
Automatic Discovery of Preservation Alternatives
Supported by Community Maintained Knowledge Bases

Rudolf Mayer, Johannes Binder,
Stephan Strodl

Secure Business Austria
Vienna, Austria

Andreas Rauber
Vienna University of Technology

& Secure Business Austria
Vienna, Austria

ABSTRACT
Preservation Planning, which deals with selecting the most
appropriate preservation action to be applied to digital ob-
jects, is an important step in any digital preservation activ-
ity. Comprehensive Preservation Planning depends on the
availability of identified alternatives of preservation actions,
which are for example file format migrations to migrate data
in an outdated format to one that has better support. Also
emulation, e.g. of the behaviour of a specific software ap-
plication (application emulation), can be a viable preserva-
tion action. The alternative identification step can either be
performed manually by an expert, or (semi-)automatically,
if appropriate knowledge bases are available. Building and
maintaining such knowledge bases is however a tedious task,
as the number of software applications and file formats, and
especially their relation to each other, is very large. In this
paper, we therefore present an approach to automatically
build knowledge bases for Preservation Planing from already
existing, open resources. One such source is the community
maintained Freebase, which contains linked data on many
topics, among them file formats, software applications, and
most importantly, their relations, in a structured manner.
We demonstrate the applicability of these knowledge bases
by automatically identifying possible digital preservative ac-
tions on a uses case, an eScience experiment from the do-
main of data mining. This use case originates from the task
of process preservation, where we look beyond single files,
but regard complete chains of executions as the objects to
be preserved.

1. INTRODUCTION
Preservation planning can be understood as a form of utility
analysis, where each different possible preservation action is
quantified. The goal is to select the most appropriate preser-
vation action to be applied to digital objects. Preservation
Planning is a vital step in any digital preservation activity.

An important phase in Preservation Planning is to identify
viable preservation actions, i.e. to identify which actions can

iPres 2014 conference proceedings will be made available under a Creative
Commons license. With the exception of any logos, emblems, trademarks
or other nominated third-party images/text, this work is available for re-use
under a Creative Commons Attribution 3.0 unported license. Authorship of
this work must be attributed. View a copy of this licence.

be applied to the digital objects that would prepare them
to be usable in the future. Such preservation actions are for
example file format migrations to migrate data in an out-
dated format to one that has better support. In most cases,
there is a wealth of possible formats to convert into. Also
emulation, e.g. the emulation of the behaviour of a software
application, is an important approach in digital preserva-
tion.

Business processes are a more complex form of digital ob-
jects, where the domain of interest moves beyond single files,
but to complete chains of process executions, including a
number of files generated and consumed, and the software
needed to manipulate them. To provide a faithful preserva-
tion of the execution of the process, preserving the behaviour
of the software stack required for the process steps becomes
necessary. In the setting of process preservation, we thus
look beyond single files, but also regard the complete chain
of a process execution, and the environment a process is ex-
ecuted in. Therefore, we move from regarding only the view
path of single object, towards the more complex interaction
of multiple view-paths that might be realised in the same
system.

Alternative identification for preservation planning can ei-
ther be performed manually by an expert, or automatically,
if appropriate knowledge bases are available. Building and
maintaining such knowledge bases is however a tedious task.
In this paper, we therefore present an approach to automati-
cally harvest such knowledge bases for Preservation Planing
from already existing resources. Specifically, we utilise the
community-maintained Freebase, as well as the domain of
Linux software packages. On top of these knowledge bases,
we develop a service that can automatically identify preser-
vation action alternatives for a given system. These systems
need to be described in a formal way according to a model re-
cently proposed in [2], which introduces a model to describe
the context of business processes. As a part of this model,
the technical environment of a system can be described.

It has to be noted that the service presented in this paper
is meant for the discovery and identification of alternatives.
The suitability of these alternatives for actually solving the
digital preservation problem at hand still have to be assessed
and verified by digital preservation experts.

The remainder of this paper is structured as follows. In Sec-
tion 2 we give an overview on related work. Section 3 reviews

http://creativecommons/licenses/by/3.0/legalcode

the Context Model, which can be utilised to formally rep-
resent the context of a process, of which we are specifically
interested in modelling computing systems. In Section 4 we
then describe the data sources and harvesting processes to
obtain our knowledge bases. Section 5 will then detail on
how these knowledge bases can be utilised, in conjunction
with the formal mode of a system, to identify preservation
alternatives. In Section 6, we then show the applicability of
the approach on a use case example. Specifically, we take an
example of a process to be preserved, and analyse the differ-
ent alternatives identifiable. Finally, we provide conclusions
and an outlook on future work in Section 7.

