and OpenJPEG - migrating 932
TIFF newspaper images to lossy JPEG2000 files using 2:1
and 4:1 compression ratios, and monitor image quality us-
ing PSNR. We look at the combination of encoder/decoder
pairs and find that using OpenJPEG for both gives the best
quality results, albeit with the slowest execution time. We
also find that in some circumstances, particularly when a
JasPer encoder is used, in order to retain image quality of
the decoded image, the best choice of decoder may not be
the same codec used to create the JPEG2000; based on these
results, the encoding library is therefore recommended tech-
nical preservation metadata to retain.

Keywords
JPEG2000, TIFF, migration, codec, PSNR, image quality,
generational loss

1. INTRODUCTION
The British Library, as a memory institution, holds large

quantities of digital content, including over 2 million files
produced from the JISC funded British Newspaper digiti-
sation projects [1]. The number of files within our digi-
tal collections is ever increasing and these need to be cost-
effectively preserved to ensure long-term access to these im-
ages.

Storing this collection as TIFF files would require a signif-
icant amount of storage just to preserve the masters alone.
JPEG2000 presents an alternative file format for digital im-
ages, that has a number of advantages for preservation, such

as reduced storage costs compared with the traditional TIFF
master files and the ability to contain both master and lower-
resolution access copies within a single file (compared with
TIFF masters which typically require a separate access copy
- PNG or JPEG - to also be kept) [2].

JPEG2000 files can be compressed in either of two ways;
losslessly, where a bit-identical copy of the data is main-
tained and can be retrieved, and lossy, where an exact copy
of the data is not maintained and some fidelity is lost. In
general, lossy compression results in smaller image files, but
will suffer from information loss resulting in image artefacts
such as blurring, as is especially the case with high compres-
sion ratios.

Putting aside the merits of preserving image files using
lossy compression, what is unclear is whether all JPEG2000
codecs perform to the same quality. Do all codecs produce
the same quality of file given the same settings, or are there
consistent variations between them? Ebrahimi et. al. [3]
considered the effects of compression ratios on perceived im-
age quality using three JPEG2000 codecs (JasPer, Kakadu
and IrfanView). Their results suggested JasPer performed
the better of the three (it is unclear if this result is statisti-
cally significant), however this operated on a small sample
(29) of small files (768x512 pixels) from the LIVE Image
Quality database [4], using a large range of compression ra-
tios (from 2:1 - 300:1), and focussed primarily on the metric
for determining image quality rather than tool performance
itself (quality of result, speed, etc.). In contrast, a sample
of the JPEG2000 files from our newspaper collection were
images of sizes 4672x5944 pixels and 8320x9568 pixels, with
applied compression ratios at the low end of the spectrum,
around 2:1 (although, as supported by JPEG2000, a number
of compression levels have been defined to provide numer-
ous quality-level images within the one file, for example, for
access).

If we consider the preservation process for migrating an
image to JPEG2000 and then accessing it, even for quality
assurance purposes, then two distinct uses of the codec are
required. The original image must first be encoded using a
JPEG2000 codec to create a JP2 file, then accessed through
a decoding step with a JPEG2000 codec. However the codec
used for these two steps does not have to be the same.

From a preservation perspective, it would therefore be
useful to understand the effects of various codecs, combina-
tions of encoding/decoding codecs, and codec settings on the
resulting files, thus providing evidence to enable appropri-
ate tool selection within a migration workflow. This paper
presents our initial analysis results of such codec use for a



single migration, before looking at an extension considering
the effects of lossy migration on subsequent migrations.

To put the extension into context, we expect to provide
access to our files for many hundreds of years into the fu-
ture. Although Gollins [5] promotes a parsimonious“rule-of-
thumb” approach to preservation, “using only the minimum
necessary intervention to secure our digital heritage for the
next generation”, no guarantees can be made about the ab-
sence of future migrations. Of concern when migrating files
between lossy formats is digital generational loss - the in-
creasing loss of information with each migration. Although
it is fairly logical to conclude that lossy compression, hav-
ing resulted in information loss, will cause ever increasing
degradation in subsequent lossy migrations, to what extent
will this degradation be? How quickly will it degrade? And
is the amount of degradation affected by codec choice?

This paper starts by looking at the JPEG2000 codec li-
braries available, mentioning details of profiles, specifically
with respect to compression rates, and indicating choices
made for the experimental work carried out. Section 3 de-
tails the methodology of our single-migration codec analysis,
as well as the generational loss extension. Results are pre-
sented in Section 4, with general conclusions and ideas for
future work presented in Section 5.

