
Studies on the scalability of web preservation
Rory Blevins

Tessella
26, The Quadrant,

Abingdon Science Park
Oxfordshire

OX14 3YS UK
Rory.Blevins@tessella.com

Ismail Patel
Tessella

Chadwick House,
Birchwood Park,

Warrington,
WA3 6AE UK

Ismail.Patel@tessella.com

Jack O’Sullivan
Tessella

26, The Quadrant,
Abingdon Science Park

Oxfordshire
OX14 3YS UK

Jack.O’Sullivan@tessella.com

Ashley Hunter
Tessella

Chadwick House,
Birchwood Park,

Warrington,
WA3 6AE UK

Ashley.Hunter@tessella.com

Robert Sharpe
Tessella

26, The Quadrant,
Abingdon Science Park

Oxfordshire
OX14 3YS UK

 Robert.Sharpe@tessella.com

Pauline Sinclair
Tessella

26, The Quadrant
Abingdon Science Park

Oxfordshire
OX14 3YS UK

Pauline.Sinclair@tessella.com

ABSTRACT
This paper describes a mechanism for improving the scalability
of preservation actions on large linked archives, such as WARC
and ARC files produced from the archiving of web sites.

To enable accurate but efficient preservation actions, information
on the files embedded within a container object, such as the file
formats of the embedded files, are aggregated and recorded as
properties of the container object. This occurs during the ingest
of objects into the archiving system, specifically at the
characterization stage when files are identified and validated. To
ensure that the details of all embedded files are also recorded,
nested archives are recursively unpacked and their contents
characterized to identify all files in a package. Information about
the embedded files is then stored as properties of the container
object: this allows us to efficiently aggregate information about
the contents of a container as queryable properties of the
container.

This storage of the embedded file type information on the
container object reduces the number of objects and properties
which have to be queried to perform a preservation action, such
as migration to a more recent file type. The database can be
queried for a specific file type, and all files of that type, and
archives containing files of that type will be returned without
needing to query each embedded object individually.

Archives containing files in need of preservation are temporarily
unpacked and the files in need of transformation identified and
migrated. Following the preservation action, the internal links
within the archive are updated to maintain the integrity of the
archive and the modified objects are re-ingested back into the
system.

This approach results in minimal extra overhead at the ingest
stage of preservation, but substantially reduces the number of
entities which need to be queried to identify objects at risk when

performing preservation actions. In the case of large web
archives, this may be several orders of magnitude, producing a
corresponding increase in performance and scalability.

KEYWORDS
Scalability, Web Archiving, Characterization

1. INTRODUCTION
Many organizations now regularly perform large scale web
crawls [Pennock][1]. For example, Bibliothèque nationale de
France (BnF) have been performing large scale archiving of web
sites since 2002 and by 2011 had accumulated approximately
200TB held within 1.5 million ARC files [2]. These crawls have
been managed using web crawling software: initially HTTrack
[3], then Heritrix [4] and finally adding the NetarchiveSuite [5],
developed by the Royal Library of Copenhagen and the
University Library of Aarhus. As can be seen from the size of
the accumulated collections, the actual process of collecting web
sites can be performed in a reasonable time frame and thus
already scales fairly well.

However, typically, such web crawls are not as well
characterized as other digital material being ingested into an
archival repository. The normal method of such characterization
can vary but would typically involve [6]:

 Identification of the format of each file

 Validation of the format of each file

 Property extraction from each file

 Embedded object extraction from each file

 Recursive characterization of such embedded objects
using the steps above.

mailto:Ismail.Patel@tessella.com

The first three steps are relatively simple and straightforward
since these crawls produce a container file in either ARC [7] or
WARC [8] format with well-defined properties.

It is also relatively easy to extract the embedded objects from
such a container (to produce the original files that manifested the
sites crawled) and to characterize each file in turn.

This can produce a very large number of entities to be
characterized. For example, the 200TB in the BnF collections
are estimated to contain 50 billion embedded objects [9].