2. RELATED WORK
The term Digital Preservation as defined in the UNESCO
Guidelines for the Preservation of the Digital Heritage [18]
is the process of preserving data of digital origin. The two
main strategies for the preservation of digital heritage listed
are migration [10] and emulation [14, 16, 7]

Emulation refers to the capability of a device or software
to replicate the behaviour of a different device or software.
Emulation can happen on different levels in a system:

• Application An application is usually utilised to render
a digital object (if the digital object to be preserved
is not itself an application, e.g., computer games, dig-
ital art, self-running documents, process management
software). By replacing the original application in-
terpreting the digital object the functionality of this
application is emulated.

• Operating System On a modern computer system an
operating system provides access to the underlying
hardware for an application running on top of it. By
providing a layer that redirects the operating system
calls of the application to the same calls of a different
operating system, it is possible to emulate the operat-
ing system with this additional layer on top of a new
operating system.

• Computer Architecture The most common use of emu-
lation is to emulate the functionality of a computer
architecture by using software, thus introducing an
additional layer in the software stack of a rendering
environment. Physical hardware can be emulated us-
ing either full hardware emulation where all hardware
components of the computer architecture are recreated
in software on a new host-system or by virtualisation
where the CPU is not completely emulated (like in vir-
tualisation software such as VirtualBox1).

Regarding emulation, in this work, we are primarily inter-
ested in identifying emulation opportunities for applications.
However, the model described in Section 5 could also be
utilised to identify strategies e.g. for Computer Architec-
ture emulation.

File format migration is a strategy of refreshing digital files
over time, to keep the content stored in formats that can be

1VirtualBox – https://www.virtualbox.org/

interpreted by current technology. Migration might also be
done anticipatory and transform contents to formats that
are expected to be readable in the future. Such a migration
is usually easier done today, as more tools that can read the
presumably outdated format are still available. Identifica-
tion of suitable format migration paths that are supported
by currently available software tools is a primary concern
for our approach regarding format migration.

Also for this approach, it is important to have a knowledge
base on file formats, and the software that can manipulate it.
Several possible sources were investigated, foremost well es-
tablished registries such as PRONOM , and tools developed
in the SCAPE project to facilitate preservation planning.
However, these approaches did not provide a comprehensive
and up-to-date data base of software that can handle the
various formats.

Several attempts to build comprehensive digital preservation
related knowledge bases or registries exist. The PRONOM
registry2[5], developed by The National Archives of the United
Kingdom, primarily contains information on file formats,
along with a classification, description, publication dates,
and vendors. Further, the registry provides information on
software applications, such versions, release dates, and de-
fault file formats for that software. In addition, also ven-
dors are registered. Each entry in the registry’s database
is assigned a PRONOM Unique identifier. Currently, the
registry holds around 1,100 file formats, as well as around
280 entries on software. It also contains basic support for
identifying migration pathways, i.e. conversion chains from
one format to another, along with the software that supports
this. However, the database currently contains less than 50
of these pathways. PRONOM is also designed to contain
information on whether a format is at risk, however, this
information is generally not provided.

The Community Owned digital Preservation Tool Registry
(COPTR)3 is a registry for tools useful for preserving digi-
tal information for the long term. It contains a Wiki-style
collection of tools along with a short description of their
functionality. However, this information is not well struc-
tured, and can’t be processed automatically. Also, links to
file formats these tools are capable of processing are missing.
Currently, the registry contains around 360 tool entries.

While PRONOM and COPTR surely have huge impact on
digital preservation solutions that need this type of registry
information, it seems that the amount of content provided is
not enough for identifying a larger set of alternatives. This
was also recognised by [6], where the authors try to aggre-
gate information on file formats from several sources. They
utilise linked open data repositories for this approach. We
will in the subsequent sections investigate also on some of
the sources utilised in that approach.

Comparing different options of preservation actions is the
challenge of preservation planning. In [3] a preservation
planning workflow that allows for repeatable evaluation of
preservation alternatives is described.

2http://www.nationalarchives.gov.uk/PRONOM
3http://coptr.digipres.org/

Regarding the long-term availability of software, the Soft-
ware Sustainability Institute defines, among others, the fol-
lowing strategies [9]:

• Emulation of the execution environment, i.e. utilising
emulators that mimic the functionality and behaviour
of the hardware and software environment. This strat-
egy requires Operating System and Computer Architec-
ture Emulation.

• Migration of the software to a different platform. This
can be as simple as just compiling otherwise platform
independent software for the different platform or in
worst case may require a complete rewrite of the soft-
ware.

• Technical preservation of the hardware environment.

• Cultivation, by releasing the software into open source
and engage the community to maintain and develop it.

• Hibernation, which includes archiving the software and
the knowledge needed to use it, for a potential future
use.