2. USE OF JPEG2000
Whilst the British Library and other memory institutions

[2] now utilise JPEG2000 files for preservation, their utili-
sation outside of these organisations would appear low. As
an indication of the mainstream use of JP2 files, a recent
search for “image/jp2” content type over the UK Web Do-
main Dataset Format Profile (1996-2010)[6] found only 53
files with some identification as“image/jp2”. To put this fur-
ther into context, a similar search for “image/jpeg” returned
over 153 million files.

This apparently low uptake in the wider world may, in it-
self, present a preservation risk through lack of“high-quality”
tool support [7]. Irrespective of whether this is an issue or
not, there are several commercial and open-source libraries
currently available; the question this paper starts to address
is how do these compare?

2.1 JPEG2000 Libraries
There are several JPEG2000 codec libraries currently avail-

able, including:

• Kakadu1, last updated January 2013. Commercial.
• OpenJPEG2, last updated November 2012. BSD 3-

Clause license.
• JasPer3[8], last updated January 2007. License based

on MIT license.
• JJ20004, last modified date is November 2009 (note:

the actual last modification is possibly much before
that). License unclear.
• FFMPEG5, last updated December 2012. (L)GPL li-

cense.
• Other commercial codecs: Aware, LuraTech, Lead-

Tools & J2K Codec
1www.kakadusoftware.com
2www.openjpeg.org
3www.ece.uvic.ca/˜frodo/jasper/
4code.google.com/p/jj2000/
5git.videolan.org/?p=ffmpeg.git;a=blob;f=libavcodec/j2kenc.c

For this analysis we chose to focus on the first three tools:
Kakadu because it appears to be the codec of choice for large
institutions; OpenJPEG as it is an open source codec that
is actively maintained; and JasPer as it is the JPEG2000
codec widely used by other open source projects.

Conversely, we decided not to use JJ2000 due to its lack of
recent development activity and mainstream use; FFMPEG
for similar reasons; nor other commercial tools as we had no
readily-available access. These codecs are in consideration
for future research (see Section 5.1).

2.2 Profiles
A profile specifies desired image properties, such as com-

pression (reversible or irreversible) and quality layers (with
associated compression rates). From this, appropriate con-
trol settings to be used by a codec to create a JPEG2000
image can be derived. Significant investment seems to have
been placed in trying to identify an appropriate level of com-
pression whilst maintaining an acceptable quality of archival
and production masters. Techniques mentioned in [2] formed
around using either objective judgements from human ob-
servers to determine a visually lossless compression ratio, or
by taking a minimal loss approach through compression with
a maximum bit rate6, i.e. all data is retained but there is
minimal loss through rounding errors introduced by floating
point transforms and from quantization. These approaches
have resulted in similar findings regarding appropriate levels
of compression, however it should be noted that the neces-
sary compression settings needed to achieve visually lossless
images is dependent on the images themselves [2].

The National Digital Newspaper Program (NDPD), for
example, decided on an 8:1 compression ratio for JPEG 2000
production masters7 as a compromise between file size and
image quality, although 4:1 and 6:1 were judged to be visu-
ally lossless [9].

The Wellcome Trust’s digital library use an iterative ap-
proach to determining compression rates across a collection
(increasing compression until artefacts are observed, then
stepping back), but have found a 10:1 compression ratio
works well for books and 8:1 for archive collection material
[2].

The British Library’s recommended JPEG2000 profile for
use in mass digitisation projects, in particular for our news-
paper digitisation, is detailed in [10]. This specifies 12 qual-
ity layers, with compression levels starting at a minimally
lossy rate. Whilst Kakadu and OpenJPEG can encode im-
ages according to this profile, JasPer cannot as it cannot
use different precinct sizes. Additionally, there seems to be
a bug in OpenJPEG v2.0.0 when coder bypass is used8.

To make a comparative analysis of the codecs we chose
a profile that could be encoded by all three chosen coders
based on the British Library’s recommended profile [10].
This is shown in Table 1.