Each of these embedded objects can then be assessed to see if
they can be adequately preserved in the long-term. This can be
done, for example, by comparing the properties (e.g., format of
the files) against known issues and then migrating problem files
to a new format [6]. This has previously been performed on a
small experimental scale [10] but not yet, to the best of the
authors’ knowledge, on a larger scale.

In fact, it is quite controversial whether or not such format
obsolescence exists [11]. A recent study of web material [12] has
shown that while most formats have persisted for a decade or
more, not all do so and older versions of formats fade from
popularity. In a sense, this argument is not relevant to this paper
anyway since it is mainly focused on the scalability of bulk
operations on large web archives collections and migration is just
an example of such operations.

The size of the problem places at least two scalability demands
on the ability to preserve websites after crawling that are
addressed in this paper:

 Ability to characterize such a large number of files

 Ability to use such properties to determine future
migration strategies.

This is caused by both the amount of computing resources
needed to characterize, say, 50 billion entities and the ability to
cope with the amount of information that such characterization
produces and still make it useful in future preservation actions in
a timely manner.

The latter issue (i.e. coping with this amount of information)
occurs because it will strain the ability of any indexing system to
enable searches to be made that can return information in
reasonable timescales. Given that the quantity of material on the
web is still rapidly increasing and future scans are likely to be
more frequent and more comprehensive, this problem is likely to
become more pronounced over time, probably outpacing
improvements in indexing capabilities.

In this paper we describe an approach whereby we break the
problem down into two parts to remove this indexing issue:

 Describing properties at the container level in
sufficient detail to determine whether the container
requires some action to be applied to it or its content.

 Dealing with each container (and its contents) in turn.

This approach is described in more detail in section 3, and the
impact on the characterization process is described in section 4.

Section 5 describes the impact on preservation actions (using
format migration as an example). Finally, some general
conclusions are drawn.

2. METHOD
This work has been carried out using Tessella’s Safety Deposit
Box (SDB) software. This has an existing suite of web crawling
and web characterization functionality that enabled the specific
problems to be addressed efficiently. The testing in this paper
used version 4.3 of this software.

Performance testing was carried out using an Amazon EC2 M1
medium instance; a single-core Linux instance with the
approximate processing power equivalent of two 1.2 GHz
Opteron Processors [13].

SDB is commercial software, however most of the tools
described in this paper are open-source and the methodology
described in this paper should be generally applicable to the
preservation of web archives irrespective of the underlying
software used to implement the digital preservation repository.

3. CONTAINER VS EMBEDDED OBJECT
PROPERTIES
ARC files were developed by the Internet Archive to enable
efficient storage of data from web crawls and other archives of
website data. WARC files are an ISO-certified extension of this
format which allows recording of additional information, such as
HTTP request headers and additional metadata (including file
conversion records, which hold metadata on files which have
been converted into a different format). They have the same basic
format: a header block, followed by a series of URL records,
which may themselves be compressed with a compression
algorithm such as gzip. While they are efficient at storing the
results of web crawls, accessing their embedded files requires
temporarily unpacking the objects, which can be computationally
expensive in the case of large archives.

To correctly preserve the objects embedded in the archive files, a
preservation system must be able to identify and characterize
both the archive container object, and the objects contained
within the archive. It must later be able to query key properties
of the embedded objects to determine if they are in need of
preservation actions, such as file format migration.

Standard archiving and storage systems can either ignore the
contents of container formats, or attempt to record properties of
all embedded objects. If a system does not hold information
about the individual objects embedded in archive files, any
attempt to preserve the archived files, such as migrating them to
a newer file format, will either ignore the embedded files
completely or else require the system to extract all files from all
stored archives to determine which files need preservation
actions to be applied. Alternatively, if a system stores a complete
set of technical metadata information on each embedded object in
the database, accurate searching is possible, but this can result in
a very large number of entities which cannot be queried within a
reasonable timeframe.