Most of these strategies can be useful in the preservation
of software applications. However, most of them are rather
alternatives that try to preserve the status-quo of the current
system setup. They do not require a specific identification
step of possible alternatives, which would be the case e.g.
for migration of a file format, where we need to know which
formats are available for a specific process setup.

The view path [17] of a digital object is the combination of a
software and hardware that is required to render an object.
This can be described with the Preservation Layer Model
(PLM), which typically consists of the layers of a specific
application, and operating system and the hardware sup-
porting that operating system. However, but more complex
layering is possible as well. The above mentioned techniques
of migration and emulation basically modify elements in this
view path. In the domain of preserving complete processes,
which can be understood as a digital object itself, we nor-
mally encounter a multitude of digital objects that are ma-
nipulated in a chain. Often subsequent steps depend on
the output of the previous activity. In such a setting, mul-
tiple view-paths exist, and they partly share some of the
elements from the different layers, e.g. the same operating
system might support two different applications used in two
different steps.

3. REPRESENTATION OF SYSTEMS TO BE
PRESERVED

A formal model to represent the context a process is em-
bedded in was presented in [2]. In the setting of process
preservation, all but the simplest processes require to be
described by a multitude of information objects, as well as
their interconnections and relations. Examples of the details
to be preserved are the process model itself, and the actors
involved in the process execution. On a more technical level,
the infrastructure required to support the process execution
is of interest. This includes the hardware and software that
provide the execution platform, as well as various artefacts

Figure 1: The ArchiMate Framework ([8])

consumed and created during the process. Of interest are
furthermore any dependencies to external parties. To en-
able a semantic description of these objects in a structured
manner, the context model, a formal meta-model, was de-
rived. It describes classes of elements and their relations,
in the form of OWL ontologies. To be extensible, it is de-
signed with a core (upper) ontology describing the generic
concepts, and extension mechanisms to map supplementary
ontologies describing more specific aspects. Ontologies are
a well-suited method to implement this architecture.

The core ontology is based on the ArchiMate 2.0 language
([8]), an international standard from the Enterprise Archi-
tecture domain. The ArchiMate modelling language includes
a minimum set of concepts and relationships. The Archi-
Mate framework organises its language concepts in a 3 × 3
matrix: the rows capture the different enterprise layers busi-
ness, application, and technology, and the columns capture
the cross layer aspects active structure, behaviour and pas-
sive structure. Figure 1 depicts this organisation of the
framework, while Figure 2 lists the main concepts provided
by ArchiMate, where the colours of the elements correspond-
ing to the categorisation into active structure, behaviour and
passive structure. Active structure contains entities capable
of performing behaviour. The behaviour itself contains ele-
ments defined as units of activity performed by one or more
active structure elements, and the passive structure contains
objects on which the behaviour is performed.

For the task of identifying preservation alternatives, we can
use the concepts of the technological layer of the framework
to model our systems.

The core domain-independent ontology of the Context Model
is then augmented through a set of specific extension ontolo-
gies that are tailored to explicit modelling concerns. Cur-
rently, the context model provides extensions to cover as-
pects such as Legal, License, Patents, Data & Formats, Hard-
ware. The extension ontologies are, when possible, based
on already existing languages, for which then the ontology
mapping to the core ontology was provided. On overview
on this is given in Figure 3. Most of these extensions map
to elements in the technological layer, and are thus also of
interest for our modelling concerns.

Specifically, the current implementation of the alternative

Figure 2: The ArchiMate meta-model

Figure 3: Overview on available extensions and their
relation to the core ontology

identification operates on the following entities: Artifact,
SystemSoftware and FileFormat. The two former are part of
the core ontology, while the third one is an element defined
via the data format extensions, which is realised via the
PREMIS data dictionary.

4. KNOWLEDGE BASE GENERATION
In this section, we describe two different approaches to ob-
tain the data needed for the knowledge bases of our alter-
native identification service. We further discuss technical
details of the representation of the knowledge.

4.1 Freebase – Software and File Formats
The online database Freebase4 [4] provides a community
driven and maintained database of semantic linked-data on
various topics. Among them, there is information on soft-
ware applications and file formats. The schema for software
tools5 is described in Table 4.1. Currently, there are more
than 9,000 entries in this schema. The schema for file for-
mats6 is described in Table 4.1. Freebase contains at the
moment more than 3,500 entries for file formats.