2.3 Automated Codec Comparison
Much research has been done on Image Quality Algo-

rithms (IQA) for measuring visible image quality [3, 11],
however as Buckley [2] notes, currently “there is simply no

6Compressed bit rate is the ratio of compressed image data
size to the image width and height[2]
7NDPD use uncompressed TIFF files for preservation mas-
ters.
8code.google.com/p/openjpeg/issues/detail?id=209



Table 1: Test JPEG2000 profile
File format JP2
Transformation 9-7 irreversible (lossy)
Progression order RPCL
Tiling none
Levels 6
Precinct size all 256x256
Quality layers one
Code block size 64x64
Coder bypass no

substitute for a human observer”. Despite this, for the large
collections held by us, human observation over the entire
collection is simply not practical; more automated means
are required.

One such IQA is the peak signal-to-noise ratio (PSNR)
which gives a numerical value of the errors introduced by
a lossy image encode, on a logarithmic scale, measured in
decibels. A higher value indicates a better ratio of signal-
to-noise, and provides some indication as to the quality of
the image.

As a metric, PSNR is considered not to match well to per-
ceived visual quality [12]. As part of our investigation we
also tested use of a tool that calculated SSIM (Structural
Similarity) as a metric for image file format migration qual-
ity. We found that SSIM was less sensitive to changes in the
image than PSNR and was good for correlating similar im-
ages, such as resized images or those with added noise. How-
ever, the runtime of that tool was longer than ImageMagick’s
PSNR comparison. From our analysis the better metric of
the two for image identicalness (as would be expected from
a migration) was PSNR as it was faster and more sensitive
to small changes in an image, thus giving greater assurance
of success. We therefore opted to use PSNR as metric of
image quality for this work.

3. METHODOLOGY
Migrating a TIFF to JPEG2000 and then viewing (or per-

forming image analysis on) the resulting file requires both an
encode and decode step. An assumption is typically made
that the same codec should be used for both, but that does
not need to be the case. The base experiment compares the
9 different combinations of encoder-decoder pairings possi-
ble with three libraries (Kakadu 7.1, OpenJPEG 2.0 and
JasPer 1.900.1-13), see Table 4. This work is then extended
to consider the effects of generational loss, i.e. how multiple
migrations (encode-decode cycles) affect image quality.

3.1 Dataset
The input dataset used was 932 greyscale TIFF original

masters from the British Library’s JISC1 newspaper collec-
tion, totalling 26GB. Images from this sample averaged 51.0
megapixels, with a minimum of 21.1 megapixels and maxi-
mum of 93.4 megapixels.

3.2 Data Preparation
JasPer cannot take TIFF as an input format, therefore to

make the migration experiments fairer, the TIFF input files
are first converted to PNM (Portable Any Map) files using
ImageMagick’s tifftopnm, version 6.6.9.7-5ubuntu3.2.

3.3 Comparison Approach

A program was written to generate shell scripts that per-
formed the following steps on a PNM file, for each encoder-
decoder pairing. For each encoder, the appropriate com-
mand line listed in Section 3.4 was used to obtain JPEG2000
images meeting the desired profile. The steps are:

1. Migrate: Use the specified encoder and decoder to
convert the PNM to a JP2 and then back to a PNM
file (this is repeated as necessary for generational loss
test);

2. Validate Profile: Extract information from the JP2
file using Jpylyzer, for later validation against the de-
sired profile (specified in Section 2.2);

3. Calculate PSNR: Use ImageMagick to calculate the
PSNR of the original TIFF file versus the migrated
output PNM file (this comparison with the original
is repeated after each migration for generational loss
analysis), storing results in a CSV file;

4. Consolidate Results: Create a zip file that collects
outputs from the above

This program was wrapped in a Hadoop MapReduce pro-
gram so that, for each input TIFF file, firstly the tool is
executed to generate the necessary shell scripts, and then
these generated scripts are executed. A separate program
was produced that extracted information from all the run
outputs and produced aggregated CSV files.

Using a compression ratio of 2:1, runs were made consist-
ing of ten generations of encode-decodes for each encoder-
decoder pair, with, as per the methodology above, PSNR
calculated between the original file and the output PNM af-
ter each generation. For these runs, it was found JasPer did
not use all the space available to it - its compressed files
were consistently more compressed than the requested com-
pression ratio. Consequently, to enable all three encoders to
produce output files of the same size and compression ra-
tio, a further run was made using a 4:1 compression ratio.
Nearly all files for each coder were within a few bytes of
each other - see Table 3 - however, for some files JasPer still
over-compressed them.

3.4 Encoder Command Line Parameters
The command line parameters which generate images con-

forming to the profile specified in Section 2.2, for each codec
library, are shown in Table 2.