In this study, to reduce the number of objects which have to be
queried to locate files at risk, we associate queryable information

about the embedded objects as properties of the container object.
In the case of file format migration these properties would be the
formats of the files embedded in an entity, each file format being
stored as a separate property of the container object with a name
such as “this container contains objects of type”, with the value
being one of the file formats embedded in the object.

This approach requires two modifications to standard workflows:
firstly, the characterization process must correctly characterize
embedded files and associate the required properties of these
files with the container. As archives may themselves contain
other archives, this process must be recursive, and characterize
all files in all archives contained in a particular object.

Secondly, the preservation process must search for embedded
objects in need of preservation by checking the properties of each
container object to determine if it contains objects in need of
preservation, and then unpack and process those archives which
do contain objects in need of preservation.

Because this approach requires that only each container is
queried, and not every embedded object, considerable reductions
in the number of entities which need to be queried can be
achieved. In the case of web archives containing many hundreds
or thousands of objects, which is not uncommon in the case of
archived web crawls, this can result in a reduction of several
orders of magnitude in the number of entities queried, producing
a concomitant increase in the speed of identifying objects in need
of preservation.

4. CHARACTERIZATION OF WARC
FILES

4.1 Ingest
To correctly preserve web archives, it is necessary to ingest them
into the archiving system. This requires a number of steps which
are usually automated via a workflow to allow the efficient ingest
of objects. In the case of a web archive, the steps required for
ingest will typically involve:

 Crawling a given URL and creating a submission
information package (SIP) for ingest into the archiving
system

 Checking the produced SIP for viruses

 Checking the integrity of the produced SIP: for
example, that the number of files in the SIP matches
the number of files in the associated technical metadata

 Characterization of the files in the SIP, as described
below.

 Storage of the physical files on storage systems

 Storage of the SIP metadata in the repository database
Simultaneously with the ingest, the system also generates XML
metadata which describes the ingested objects, their relationships
and key properties (e.g. Significant and/or Transformational
Information Properties). This metadata is also stored in the
database on successful ingest.

4.2 Characterization of files
Characterization is one of the key processes in ingest, and
typically involves three steps: identification, validation and
property extraction.
To characterize the files embedded in WARC or ARC files, the
system must first identify the archive file. SDB identifies files
using the open-source DROID (Digital Record Object
IDentification) tool, originally developed for The National
Archives [14]. DROID identifies files from their byte sequences
by searching for signatures specific to file types. The current
version of DROID is capable of detecting over one thousand
different file types, and its signature definitions are continually
updated to improve DROID’s capabilities. If files are not
identified by DROID, additional tools may also be called.

A file whose format has been identified with DROID will have
its technical metadata updated to associate it with a specific
Persistent Unique Identifier (PUID) as defined in the PRONOM
technical registry, a publically available registry of technical
information on file formats. As well as PUIDs, PRONOM and
other technical registries provide technical information for the
preservation of different file formats. For example, this can
include software tools for validation, extraction of key properties
or extraction of embedded objects for specific file formats. They
may also provide information on tools and pathways for
migration between different file formats.

SDB incorporates the data from PRONOM in its own technical
registry, which it uses to determine the appropriate tools for
characterizing and migrating each of the different file formats.

Following identification, additional tools will be called to
validate file formats and to extract key properties of files to
ensure accurate long term preservation of the object can take
place within the managed digital repository. Information from

Figure 1.
Schematic of basic steps to aggregate information on
archive contents

Figure 2
Typical division of time to process ingest steps, as a proportion of
total ingest time

each of these steps is written to the metadata element which
represents each file.

4.3 Extraction of Embedded files
After a file has been identified, characterized and undergone
property extraction, the registry is checked to determine whether
object extraction tools exist for each object in the SIP. Once an
object extraction tool has been identified for an archive file
format, such as a (W)ARC or ZIP files, the tool is called to
extract the contents of the container into a temporary work area.
Files extracted from the WARCs are passed to DROID for
identification. DROID will attempt to uniquely identify the file
format of the file and, if a file is identified, may pass it on to
further tools (determined by querying the technical registry)
which will validate the file format and extract properties of the
object to be maintained as technical metadata within the
repository system.