4http://www.freebase.com/
5http://www.freebase.com/computer/software?schema
6http://www.freebase.com/computer/file_format?
schema

Figure 4: Relations between File Formats and Soft-
ware in Freebase

An overview of some of the relations in the database is given
in Figure 4. The Written By and Read By properties allow
linking software applications to specific file formats. Specif-
ically, this allows on the one hand to identify possible con-
version paths from an origin file format to a desired file for-
mat, by identifying software tools that can read the origin
and write the target format. In more complex cases, if no
software is available that can directly do this conversion,
chains of format migrations via intermediate formats can be
established. On the other hand, the information on which
formats can be read by a specific software allows to estab-
lish a rudimentary list of software that is compatible to each
other. It is possible to deduct which software applications
are capable of handling the same types of file formats, and
thus, theoretically, exchangeable. Of course this identifi-
cation of equivalence ignores the functionality provided by
each software, and thus might return a list of false-positive
equivalents. Also, some of the potential preservation alter-
natives might not make sense from other points of view. It
therefore requires still, as mentioned above, the review and
assessment of a digital preservation expert. Another ap-
proach of identifying software with similar functionality is
via the genre and protocols. The former is a human clas-
sification of types, e.g. PDF readers as software that can
render PDF files, while the latter can be utilised for soft-
ware that is no directly manipulating files, such as an FTP
client, implementing the File-Transfer Protocol.

While some of the data in Freebase is not as clean as in
other registries that are dedicated to digital preservation, it
has two rather big advantages. On the one hand, the process
of extending the knowledge base is very simple via an online
interface, and happens at a frequent rate by the community.
Also, due to the linked data scheme, information from Free-
base can be easily augmented by other means than directly
in the Freebase database, e.g. by augmenting it by a locally
available data source. Also the size of the knowledge base
is an advantage for the task of alternative identification. At
the moment, there are three times as many formats, and 45
times more software applications in Freebase compared to
the PRONOM registry.

4.2 Software alternatives for Linux packages
A second approach to build a knowledge base for software
application emulation is based on the concept of software

Table 1: Freebase Data Schema for Software
Property Description
Developer Manufactures of the software (e.g. organisation or person)
Software Genre Categorisation of applications, e.g. Database management system or PDF

reader
First Released Date of the first release of this software
Latest Version Version number of the latest release
Latest Release Date Date of the latest release
License The license the software is released under, e.g. GNU General Public License
Programming languages used Programming languages used to write the application, e.g. C++, Objective-

C, etc.
Compatible Operating Systems Name and versions of operating systems the software can be run on
Protocols Used The Internet Protocols used in this application, e.g. Hypertext Transfer

Protocol (HTTP)
Protocols Provider Other software that also use the same protocols

Table 2: Freebase Data Schema for File Formats (excerpt)
Extension Common extension of this file format
Genre Categorisation of formats, e.g. Audio file format or Executable
Creation Date The date when the format was created / published
Written By Link to software applications that can write this file format
Read By Link to software applications that can read this file format
Used On A list of operating system platforms the format is commonly used on
Format Creator The organisation or individual creating the format
Magic The magic number (identifier) of this file format, e.g. GIF89a for GIF

images
MIME Type The MIME type of the format
Contained By The container format this format is usually contained in
Container For Others formats this format is a container for; e.g., CSO is a container format

for compressed ISO images
Extended From Any other format this format is based on / derived from
Extended To Any other format that extends on this specific format

packages, used in many Linux distributions, e.g. Debian7.
In these operating systems, software applications (and com-
ponents) are normally made available in a specific package
format, which is in most cases a specific compressed con-
tainer format. The package contains the actual software ap-
plication, as well as control information for the installation
process of the package. As such, it provides e.g. scripts that
should be run after the software application is extracted to
the system, e.g. to perform other changes on the system.
One example is the creation of a specific user that would
execute a package that provides a server program. Further-
more, control information in the packages provides details
on the dependencies of that package. It might e.g. define
that for a web server package to be installed, also the Java
runtime environment is required. The package manager then
automatically handles acquiring and installing also these de-
pendencies.

In these package based operating systems, there is generally
a universe of packages that can be installed, and that are
known to the package manager. Further, there is the con-
cept of a virtual package, which can be seen as a place-holder
package for other (real) packages that then provide the func-
tionality. This concept is also reflected e.g. in CUDF (Com-
mon Upgradeability Description Format [15]), which is a
format used to describe installation and upgrade paths.

7http://www.debian.org/

Examples of such virtual packages are e.g. “web-browser”, or
a “java-runtime“, and a “c-compiler“. These packages then
are provided by specific implementations and from the de-
pendency structures defined in the packages, different im-
plementations can be interchanged. For the “java-runtime”
package, providers might be OpenJDK8, Oracle Java9, or
the Cacao Virtual Machine10. These packages provide the
same functionality according to the Java Virtual Machine
specification, but might greatly differ in regards of their im-
plementation and license. One requirement might e.g. be
that the used package should have a license that allows ob-
taining and modifying the source code, to allow modifica-
tions in case a changed system environment requires that.