Table 2: JPEG2000 command lines for each library
Kakadu Creversible=no Corder=RPCL

Clevels=6 Cprecincts={256,256}
Cblk={64,64}

OpenJPEG -I -p RPCL -n 7 -c
[256,256],[256,256],[256,256],[256,256],
[256,256],[256,256],[256,256] -b 64,64

JasPer -T jp2 -O mode=real -O prg=rpcl -
O numrlvls=7 -O prcwidth=256 -O
prcheight=256 -O cblkwidth=64 -O
cblkheight=64

Note that the number of levels requested differs between
Kakadu and the other tools, however, analysis of the out-
puts using Jpylyzer[13] shows these results to be equivalent.
This discrepancy could be due to codec authors’ different
interpretations of the specification.



4. RESULTS

4.1 Exact Re-generation of Compressed Files
On each test run the JPEG2000 files were recreated (en-

coded) three times by each encoder. Each set of encodes
produced identical files according to their MD5 checksum,
suggesting that there is no variation produced by each li-
brary during encoding.

4.2 Compression Ratio
Kakadu and OpenJPEG’s encoders routinely meet the

compression ratio asked of them. There was a difference
with the JasPer encoder, in that if it did not need all the
space afforded by the specified compression ratio, it encoded
at a higher compression ratio, producing a smaller file. This
was also expected of the other codecs at lower compression
ratios but was not apparent, from our results, at 2:1 com-
pression.

4.3 File size
At 2:1 compression, the mean file size difference between

the Kakadu and OpenJPEG encoders was 0.04% ±0.03%
(7467 bytes ±5938 bytes). As already noted, JasPer encoded
smaller files than the requested compression ratio would en-
tail.

At 4:1 JasPer compressed files that were closer to the other
encoders, see Table 3. However, as can be seen in Figure 2,
at a requested 4:1 compression, JasPer was not always able
to fully utilise the compression ratio.

Table 3: Mean difference between compressed file
sizes at 4:1 compression for encoder-decoder pairs

Kakadu - OpenJPEG OpenJPEG - JasPer Kakadu - JasPer
186 ±106 bytes 747093 ±1102190 bytes 747277 ±1102201 bytes
(0.002% ±0.001%) (5.4% ±8.3%) (5.4% ±8.3%)

4.4 Single Migration Image Quality
The results from the first encode-decode cycle for each

encoder-decoder pairing are shown in Figure 1 and Figure 2,
with the corresponding mean average PSNR (and standard
deviation) shown in Table 4.

Table 4: Mean average PSNR for each encoder-
decoder pair at 2:1 and 4:1 Compression rates

Encoder-Decoder Mean Average PSNR (2d.p)
2:1 rate 4:1 rate

jasper-jasper 47.81 ±0.50dB 46.96 ±1.54dB
jasper-opj20 49.56 ±0.32dB 47.78 ±2.12dB
jasper-kakadu 49.45 ±0.32dB 47.69 ±2.08dB
kakadu-jasper 50.34 ±0.35dB 47.20 ±2.03dB
kakadu-opj20 54.17 ±0.41dB 48.12 ±2.44dB
kakadu-kakadu 54.22 ±0.43dB 48.13 ±2.45dB
opj20-jasper 52.62 ±0.37dB 48.23 ±2.45dB
opj20-opj20 55.02 ±0.52dB 48.30 ±2.51dB
opj20-kakadu 54.58 ±0.48dB 48.23 ±2.48dB

They show the OpenJPEG encoder with OpenJPEG de-
coder to produce the highest average PSNR for both 2:1
and 4:1 compression rates, at 55.02dB (2d.p.) and 48.30dB
(2d.p.) respectively. The next highest, with a slight drop
in PSNR, is the OpenJPEG-Kakadu pairing (54.58dB and
48.23dB for 2:1 and 4:1 respectively), followed by the Kakadu

encoder with either using OpenJPEG or Kakadu for decod-
ing (both showing 54.2dB and 48.1dB to 1d.p. for 2:1 and
4:1 respectively).

Our results indicate that files encoded with JasPer and
decoded using any of the tools tend to result in a lower
PSNR (< 50dB for 2:1 and < 48dB for 4:1) than when using
other libraries for encoding. Using OpenJPEG or Kakadu as
the decoder for such encoded files gives slightly better aver-
age PSNR results than using JasPer as the decoder (approx
49.5dB as opposed to 47.8dB for 2:1 compression; approx
47.7dB as opposed to 47dB for 4:1 compression).

