Cloudy Emulation — Efficient and Scalable
Emulation-based Services

l. Valizada, K. Rechert, K. Meier, D. Wehrle, D. v. Suchodoletz and L. Sabel,
Albert-Ludwigs University Freiburg
79104 Freiburg i. B., Germany
{isgandar.valizada, klaus.rechert, konrad.meier, dennis.wehrle, dirk.von.suchodoletz, leander.sabel}
@rz.uni-freiburg.de

ABSTRACT

Emulation as a strategy for digital preservation is about to
become an accepted technology for memory institutions as
a method for coping a large variety of complex digital ob-
jects. Hence, the demand for ready-made and especially
easy-to-use emulation services will grow. In order to pro-
vide user-friendly emulation services a scalable, distributed
system model is required to be run on heterogeneous Grid
or Cluster infrastructure.

We propose an Emulation-as-a-Service architecture that
simplifies access to preserved digital assets allowing end users
to interact with the original environments running on differ-
ent emulators. Ready-made emulation components provide
a flexible web service API allowing for development of in-
dividual and tailored digital preservation workflows. This
paper describes design and implementation of scalable em-
ulation services as part of the bwFLA EaaS framework.

1. INTRODUCTION

Emulation is a key strategy in digital preservation and
access to digital artifacts, ensuring that digital objects can
be rendered in their native environments and thus maintain
their original ”"look and feel.” In most cases the original ap-
plications or operating systems developed by the respective
software vendors are the best candidates for handling a spe-
cific artifact of a certain type [5, 9].

As the number of different past and current computer sys-
tems (i.e. hardware architectures) is limited, the number of
required emulator-setups is thereby also bounded. Hence,
providing access to emulation is suitable for standardized
preservation services as well as efficient preservation plan-
ning. Nevertheless, deploying full emulation software stacks
is a complex and laborious task. Based on these obser-
vation, the concept of Emulation-as-a-Service (EaaS) has
evolved, aiming towards standardized set of interfaces and
uniform access to emulation technology allowing a large,
non-technical user-group to make use of emulators and in-
teract with emulated system environments.

Thhis paper’s contributions are as follows. We present an
EaaS implementation and service model and discuss design
issues providing scalable emulation services. We show how
emulation-components as a core component interact with
various emulators and provide necessary APIs and services
for data IO like attaching and detaching of virtual removable
devices or hard-disks. EaaS users can choose from two dif-
ferent base services: to interact with original environments
directly or set up complex preservation workflows. Finally,
we present methods for the deployment of EaaS in the cloud

(and its scaling on user demand) as well as for user and
service authentication in a distributed framework.

2. ARCHITECTURE

The main goal of an EaaS architecture is to develop and
maintain a standardized and scalable emulation service mo-
del to make emulation a cost-effective digital-preservation
strategy and improve its usability. Such a service model,
then includes emulated environments either for individual
object rendering or represents a component in a larger, com-
plex digital preservation workflow. In contrast to previous
projects and approaches to improve usability of emulation
technology, the bwFLA project® implements a distributed
framework. Compared to local provisioning of a complex
service stack as proposed in KEEP [3, 2], a networked ap-
proach reduces technical and organizational hurdles on the
client’s side significantly. Instead of adapting a large soft-
ware package including proprietary software components to
various, fast changing end-user devices, the emulators run
in a well controlled environment.

The fundamental building block of an EaaS architecture
are abstract emulation-components (EC) used to standard-
ize deployment and to hide individual system complexity.
An EC encapsulates various emulators, available either as
open source or commercial products, into an abstract com-
ponent with a unified set of software interfaces (API). This
way, different classes of emulators become also interopera-
ble, e.g. emulators of different vendors could be combined
into a larger network compound. The control interface in
combination with node- and user-management methods as
well as emulator utilities, e.g. for dealing with virtual im-
ages, represent a comprehensive EaaS API. Gateway nodes
expose the EaaS web-service API. They are responsible for
client authorization and authentication as well as for dele-
gating resource requests to the machine management node.
The machine management node is responsible for efficient
hardware utilization, promoting or demoting machines on-
demand. To hide complexity of managing dynamic machine
allocation, the gateway node also acts as proxy node of an
emulation component. The proxy replicates the EC’s API,
but hides the cloud-specific internal communication from the
client. (Fig. 1)

Users need only to implement a single API, which should
encourage both interoperability and integration of further,
possibly user-contributed, ECs. Furthermore, emulation com-
ponents are accessible through dedicated web-service (WS)

"bwFLA — Functional Long-Term Access, http://bw-fla.
uni-freiburg.de.