In order to obtain a knowledge base for the software pack-
age, we implemented a tool that gathers the virtual packages
and their providers for a specific version of distributions of
a Linux system. In principle this tool is based on the De-
bian package system, and thus covers also operating systems
based on Debian, such as Ubuntu11 or Linux Mint12.

In total, on a current Linux Ubuntu distribution, around

8http://openjdk.java.net/
9http://www.java.com

10http://www.cacaojvm.org
11http://www.ubuntu.com/
12http://www.linuxmint.com/

2.000 virtual software packages that have more than one
provider can be identified. Not all of these are actual soft-
ware applications, some are also just components, i.e. vir-
tual packages that are providing libraries that are in turn
used in other applications to built end-user applications.
Such libraries can e.g. be components for GUI programming,
or libraries that allow interfacing with a specific hardware.

4.3 Representation of Knowledge Bases
As a representation format for our knowledge bases, we
opted for using ontologies, specifically the Web Ontology
Language (OWL) [13], a widely used knowledge representa-
tion language. OWL is intended to augment the Resource
Description Framework (RDF), and provides formal seman-
tics, as well as RDF/XML-based serialisations. The reason
for choosing this representation is that on the one hand,
OWL defines several convenient mechanisms to query the
knowledge base. Queries can as such be formulated via OWL
Description Logic (OWL-DL), or the graph query language
SPARQL [1]. Another motivation for choosing OWL ontolo-
gies is that the model to represent a system (cf. Section 3),
a part of the previously mentioned process context model,
itself is authored using the Web Ontology Language. Using
OWL for the knowledge bases representation thus simplifies
cross-model queries and reasoning.

Freebase provides an API to query the online content. How-
ever, we opted to store the data locally for a number of
reasons. First of all, the local storage allows for a more effi-
cient querying of the data, as potentially many subsequent
queries need to be sent. Furthermore, we also combined
the Data from Freebase with information on Formats from
PRONOM, by a simple approach of matching along the file
extension and MIME Type. Finally, local storage allows us
to represent the knowledge base in a form that enables easy
automatic reasoning and discovery of migration paths. We
therefore developed the ontology that is depicted in Figure 5.
The major elements in there are Formats, Tools and Reg-
istries. These are further utilised to perform certain actions,
such as migration.

For the second knowledge base obtained from the Linux
Package manager, we opted to represent this in CUDF (Com-
mon Upgradeability Description Format). CUDF is also
utilised in the context model presented in Section 3, where it
serves as one domain-specific ontology representing package
dependencies. A representation of the concepts of CUDF is
given Figure 6. The main information entities are a Pack-
age and the VirtualPackage; there is a wealth of relations
defined, such as depends, conflicts, etc.

In CUDF, virtual packages can be considered to be a kind of
categorisation of the concrete packages, similar to the genre
provided by Freebase. If we encounter a certain package, we
can thus simple query which virtual packages it provides,
and then find other packages that provide this virtual pack-
age. Alternatively, if the model already uses a virtual pack-
age to model explicit what functionality is required, we can
query to replace that specific provider.

5. IDENTIFYING PRESERVATION ACTION
POSSIBILITIES

Figure 6: Concepts of CUDF

The alternative identification application currently considers
file format migration and software application emulation.
We will describe these two in detail below.

5.1 Software Application Emulation
For each software involved in the process (SystemSoftware
or Artifact concepts in the Context Model), a software ap-
plication emulation is proposed, by identifying software that
is equivalent to the currently employed applications.

This approach identifies software replacements for a specific
software application at risk. Such a risk might be a lack
of future support, incompatibility with other components
of the process, or that the license the software is published
under is prohibitive for the future use or preservation of
the system. Using the knowledge base obtained from Free-
base, we are able to retrieve migration path information in
a structured way. We can e.g. propose the migration of a
proprietary word processor file format to a more standard
format. Depending on whether we need just read access or
also write access to the artefact, different conversions will be
available – in general, there will be more support for reading
a specific format, thus if this is the only requirement, we will
be able to identify more potential alternatives.

The proposed alternative will also take into account which
changes in the software stack are needed. To this end, a
prototype implementation of a package dependency solver
for Linux distributions is being developed, which will be
utilised to identify the changes in the software stack. Once
a specific file format is identified, consulting the dependency
solver will notify us whether the software stack used cur-
rently is sufficient to also work with the new file format, or
new software needs to be installed. This can in turn mean
that a specific software that was previously used to manipu-
late a digital object is not needed anymore. This may then
be removed, and the dependency solver will also be used to
determine which other software components that were only
needed by the removed application can as well be removed.