46

48

50

52

54

56

58

0 100 200 300 400 500 600 700 800 900 1000

P
SN

R
 (

d
B

) 

File Number 

jasper-jasper

jasper-opj20

jasper-kakadu

kakadu-jasper

kakadu-opj20

kakadu-kakadu

opj20-jasper

opj20-opj20

opj20-kakadu

Figure 1: PSNR for first encode-decode for each
encoder-decoder pair at 2:1 compression

40

42

44

46

48

50

52

54

0 100 200 300 400 500 600 700 800 900 1000

P
SN

R
 (

d
B

) 

File Number 

jasper-jasper

jasper-opj20

jasper-kakadu

kakadu-jasper

kakadu-opj20

kakadu-kakadu

opj20-jasper

opj20-opj20

opj20-kakadu

Figure 2: PSNR for first encode-decode for each
encoder-decoder pair at 4:1 compression

A statistical analysis of the mean average PSNRs for each
encoder-decoder pair (at 2:1 compression) showed that there
is a statistically significant difference in the mean average
PSNR, at 0.05 level, between all combinations of encoder-
decoder pairs, apart from between Kakadu-OpenJPEG and
Kakadu-Kakadu (the orange and hidden blue line 3rd and
4th from the top in Figure 1). This is congruent with the
results in Table 4, which show the mean average PSNRs for
these two pairings to be almost identical.

The difference in the PSNR means between the JasPer-
OpenJPEG and JasPer-Kakadu pairs (green and red lines
2nd and 3rd from the bottom in Figure 1) was only just sta-
tistically significant. Again, this is reflected in the closeness
of mean PSNRs seen in Table 4.

For the 4:1 compression ratio, shown in Figure 2, the sta-
tistical analysis of the difference in average PSNR between
each encoder-decoder pair showed that there is a statistical



significance, at 0.05 level, between JasPer-JasPer (blue line)
and all other encoder-decoder pairs, apart from Kakadu-
JasPer (purple line). This corresponds to a 0.24dB differ-
ence in mean average PSNR, and so the lack of statistical
significance is unsurprising. Similarly, there is a statisti-
cal significance in the mean PSNR between Kakadu-JasPer
(purple line) and all other encoder-decoder pairs, apart from
JasPer-JasPer.

For the remaining differences between pairs, the JasPer-
OpenJPEG or JasPer-Kakadu pairings compared against
any other combination typically showed low levels of sig-
nificance (some showed no significance, for example JasPer-
OpenJPEG vs Kakadu -Kakadu), reflective of the small dif-
ferences in mean PSNR showed in Table 4. All other com-
binations have even lower differences in mean PSNRs which
are not statistically significant.

4.5 Generational loss
Ten encode-decode cycles were run for each file with each

encoder-decoder pair. This was to test how the encoder-
decoder pairs coped with generational loss through repeated
migrations of lossy-encoded images.

32

36

40

44

48

52

56

1 2 3 4 5 6 7 8 9 10

P
SN

R
 (

d
B

) 

Generation 

jasper-jasper-av

jasper-opj20-av

jasper-kakadu-av

kakadu-jasper-av

kakadu-opj20-av

kakadu-kakadu-av

opj20-jasper-av

opj20-opj20-av

opj20-kakadu-av

Figure 3: PSNR showing ten generations of 2:1
encode-decode for each encoder-decoder pair

32

36

40

44

48

52

56

1 2 3 4 5 6 7 8 9 10

P
SN

R
 (

d
B

) 

Generation 

jasper-jasper-av

jasper-opj20-av

jasper-kakadu-av

kakadu-jasper-av

kakadu-opj20-av

kakadu-kakadu-av

opj20-jasper-av

opj20-opj20-av

opj20-kakadu-av

Figure 4: PSNR showing ten generations of 4:1
encode-decode for each encoder-decoder pair

Figures 3 and 4 show the mean average PSNRs after each
generation, for 10 encode-decode cycles. The results are the
average across all 932 files.

For both 2:1 and 4:1 compression ratios, all libraries show
some signs of PSNR degradation, however some codecs suf-
fer less than others. The OpenJPEG-OpenJPEG pairing is

consistently the best (for both compression ratios) with only
an average drop of 2.11dB (2d.p.) in PSNR for 2:1 compres-
sion and 0.88dB (2d.p.) for 4:1, over 10 generations.