This information is stored as part of the XML metadata of the
container object, allowing information on the objects inside a
container to be retrieved without recharacterizing the entire
contents of the web archive container file.

As discussed in section 3, to enable efficient preservation
actions, key properties of the embedded files are aggregated and
stored as properties of the container object. For example, the file
types of embedded files are stored as separate individual
properties of the container file for use in migration and other
archival operations that require the efficient identification of
archives containing specific file formats.

This process of extraction and characterization is recursive: if
archive files are found in the unpacked archive, these too are
unpacked and their contents are in turn characterized. Key
properties are recorded for embedded archives, both in the
metadata entry for the embedded archive, and as part of the
properties added to the parent container, so that the original
archive file has properties which aggregate information from all
levels of embedded file within the archive. For example, in the
case of recording file format information for file format
migration, the top-level container will have properties, including
transformational information properties, representing each of the
file formats embedded in any of the contained files. In addition
there will be entries in the XML metadata for each embedded
file, and in the case of nested archives, this metadata will include
properties representing each of the file formats embedded in the
nested archive.

4.4 Conceptual Characterization
In addition to the above physical characterization, web sites pass
through a conceptual characterization process. This identifies the
existence of technology-independent information objects (e.g., a
web page, an image or a document) that can be manifested in a
variety of different technologies (each potentially changing the
number and arrangement of files as well as file formats). This

allows the identification of links between these information
objects (e.g., the link between a web page and an image). This is
then subsequently used to identify information objects that might
need modification even though it had not been directly affected
by a preservation action (e.g., the need to edit a HTML page if an
image has changed format and thus extension).

4.5 Performance of Characterization
To measure the performance of the characterization step on
typical web archives, we performed some basic benchmarking to
test whether the characterization step was sufficiently fast for
efficient web archiving. This involved running SDB 4.3 on the
single core cloud computing instance described above, measuring
the performance during ingest of a selection of public websites.
The first thing to note is how the relative speed of
characterization compared to other ingest steps. Analyzing the
time spent on each ingest step (Figure 2) clearly shows that the
dominant steps are:

- Crawling (28%)

- Thumbnail creation (58%)

- Characterization (8%)

Web crawling is known to be a limiting step, but the elapsed
time is largely dependent on wait times and bandwidth issues.

Creating thumbnails is very process intensive since SDB creates
an image of all archived HTML files as they originally appeared,
complete with any embedded objects. If increased throughput is
required the thumbnail creation step can be disabled, which
would result in a considerable improvement in the overall rate of
ingest.

Characterization took just 8% of the time of a typical ingest
equating to a typical speed of 60MB/min. This is a considerable

improvement on the results reported by the State and university
of Denmark using FITS [15] which averaged below 4MB/min.
We are not sure of the reason for the discrepancy. One possible
reason is that, while SDB will only use a single tool for each
characterization process, FITS can attempt to use several.
Another possibility is the way jobs are packaged within the
workflows of each system could be different.

Figure 3 shows the breakdown of the percentage of the time
taken to perform various tasks within the characterization
process. This shows that decompressing the WARC files is the
most time-consuming of the tasks, taking 51% of the time taken
for characterization. It took a total of just 4% of the time for
DROID to identify the WARC files and a further 5% for DROID
to identify the embedded files post extraction. Jhove and other
tools (e.g., SDB’s built-in XML validator) took most of the rest
of the time to validate and extract file properties (31%).
Conceptual characterization took the remaining 9% of the time.

All other ingest processes (i.e. excluding crawling, thumbnail
creation and characterization) took just 6% of the time. This
includes creating a SIP from the crawl, performing initial quality
control checks (for SIP integrity, fixity and virus checks) plus the
overhead in storing the resulting content files in a file store,
storing the metadata in both a database and a file store and
updating a SOLR search index.