5.2 File Format Migration

Figure 5: Ontology to store information on migration tools

For each data object (Artifact concept in the Context Model)
that is either produced or consumed in the process and for
which the data format is at risk of becoming obsolete (e.g.
a proprietary format for which the vendor support might
end), an alternative for ensuring long-term access to this
data object has to be produced.

Firstly, once a file format is identified to be at risk and
should be replaced, an alternative format providing similar
functionality has to be identified. Identifying a similar for-
mat can be automated by utilising the genre information
present in the File Format schema (cf. Section 4), with the
straight-forward approach being to identify formats in the
same genre, and then select those which are connected via
a format migration path using the available software tool
migration capabilities.

Secondly, if the new format is not also supported by the
software currently available at the system, also the current
software setup needs to be modified. In this case, it is need
to identify the required changes for the steps in the process
that access the files in the old format, and potentially replace
the current software applications with different applications
that can work with the new format we migrated to. This
affects software that reads, writes or renders these files.

Data objects could be both interpreted by humans (in a hu-
man processing step in the process, where the human takes
decisions based on the content of the data object, or aug-
ments/modifies the data object), or by software. In the case
of a human task, the exact rendering of the data object e.g.
on the screen is important. It is therefore important to se-
lect an emulation strategy that preserves this property most
faithful. In the case of a machine task, preservation of the
data object has to go in hand with ensuring the software can
still process the data object, but rendering capabilities are
of less importance.

Figure 7: Preservation alternative for replacing “In-
ternet Explorer“ by alternative software.

5.3 Online Query interface
The knowledge bases obtained from Freebase and the Linux
Package Universe can be queried online for preservation iden-
tification alternatives, as seen in Figure 7, which depicts
a potential replacement of Internet Explorer by alternative
web browser software such as Firefox, Safari, Opera or Google
Chrome. In the future, we will also provide an API that
could be utilised by other services needing information on
file formats and software tools.

5.4 Alternative Identification Output
The output of the alternative identification module is a set
of possible preservation action alternatives. These alterna-
tives will then have to be analysed by a digital preservation
expert regarding their feasibility and suitability, who will
then select those actions that best fit his requirements.

Specifically, each alternative contains a modified version of
the technology view of the system, modelled via the process
context meta-model, and a list of changes that were done to
arrive at this new system, from the original instance. The

Figure 9: Process model of the eScience experiment

context models, original and modified, are OWL ontologies,
as detailed in Section 3. The list of changes is provided
by the means of the OWL version of the PREMIS preser-
vation data dictionary. Specifically, the “Event” entity is
used to link entities (linkingSourceObject and linkingOut-
comeObject), together in a softwareReplacementEvent or
formatMigrationEvent. The source and outcome objects are
generic PremisEntity elements, of which, via the mapping of
the PREMIS extension to the core ontology in the context
model, specific software artefacts are instances of. An ex-
ample of such a change list can in Figure 5.4.

6. USE CASE APPLICATION
The use case we want to investigate in detail is an e-Science
experiment in the domain of machine learning. Specifically,
it tests the usefulness of a method for automatically clas-
sifying items in a music collection into a set of predefined
categories corresponding to music genres, by computing the
accuracy of the classification (i.e. for how many songs the
algorithm can detect the correct genre). It is performed by
a researcher which aims to collect performance metrics for
classification and make comparisons to the state of the art.
The motivation for performing the preservation of such a
process is related to any possible challenges to the results
that can be made by members of the research community.
Thus, by preserving such process, the provenance and au-
thenticity of the results can be proven, and the process can
easily be repeated on different data, or with altering the
parameters, at a later stage, as well.

A process model is depicted in Figure 9. First, music data
and a ground truth (“gold standard“) of the genre assign-
ment are acquired from external providers. Then features
(numerical representations) are extracted from the music
files. These are combined with the gold standard, and con-
verted to a different format, before a classification model is
learned. Finally, the performance of that model is evalu-
ated. This process is described in much more detail in [11]
and [12].

Figure 10 depicts a graphical representation of the techno-
logical infrastructure of the process. Central to the pro-
cess is the Taverna Workflow engine, in which the process is
modelled, and which orchestrates the execution. The audio
feature extraction, as well as the format conversion are im-
plemented in Java, and require a version 6 Java runtime to
be executed. The machine learning software is provided by
the open source Toolkit ”Weka“ [19], which as well requires
Java. Also smaller helper applications to fetch music data
and ground-truth are implemented in Java as well. Java
is provided in this setup by the Oracle Java 6 implementa-
tion, which comes with a restrictive license that disallows
redistribution among other things. Important for the pro-

Figure 10: Technical infrastructure model of the
eScience experiment

cess are also the File Formats utilised - on the one hand
there is MP3 which is used to encode the audio files, and
then there are a series of custom text formats, such as the
SOMLib and ARFF Formats. These are defined in respec-
tive specification documents, which are authored in HTML
and Adobe Acrobat respectively. On the current setup, the
closed-source software Safari and Adobe Acrobat are used
to view them.