At 2:1 compression, using JasPer as a decoder in combi-
nation with any other encoder results in the largest drops in
PSNR - at least 13.89dB (2d.p.; OpenJPEG-JasPer). In par-
ticular though, the Kakadu-JasPer and JasPer-JasPer pair-
ings both show the largest drops in PSNR for both compres-
sion rates.

4.6 Pixel differences vs original
As another means to gauge image quality, we used Im-

ageMagick to count the number of pixels changed between
the original image and the encode-decoded images. At 2:1
compression the maximum number of pixels that were more
than 1% different to the original pixels, for Kakadu and
OpenJPEG encoded files using Kakadu and OpenJPEG de-
coders, was 549. The average total number of pixels with
an absolute difference to the original was between 20-24% of
image pixels. JasPer figures are not quoted because, as pre-
viously described, at 2:1 compression JasPer tends to over-
compress.

At 4:1 compression the percentage differences between
encoder-decoder pairs are close. The overall mean of the av-
erage differences for each codec pair suggests approximately
2% of pixels are greater than 1% different to those in the
original image. The same calculation for absolute differences
in pixels gives an average of 55% of pixels being different.

4.7 Execution speed
A record was kept of execution speed for the generational

loss encode-decode process, measuring the initial conver-
sion from TIFF to PNM, using ImageMagick’s tifftopnm,
followed by ten encode-decode cycles. Files were decoded
by the decoder directly to PNM, ready for the next encode.

Table 5 shows the average speed per encode-decode cycle
for each encoder-decoder pair. Using Kakadu to encode and
decode images is the quickest, using OpenJPEG is the slow-
est. Interestingly, using OpenJPEG as the encoder and/or
decoder tends to result in longer encode-decode cycles.

Table 5: Mean execution speed of encoder-decoder
pairs, per encode-decode cycle

Encoder-Decoder Speed (s) at 2:1 Speed (s) at 4:1
Kakadu-Kakadu 16 12
Kakadu-JasPer 24 23
JasPer-Kakadu 25 24
JasPer-JasPer 32 32
Kakadu-OpenJPEG 44 34
JasPer-OpenJPEG 48 46
OpenJPEG-Kakadu 75 68
OpenJPEG-JasPer 78 78
OpenJPEG-OpenJPEG 103 90

5. CONCLUSION
1. For our test images and codec settings, the best quality

encoder-decoder pair was OpenJPEG-OpenJPEG. The
next best, where a different encoder was used, was the
Kakadu-Kakadu pair, at approximately 1dB lower than
OpenJPEG-OpenJPEG at 2:1 compression. It is worth
noting that the execution speed of those pairs is both
the fastest (Kakadu-Kakadu) and slowest (OpenJPEG-
OpenJPEG). The file size difference between these en-
coders at 2:1 and 4:1 was low.



2. It appears that when a specific compression ratio is re-
quested of the JasPer encoder, it compresses up to that
ratio. If the encoder is unable to use all the space af-
forded to it by the compression ratio, the resulting file
will have a higher compression ratio. This is readily ap-
parent in the 2:1 compression test, and apparent in the
4:1 compression test.

3. From the results of the first encode-decode cycle for the
codec pairs, we see that the JasPer decoder does not pro-
duce as high quality output as other decoders, given the
same input file. Our results show the JasPer decoder
was up to approximately 4dB worse quality than other
decoders (e.g. Kakadu-Kakadu vs Kakadu-JasPer at 2:1
compression).

4. The first encode-decode at a higher compression ratio of
4:1, where the JasPer encoder was able to compress to
the requested ratio, produced files much closer to the re-
quested ratio than at 2:1. Results for these cases showed
that only the JasPer-JasPer and Kakadu-JasPer pairs
performed notably worse than other pairs. The average
PSNR values for those two pairs were statistically signif-
icant from the other encoder-decoder pairs.

5. The lower quality output of the JasPer decoder became
apparent in the generational loss tests, where use of a
JasPer decoder, especially in conjunction with a JasPer or
Kakadu encoder, produced notably larger drops in PSNR.
When Kakadu or OpenJPEG decoders were used, the
PSNR drop was less severe; they produced better quality
decoded images from the same compressed JP2.