One thing that is clear is the extra process of aggregating
embedded object properties still allows efficient characterization
and ingest of large archives.

4.6 Scaling up
This study did not have access to significant hardware, only
using a single-core medium size amazon EC2 cloud instance for
benchmarking, which is considerably underpowered compared to
the multi-server setups used in many modern web archiving

systems. This makes it hard to quantify exactly how this
approach would scale if deployed on more significant hardware.

However, it is known that the approach used in this study has
been used to achieve total ingest (including characterization)
rates in excess of 20TB/day by FamilySearch using relatively
modest processing power (2 Dell 2950 servers each with 2 Intel
Xeon E5430 processors, with 4 cores clocked at 2.66GHz and
32GB RAM) [16]. Even though this has modest cost for a
production system (c. $10k at today’s prices) it is many times the
processing power of the single core benchmarking instance used
in this study. Also, unlike in this study, it enables ingest (and
particularly characterization) of different content to be run
dozens of time in parallel. Hence, while that study related to
much larger files (typically 10-30MB) it did find that the
fundamental limit on scalability was the ability to read files fast
enough from disk and transfer them across the network and not
the processing speed of the server. This required the use of high
performance switches and drive arrays to reduce this bottleneck.

While processing more files is likely to lead to a higher
overhead, it is still reasonable to expect the method proposed in
this study will also parallelize well by adding more computing
cores and more server machines.

5. MIGRATION INSIDE WARC FILES
To take advantage of the stored embedded object properties,
preservation actions, such as file format migration, must use
these properties to reduce the number of entities which must be
queried to determine which entities require action.

As with ingest, file format migration in an archiving system
normally requires a number of steps to occur through an
automated workflow, although a number of key steps can also
require human intervention:

 File formats at risk are selected, either by manually
selecting a list of PUIDs to migrate or by choosing a
risk threshold above which to migrate files

 Files to migrate are chosen from the files at risk

 Pathways to migrate the files at risk are chosen

 The files are migrated, as described below

 The SIP is re-ingested into the database, in a similar
manner to the ingest workflow.

5.1 General approach
To migrate files inside (W)ARC containers we used the approach
of breaking the problem down into parts:

 Finding which of the millions of containers are in need
of a preservation action to be applied to them

 Determining which entities within each container then
need action, and extracting these from the container to
a temporary working area of the system.

 Performing that action (in this paper a migration will
be used as an example of such an action)

 Re-wrapping the content into a new container

Figure 3
Proportion of characterisation time taken by individual tools

This aggregation of the file types of the embedded objects as
properties of the container results in a dramatically smaller
number of objects to query during preservation actions. This in
turn results in a significant improvement in the scalability of
performance related to the preservation of web archives and
other container formats.

5.2 Finding containers in need of action
In the case of file format migration, file formats at risk are
selected either by manually choosing specific file formats which
are at risk, or by selecting a risk threshold, a value which
indicates how at risk of obsolescence a file is. To determine
which file formats are at risk using a risk threshold value, the
archiving system must query a technical registry to retrieve file
formats which are above this risk threshold. The risk threshold
for each file format is determined by answering a number of risk
questions about each file format in the technical registry, such as
whether it is an open-source or proprietary format. The responses
to these question are then weighted (weightings for each question
are set by the system user, depending on their requirements) and
combined to create a risk value.

Either method produces a list of file formats which require
migration, identified by their PUIDs. To locate files in the
repository requiring preservation we then query the database for:

 Files of a file format type at risk

 Files which have a property “contains file(s) of type”
matching one of the formats at risk.

As technical metadata about these file objects are stored in the
system’s database, these can be queried easily with a SQL query
on the relevant database tables. The resulting list of files and
containers at risk is passed onto the next step of the migration
process: determining which individual files require migration.