To be able to preserve the technical environment of the pro-
cess, the following automatic alternatives to the current sys-
tem can be identified

Software Emulation. Oracle Java is restrictive in regards
to source code and redistribution, thus it is preservable to
replace the Java runtime implementation by other means.
Through the knowledge base on Package Alternatives, we
can identify OpenJDK as an open-source alternative. Via
the Freebase knowledge base, we can identify similar alter-
natives. The SOMLib documentation is in the current setup
displayed via the Safari Browser. This might not be an ideal
candidate for long-term preservation, as no source code is
available, and it is thus more difficult to adapt to a changed
environment. An automatic proposal would yield e.g. Fire-
fox or the Chromium browser as alternatives. A similar issue
arises with the documentation of WEKA, which is in PDF
format; the alternative proposals yield the open-source tools
Okular and Evince as alternatives.

File Format Migration. The feature extraction service cur-
rently takes various input formats, such as WAVE, MP3
or FLAC. In the current experimental setup, MP3 is used,
which is processed with the help of a third-party library
tritonus13. This library is however not actively developed
since 2003, and frequently has errors with MP3 files that
have a slightly unusual encoding. Furthermore, MP3 is par-
tially protected by a patent, and that might cause problems
for certain preservation actions to be applied in the future.
It might thus be beneficial to change to a different file for-
mat. Format replacement would suggest e.g. a conversion
to WAVE PCM, using e.g. the software mpg123. Of course,

13http://www.tritonus.org/

<ClassAsse r t ion>
<Class IRI=”http :// id . l o c . gov/ o n t o l o g i e s / premis . rd f#Event ”/>
<NamedIndividual IRI=” [s e r v i c e L o c a t i o n] / [i d e n t i f i e r] / SoftwareReplacement ”/>

</Clas sAsse r t ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”http :// id . l o c . gov/ o n t o l o g i e s / premis . rd f#l ink ingSourceObjec t ”/>
<NamedIndividual IRI=” [s e r v i c e L o c a t i o n] / [i d e n t i f i e r] / SoftwareReplacement ”/>
<NamedIndividual IRI=” [originalModelURI]#OracleJava1 . 6 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”http :// id . l o c . gov/ o n t o l o g i e s / premis . rd f#linkingOutcomeObject ”/>
<NamedIndividual IRI=” [s e r v i c e L o c a t i o n] / [i d e n t i f i e r] / SoftwareReplacement ”/>
<NamedIndividual IRI=” [s e r v i c e L o c a t i o n] / [modifiedModelURI]#OpenJDK1. 6 ”/>

</ObjectPropertyAssert ion>

Figure 8: Example of the output describing the changes made to the system by replacing Oracle Java 1.6
with OpenJDK 6

several other tools are available to do this specific migration,
such as lame, ffmpeg, or applications with a graphical user
interface such as mplayer. In addition, several other target
formats are proposed, such as the Free Lossless Audio Codec
(FLAC), for which similar conversion tools are applicable.

The current documentation of the SOMLib format in HTML
might be risky, as HTML is still an evolving standard (e.g.
to currently HTML 5), and it is has shown to be difficult
to exactly preserve the behaviour of Documents, especially
across different implementations of web browsers. A format
migration of HTML would identify PDF as a suitable can-
didate, using e.g. the tool wkhtmltopdf. The software stack
also needs to be updated, as we now don’t need an HTML
viewer anymore.

In Figure 11, we can see one potential candidate modifica-
tion to the view-paths in the process. We modified specifi-
cally viewing the HTML and PDF files, and converted the
file format of the music data to WAVE, thus requiring the
new application ”mpg123“. Modifications to the specifica-
tions were done manually, the licenses can be determined
automatically for some software applications, as this infor-
mation is provided for most Linux Packages, and for some
software applications registered in Freebase.

7. CONCLUSIONS AND FUTURE WORK
Knowledge bases on file formats and software applications
are an important aspect in digital preservation, especially
in the phase of preservation planing, where alternatives of
preservation actions need to be identified and evaluated. Ex-
isting knowledge bases often lack in the depth and freshness
of information provided, as maintaining them is a tedious
task. In this paper, we thus presented an approach to ob-
tain knowledge bases on file formats and software applica-
tions from repositories such as the community maintained
linked open data source Freebase, as well as Linux pack-
age repositories. We on the one hand offer these knowledge
bases in a publicly available API that can be used by dig-
ital preservation solution providers. Further, we also pre-
sented a prototypical implementation of a preservation al-
ternative discovery and identification service that leverages
these knowledge bases. We demonstrated the usefulness of
this approach on a use case evaluation.