6. The JasPer decoder is unable to decode any of the test
JP2 files to the same quality as the other decoders, in-
cluding JPEG2000 files encoded by its own encoder. If
quality of decoded files is important it may be advisable
to decode JPEG2000 images with a decoder known to be
good for the encoder rather than using an unknown/lower
quality built-in decoder. For digital preservation, this in-
dicates an importance in understanding the library used
to create the JPEG2000 file.

5.1 Future work
There are many potential avenues to extend this work, but

some notable areas we feel warrant further work include:

• Repeating the testing with different collections, for ex-
ample; photographs
• Using different codecs and settings, for example; using

Kakadu’s -precise flag to increase precision
• Using different encoding profiles; tiles vs precincts,

compression ratios, compression layers
• Using different quality metric(s)

6. ACKNOWLEDGEMENTS
This work was partially supported by the SCAPE project

(www.scape-project.eu). The SCAPE project is co-funded
by the European Union under FP7 ICT-2009.4.1 (Grant
Agreement number 270137).

7. REFERENCES
[1] The JISC Digitisation Programme: Overview of

Projects. url: http : / / www . jisc . ac . uk /

media / documents / programmes / digitisation /

digitisation _ v2 _ overview _ final . pdf (Last ac-
cessed: 04/26/2013).

[2] Robert Buckley. Using Lossy JPEG 2000 Com-
pression for Archival Master Files. Library of
Congress, Mar. 12, 2013. url: http : / / www .

digitizationguidelines . gov / still - image /

documents / JP2LossyCompression . pdf (Last ac-
cessed: 04/25/2013).

[3] Farzad Ebrahimi, Matthieu Chamik, and Stefan Win-
kler. “JPEG vs. JPEG 2000: an objective comparison
of image encoding quality”. In: Proceedings of SPIE.
Vol. 5558. 2004, pp. 300–308. url: http://stefan.
winklerbros.net/Publications/adip2004.pdf (Last
accessed: 04/26/2013).

[4] H. R. Sheikh et al. LIVE image quality assessment
database (2003). 2003. url: http : / / live . ece .

utexas . edu / research / quality/ (Last accessed:
04/26/2013).

[5] Tim Gollins. “Parsimonious preservation: preventing
pointless processes!” In: Online Information. 2009,
pp. 75–78. url: http : / / www . nationalarchives .

gov . uk / documents / parsimonious - preservation .

pdf (Last accessed: 04/26/2013).

[6] Format Profile JISC UK Web Domain Dataset (1996-
2010). doi: 10.5259/ukwa.ds.2/fmt/1.

[7] Is JPEG-2000 a Preservation Risk? Jan. 28, 2013.
url: http://blogs.loc.gov/digitalpreservation/
2013 / 01 / is - jpeg - 2000 - a - preservation - risk/

(Last accessed: 04/24/2013).

[8] M.D. Adams and F. Kossentini. “JasPer: a software-
based JPEG-2000 codec implementation”. In: Im-
age Processing, 2000. Proceedings. 2000 International
Conference on. Vol. 2. 2000, 53–56 vol.2. doi: 10 .

1109/ICIP.2000.899223.

[9] Robert Buckley and Roger Sam. JPEG 2000 Profile
for the National Digital Newspaper Program. Apr. 27,
2006. url: http://www.loc.gov/ndnp/guidelines/
docs/NDNP_JP2HistNewsProfile.pdf (Last accessed:
04/25/2013).

[10] The British Library JPEG 2000 Profile for Bulk Digi-
tisation. url: http://www.digitizationguidelines.
gov/still-image/documents/Martin.pdf (Last ac-
cessed: 04/26/2013).

[11] Thien Phan, Phong Vu, and Damon M. Chandler.
“On the Use of Image Quality Estimators for Im-
proved JPEG2000 coding”. In: Asilomar Conference on
Signals, Systems, and Computers (2012). 2012. url:
http://vision.okstate.edu/pubs/asilomar_2012.

pdf (Last accessed: 04/26/2013).

[12] Zhou Wang et al. “Image Quality Assessment: From
Error Visibility to Structural Similarity”. In: IEEE
Transactions on Image Processing 13.4 (Apr. 2004).
url: https : / / ece . uwaterloo . ca / ~z70wang /

publications/ssim.pdf (Last accessed: 04/26/2013).

[13] David Tarrant and Johan Van Der Knijff. “Jpylyzer:
Analysing JP2000 files with a community supported
tool”. 2012. url: http://eprints.soton.ac.uk/

341992/.