bwFLA Emulation-as-a-Service Service Model

request Machine

register (/
—

Node /

Amazon EC2

* deploy

______ | Service
MAAS

Machine Manag

Service Management \4

—
request -
Node

Policy

o =g

Pkt Lanszetrcht
Resource
Management

Client

(=)

l’\/ 1
register

Node ‘
]
]
]
]
]
]
]

Figure 1: bwFLA: Emulation-as-a-Service General Architecture, Components and Service-Model.

interfaces. This architecture does not enforce specific client
implementations. Currently, two variants of clients are avail-
able. The user is able to instantiate an EC through a web-
front-end and interact with the emulated system interac-
tively. For this option, several standard workflows are al-
ready implemented. Such as: bwFLA Ingest/Access/SW-
Archive Ingest. The second option is to download the JavaEE-
based client framework and build custom workflows.

2.1 Emulation Components Nodes

Emulation-components are implemented as Java EE clas-
ses, wrapping a native-platform executable and mapping the
emulator’s technical capabilities to common interfaces. For
instance, every emulator uses a slightly different approach to
deal with a set of standard operations like starting and stop-
ping the virtual machine, attaching and detaching virtual
drives (floppy, optical or disk drives) or handling network
connectivity. Access to the API of any emulation compo-
nent is possible via its WS front-end. For this a so called
WS-service client stub has to be generated via any suitable
tool. The generated stub will represent a means of accessing
the remote methods of the emulation component, support-
ing sophisticated client implementations, e.g. in context of
specialized workflows.

Currently, the user is able to directly interact with emu-
lated environments using either an HTML5-based web-client
or a JAVA-based desktop client. Data-I/O and machine in-
teraction, such as attaching / detaching removable media
to the emulation component, is made possible through dedi-
cated utilities in the bwFLA framework and their interfaces.

A future option is to provide dedicated interfaces for non-
interactive machine-machine communication, e.g. providing
direct access to databases running in an emulated system via
network or ODBC interface. A detailed technical description
of an EaaS framework and its workflows can be found in
earlier work [4, 8].

Finally, to provide a cost-efficient and scalable emulation
framework a large scale and especially flexible computing
back-end is required. Different emulator types and work-
loads as well as specific access patterns may require variable
computing resources.

2.2 On-demand Deployment — Scaling EaaS

To become scalable and cost-effective, emulation compo-
nents need to be deployed only when needed. For this, a
suitable framework for hardware- and software-deployment
is required. For our purposes, we have chosen Canonical’s
Metal as a Service (MASS)? for hardware management,
i.e. for creating emulation component machine instances
on demand. If additional hardware resources are required,
MASS is responsible for allocation and preparation of suit-
able machines and installation of a basic operating system
(e.g. Ubuntu Linux) on that particular machine. For this,
MAAS starts a new physical machine, booting from a DHCP
server, downloads and automatically installs the desired OS.
Finally, MAAS initializes a user account (e.g. by copying a
public ssh-key) for further machine preparation and main-
tenance. More nodes can be added by just connecting a
new machine to power and network. The machine must be
capable of booting from the latter using e.g. PXE.

After a machine has been successfully instantiated, in a
second step the software deployment system Juju?® starts in-
stallation and configuration of the bwFLA-framework. Juju
is an orchestration management tool that requests installed
machines from the underlying layer, in our scenario from
MAAS. Then it deploys the requested service on that ma-
chine by running a (shell) script which installs and configures
all needed services automatically. In this way, it is possible
to scale a service by requesting additional instances through
Juju, e.g. for short-term requirements. If a node is no longer
needed, for example, due to a lower load on the cluster, the
node is marked as unused and powered down. Hence, the
cluster saves energy or the node can be reused for some other
services. This service-oriented view abstracts from the un-
derlying hardware and makes the service deployment very
simple. A benefit of having the flexible service orchestration
tool like Juju is the possibility to use multiple environments
for deployed services. Therefore it is possible to have both a
local hardware pool managed with MAAS and a commercial

2Ubuntu Metal as a Service, http://maas . ubuntu. com, ver-
sion 1.2+4-bzr1373
3Juju, http://juju.ubuntu.com, version 0.6.0.1+bzr618



Image

l Archive |

Client EaaS
w Gateway

request emulation session 4>

e

! <4— login —»!

: : return signed assertion ————»:

i— request emulation —»

ﬁ' authentication request - :
verify assertion ———————»!

: i— request software —»
L verify assertion

- authentication request

: ¢ grant/deny software f
i<— return emulation —! :

: «—— return emulation session

(a) Authentication workflow for web based authentication

w6 wi L6l Image
Archive
Client EaaS
Gateway

start client i n

— request emulation —:

i«— auth request

: forward auth request to IdP
-+ login —» :
mwd assertion 4»

— return assertion —» !

i— request software —»

: auth request

verify assertion
: < grant/deny software -
i<«— return emulation — :

:<—— return emulation session

(b) Workflow for desktop client based authentication.