5.3 Determine at risk content within a
container
Once an archive has been identified as requiring migration, all
files within it are extracted into a temporary work area. As with
characterization, this is a recursive process, as archive files may
in turn contain further archives. All archive files in a particular
archive are in turn unpacked. From this temporary unpacked
copy of the archive, the files in need of migration need to be
identified.

The properties on a container only indicate that an archive
contains a particular file format at risk and not which files within
the archive are of that format. This means that once a container
containing files at risk has been determined, individual files at
risk within the container must be identified. This is achieved by
parsing the XML metadata associated with the container for
elements representing embedded objects of the file format at
risk, or embedded elements which also have a property
indicating that they contain files at risk. This occurs recursively,
to identify all files at risk even in multiple nested archives.

5.4 Performing migration
Once files at risk have been identified, the user chooses a
pathway to transform files at risk into more current formats.
Possible migration pathways for a file format at risk are obtained
from the technical registry, and one is manually chosen for each
format at risk by the user.

The exact pathway and tool used for migration depends on the
pathways available in the technical registry, but the general
procedure is simple: the tool is invoked, either through its API or
through the command line, to convert the file into the new file
format in a temporary work area.

Migration requires that not only are particular file formats
migrated successfully, but that the conceptual components that
they are part of are also migrated successfully: for example, in
the case of migrating an image embedded in a web page, not only
must the image be migrated, but the integrity of the webpage
must be maintained. This involves updating links to the image
maintained by other information objects within the archive so
that the migrated format is correctly linked from those objects.

Figure 4
Schematic of basic steps required to perform file format
migration on embedded files. In this example, a JPEG to PNG
migration is performed.

How exactly these updates are managed depends on how the
archive file is recompressed, as discussed below.

5.5 Validation of migration
Following migration each conceptual entity identified during
conceptual characterization must be checked to ensure that it still
exists, still has the same links to other conceptual entities and
still has the same transformational information properties. For
example, for images, these properties may include the histogram
spread of red green and blue pixels while for documents it
typically includes the number of pages. To validate successful
migration, physical and conceptual characterization is performed
on the migrated files. These properties are compared to the
original, to confirm that they have not been changed by the
migration, which would indicate a failure in migration.

5.6 Rewrapping content back in containers
At the end of the migration, it is important that a (W)ARC file is
recreated so it can be utilized by the appropriate access
workflows, e.g., in the Wayback machine [17]. This means that
the (W)ARC containers need to be recreated using the
appropriate combination of migrated and non-migrated files. As
discussed earlier, to maintain the integrity of migrated web
pages, links to the migrated files must also be updated
appropriately.

The reconstruction of WARC files creates a specific practical
problem: the specification for WARC files includes protocols for
migrating files inside a WARC container and recording the
details (provenance) of the migration in conversion record
metadata in the WARC. However, most WARC access
workflows, such as the Wayback machine, do not currently
support conversion records, so WARC files migrated in this way
will not be properly displayed. This required the development of
two different workflows for creating migrated WARC files: one,
which is formally correct according to the WARC standard, and
maintains the integrity of the WARC schema, and a second
which is more pragmatic, and produces a file that can be
displayed correctly by current WARC viewers. This pragmatic
workflow can also be used for the migration of container formats
which do not support conversion records, such as ARC files.

If the formally correct workflow is chosen, then the workflow
creates conversion records for each migrated file, which
reference the original WARC file pre-migration. To reconstruct
the full archive, both the original WARC file and the new
WARC file containing the conversion records are required. Links
and other references to converted files are not updated, as a strict
implementation of the WARC viewer should be able to retrieve
the most recent version of the updated files.

If the pragmatic workflow is chosen, then the archive simply
replaces the unmigrated version of the file in the archive with the
new, migrated version. To maintain the integrity of the migrated
webpages, links are updated where possible to refer to the
migrated files, for example, updating files extensions where
necessary. A new archive file is created which contains migrated
files, files modified because they reference migrated files and
files from the original archive which have been unaffected by the
whole process..