Figure 2: Access control in bwFLA Emulation-as-a-Service framework

solution like Amazon EC2.

Since some emulation components require direct hardware
access, for instance, CPU virtualization features or CPU
ring access, we have chosen a setup which is able to request
physical machines as well as virtual ones. In order to reduce
hardware costs, commodity hardware is used for the emula-
tion component nodes. The current hardware pool used in
out tests consists of standard desktop PCs with a quad-core
processor (Intel i5-3470), 8 GByte RAM and a 500 GByte
hard disk.

2.3 Provisioning of Legacy Environments

Another important aspect of an emulation service is pro-
viding ready-made original system environments, consisting
of a basic operating system installation, tailored to be used
with a certain emulator type. Typically, emulators provide a
set of emulated peripherals and computer components, such
as a network chip, sound- and video-card, etc. To make use
of these features, appropriate drivers need to be installed
and configured. These images act as a base platform, al-
lowing the user to extend them into specialized rendering
environments.

Usually, base-images as well as tailored user-images, are
kept at specialized institution supplied storage sites thus
providing a large variety of systems and specialized software.
Furthermore, in some cases, users may choose to not use pre-
configured images. In this case, the emulation component
should be able to accept a user-provided image directly. For
frictionless access through an appropriate emulation compo-
nent, a suitable network transport protocol is necessary since
network quality of service is crucial for usability and perfor-
mance of the emulated system environment. Especially in
cases of user-provided images, network utilization and po-
tentially restricted bandwidth matter. Therefore, a block-
oriented protocol has been chosen instead of file-based access
since the file representation of a typical emulator image is
internally structured as a virtual block-device [7]. A network
block device (NBD) and its protocol implement block-layer
access over network, i.e. emulating access to physical block-
devices, e.g. hard-disk drives. In contrast to file-based ac-
cess patterns, block-oriented disk-blocks are only requested

and transmitted when needed. Thus, an EaaS emulation
component becomes immediately operational after initial-
ization. Furthermore, less data transfer might be necessary
for instance in case of a sparsely populated virtual disk.

A single virtual disk image may use a few MBytes of
storage space for older environments, in some cases up to
hundreds of GBytes for newer ones. For efficient and cost-
effective maintenance of ready-made images and their user
customizations, creating copies for each instance should be
avoided. NBD access supports copy-on-write overlays, i.e.
allowing for a separation of base-images and user modifi-
cations. Any user modification is then stored in a separate
block-based differences-file, which can be discarded after ses-
sion termination or can be kept for future sessions.

2.4 Access Control

To protect resources and, in a second step, support user
accounting, a distributed authentication and authorization
system is required. Usually, memory institutions already
have single-sign-on system deployed, e.g. to protect access
to digital publications. These systems were used as start-
ing point for further development. In case of a distributed
emulation service, a single central identity provider is not
sufficient since users entrust their personal data to their lo-
cal memory institutions for safekeeping their digital artifacts
(e.g. research data). To manage individual user accounts
across different sites, a distributed identity management ap-
proach is required, delegating authorization and authenti-
cation to trusted institutions’ identity providers (IdP). Fed-
erated identity systems are already successfully integrated
at research institutions and universities. For instance, Ger-
many’s universities commonly use Secure Assertion Markup
Language (SAML) [1] based on identity provider systems,
typically Shibboleth [6].

To begin an emulation session a user has to start a client
application that is able to communicate to the web-service
interface of the emulation component and with the IdP. This
can either be a web-site or a program running on the user’s
computer. The web-site can use the SAML web-login proce-
dure to authenticate the user and access the web-service [10].

The desktop client’s ECP module requests an emulation



session from the emulation component on the user’s behalf.
The emulation component verifies the client’s right to use
the user’s permissions by requesting a signed assertion of
the user’s IdP from the client. The client’s ECP module
will forward this request to the IdP and ask the user to
authenticate to the IdP (e.g. by providing username and
password). The IdP then signs the assertion that grants
the user’s rights to the client if the user has granted the
delegation of his or her rights. The assertion is returned
to the emulation component by the client’s ECP module.
This authorizes the client to interact with the emulation
component on the user’s behalf.

The emulation component is able to use the same process
to request a software image from the archive and return the
emulation session to the user if the user has the necessary
permissions to access the emulation and the software.

3. RESULTS & DISCUSSION

In order to deploy the bwFLA-framework automatically
via Juju/MAAS, some initial effort is required e.g. creating
deployment scripts. Installation and software dependencies
are to be made explicit and need to be determined upfront.
However, as a result, not only a stable and useful service is
available but also a documented, reliable and reproducible
deployment / installation procedure for other contexts or for
future reference created as a by-product.

Currently, emulation components for all major past and
present desktop CPU types, PowerPC, Sparc, Motorola 68k,
Intel x86, etc., and major operation systems, e.g. OS/2, var-
ious MS Windows versions, Apple Macintosh 7.x and newer,
etc., have been deployed and can be utilized. Computing
nodes running emulation components are either available in
cached-mode or need to be created on-demand. If a node is
in cache mode it already contains an installed and config-
ured bwFLA framework but is currently inactive. If no more
cached nodes are available, ’on-demand’ nodes require full
installation and configuration. On our available hardware
pool, basic node installation and preparation takes about
6-10 minutes plus deployment of the bwFLA framework (2
minutes). Releasing an unused node takes about 1 minute.

4. CONCLUSION

EaaS makes emulation widely available for non-experts.
Thus, emulation could prove valueable as a tool in digital
preservation workflows, and hence, could become a relevant
preservation strategy in many memory institutions. While
licensing of past and current software components was not
considered in this paper, organizational and technological
challenges of emulation as a cost-effective and scalable strat-
egy were analyzed.

The proposed architecture offers both a scalable and easily
extendable solution. The scalability of the approach allows
the instantiation of emulation nodes on user demand for new
emulation resources. The ease of extendability is enforced
by the proposed architecture, which is directed towards ab-
straction of only practically important emulation operations
and delegation of their implementation to specific emulator
handling classes as well as minimization of effort for adding
these handlers in the system’s code.

Furthermore, since resources are allocated only on de-
mand, running and maintaining EaaS as a commonly shared
infrastructure is efficient in terms of monetary costs, mainte-

nance and management overhead. An unsolved, remaining
issue for such a service model is licensing of software. Hope-
fully, with the availability and the necessity of emulation-
based preservation strategies, this issue will vanish.

Acknowledgments

The work presented in this publication is part of the bwFLA
— Functional Long-Term Access project funded by the fed-
eral state of Baden-Wiirttemberg, Germany.

5. REFERENCES

[1] S. Cantor, J. Kemp, R. Philpott, and E. Maler.
Assertions and protocols for the oasis security
assertion markup language (saml) v2.0. Technical
report, OASIS, March 2005.

[2] B. Lohman, B. Kiers, D. Michel, and J. van der
Hoeven. Emulation as a business solution: The
emulation framework. In 8th International Conference
on Preservation of Digital Objects (iPRES2011), pages
425-428. National Library Board Singapore and
Nanyang Technology University, 2011.

[3] D. Pinchbeck, D. Anderson, J. Delve, G. Alemu,

A. Ciuffreda, and A. Lange. Emulation as a strategy
for the preservation of games: the keep project. In
DiGRA 2009 — Breaking New Ground: Innovation in
Games, Play, Practice and Theory, 2009.

[4] K. Rechert, I. Valizada, D. von Suchodoletz, and
J. Latocha. bwFLA — a functional approach to digital
preservation. PIK — Prazis der
Informationsverarbeitung und Kommunikation,
35(4):259-267, 2012.

[5] J. Rothenberg. Ensuring the longevity of digital
information. Scientific American, 272(1):42-47, 1995.

[6] T. Scavo, S. Cantor, and N. Dors. Shibboleth
architecture: Technical overview. Working draft, 1,
2005.

[7] C. Tang. Fvd: a high-performance virtual machine
image format for cloud. In Proceedings of the 2011
USENIX conference on USENIX annual technical
conference, USENIXATC’11, pages 18-24, Berkeley,
CA, USA, 2011. USENIX Association.

[8] D. von Suchodoletz, K. Rechert, and I. Valizada.
Towards emulation-as-a-service — cloud services for
versatile digital object access. International Journal of
Digital Curation, 8:131-142, 2013.

[9] D. von Suchodoletz, K. Rechert, J. van der Hoeven,
and J. Schroder. Seven Steps for Reliable Emulation
Strategies — Solved Problems and Open Issues. In
A. Rauber, M. Kaiser, R. Guenther, and
P. Constantopoulos, editors, 7th International
Conference on Preservation of Digital Objects
(iPRES2010) September 19 - 24, 2010, Vienna,
Austria, volume 262, pages 373-381. Austrian
Computer Society, 2010.

[10] R. Zahoransky, S. Semaan, and K. Rechert. Identity
and access management for complex research data
workflows. In 6. DFN-Forum 2013
Kommunikationstechnologien. GI, 2013.