In either workflow, once the new (W)ARC containers have been
created, they are re-ingested into the archive, and the associated
archive object metadata is updated to reflect the provenance of
the transformation action that has been performed.

5.7 Limitations on validation
The migration process involved the following conceptual steps;

1. Unpacking of the (W)ARC files

2. Migrating the at risk files and modifying affected files

3. Repacking of the (W)ARC files

Ideally it would be possible to directly compare the
transformational information properties of the (W)ARC file as it
exists before step 1 and the (W)ARC file existing after step 3.
The original characterization does indeed take place before step
1 but it uses the same unpacking process as step 1 before
characterizing so it is equivalent to taking place after step 1. The
same is true in reverse for the second characterization step
meaning that the only true verification of the above process is
taking place by comparing properties produced before and after
step 2. This is probably reasonable since the process of packing
and unpacking (W)ARC files is unlikely to lead to information
loss or data corruption. However, it might still be better to have
alternative implementations of packing and unpacking in
migration and in characterization so that the process could be
independently verified.

6. CONCLUSION
By using the initial characterization process to aggregate
information on the objects contained in a web archive, and by
storing these aggregated properties as properties of the container
object, we considerably reduce the number of entities that need
to be searched to perform preservation actions, and hence
increase the scalability of web preservation, while maintaining
efficient characterization during ingest.

While described using file format migration as an illustrative
example, this method is not limited to describing file formats:
any property which can be aggregated across the archive could
also be recorded and retrieved using this method.

While this approach was developed to deal with the challenges of
large scale web crawls, it would also have advantages across a
large number of other situations in which characterization and
file format migration (or other, similar operations) need to be
performed across embedded file formats, provided that suitable
software tools are available for identification/validation of the
container objects and extraction of the embedded files formats.
For example, the same approach has been successfully applied to
the preservation of other container formats, such as .zip files.

7. ACKNOWLEDGMENTS
This research was partly funded by the European Union as part
of APARSEN - Alliance Permanent Access to the Records of
Science in Europe Network- under FP7-ICT-2009 agreement
269977.

8. REFERENCES
[1] For a recent review see “Web Archiving”, Maureen

Pennock, DPC Technology Watch Report, March 2013
[2] Clément Oury, Sébastien Peyrard. From the World Wide

Web to Digital Library Stacks: Preserving the French Web
Archives. In Proc. iPRES2011, Singapore, 2011.

[3] www.httrack.com/
[4] crawler.archive.org/index.html
[5] netarkivet.statsbiblioteket.dk/
[6] Robert Sharpe. Active Preservation of Web Sites. In Proc.

International Web Archiving Workshop IWAW 2010,
Vienna, 2010.

[7] http://archive.org/web/researcher/ArcFileFormat.php
[8] http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue

_detail.htm?csnumber=44717
[9] Information from Sébastien Peyrard in panel session at iPres

2011.

[10] Strodl S., Beran P. and Rauber A. Migrating content in
WARC files 2009 The 9th International Web Archiving
Workshop (IWAW 2009) Proceedings", (2009), 43 - 49

[11] Rosenthal, David S.H.; (2010) "Format obsolescence:
assessing the threat and the defenses, Library Hi Tech, Vol.
28 Iss: 2, pp.195 – 210

[12] Jackson, Formats over Time: Exploring UK Web History,
arXiv:1210.1714

[13] http://aws.amazon.com/ec2/instance-types
[14] http://www.nationalarchives.gov.uk/information-

management/our-services/dc-file-profiling-tool.htm /
[15] http://openplanetsfoundation.org/blogs/2013-01-09-year-fits
[16] Jason Pierson, Mark Evans, James Carr and Robert Sharpe.

Considerations for High Throughput Digital Preservation. In
Proc. iPRES2011, Singapore, 2011, Page 267

[17] http://archive.org/web/web.php