Figure 11: Technical infrastructure model of the
eScience experiment, after applying preservation ac-
tions to migrate file formats and using alternative
software

Future work will focus on fine tuning the software and file
format knowledge bases obtained from the online reposito-
ries, and improve the alternative identification approach.
Potential future extensions to the knowledge base and al-
ternative identification are:

• Emulation of the execution environment, i.e. utilising
emulators that mimic the functionality and behaviour
of the hardware and software environment (operating
system). Information on hardware is available in the
context model, thus only information on emulators is
mission.

• Migration of the software to a different platform. This
can be as simple as just compiling an otherwise plat-
form independent software for the different platform,
or in worst case be a complete rewrite of the software.
Freebase might offer enough data for this, as infor-
mation on programming languages utilised for a soft-
ware, and compilers availability for certain platforms,
is available.

Furthermore, we will be applying the alternative identifica-
tion service to more use cases from the TIMBUS project,

among others a use case on monitoring of large civil engi-
neering structures and from the e-Health domain, as well as
on other use case from the domain of scientific workflows.

Acknowledgements
This work has been co-funded by COMET K1, FFG - Aus-
trian Research Promotion Agency and by the TIMBUS project,
co-funded by the European Union under the 7th Frame-
work Programme (FP7/2007-2013) under grant agreement
no. 269940.

8. REFERENCES
[1] SPARQL query language for RDF. Technical report,

World Wide Web Consortium, Jan. 2008.

[2] G. Antunes, M. Bakhshandeh, R. Mayer, J. Borbinha,
and A. Caetano. Using ontologies for enterprise
architecture analysis. In Proceedings of the 8th Trends
in Enterprise Architecture Research Workshop (TEAR
2013), in conjunction with the 17th IEEE
International EDOC Conference (EDOC 2013),
Vancouver, British Columbia, Canada, September
9-13 2013.

[3] C. Becker, H. Kulovits, M. Guttenbrunner, S. Strodl,
A. Rauber, and H. Hofman. Systematic planning for
digital preservation: Evaluating potential strategies
and building preservation plans. IJDL, 10(4):133–157,
2009.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: A collaboratively created graph
database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08,
pages 1247–1250, New York, NY, USA, 2008. ACM.

[5] T. Brody, L. Carr, J. M. N. Hey, A. Brown, and
S. Hitchcock. Pronom-roar: Adding format profiles to
a repository registry to inform preservation services.
IJDC, 2(2):3–19, 2007.

[6] R. Graf and S. Gordea. Aggregating a knowledge base
of file formats from linked open data. In Proceedings of
the 9th International Conference on Digital
Preservation (iPres 2012), pages 293–294, Toronto,
Canada, October 1-5 2012.

[7] S. Granger. Emulation as a digital preservation
strategy. D-Lib Magazine, Vol. 6 (10), 2000.
http://www.dlib.org/dlib/october00/granger/

10granger.html.

[8] T. O. Group. ArchiMate 2.0 Specification. Van Haren
Publishing, 2012.

[9] T. S. S. Institute. Approaches to software
sustainability. Website. http://www.software.ac.uk/
resources/approaches-software-sustainability.

[10] D. B. Marcum. The preservation of digital
information. The Journal of Academic Librarianship,
22(6):451 – 454, 1996.

[11] R. Mayer and A. Rauber. Towards Time-resilient MIR
Processes. In Proceedings of the 13th International
Society for Music Information Retrieval Conference
(ISMIR 2012), pages 337–342, Porto, Portugal,
October 8-12 2012.

[12] R. Mayer, A. Rauber, M. A. Neumann, J. Thomson,
and G. Antunes. Preserving scientific processes from
design to publication. In P. Zaphiris, G. Buchanan,
E. Rasmussen, and F. Loizides, editors, Proceedings of
the 16th International Conference on Theory and
Practice of Digital Libraries (TPDL 2012), volume
7489 of Lecture Notes in Computer Science, pages
113–124, Cyprus, September 23–29 2012. Springer.

[13] W. OWL Working Group. OWL 2 Web Ontology
Language: Document Overview. W3C
Recommendation, 27 October 2009. Available at
http://www.w3.org/TR/owl2-overview/.

[14] J. Rothenberg. Avoiding Technological Quicksand:
Finding a Viable Technical Foundation for Digital
Preservation. Council on Library and Information
Resources, January 1999.

[15] R. Treinen and S. Zacchiroli. Description of the CUDF
Format. Technical report, 2008.
http://arxiv.org/abs/0811.3621.

[16] J. van der Hoeven, B. Lohman, and R. Verdegem.
Emulation for digital preservation in practice: The
results. IJDC, Vol. 2 (2):123–132, 2007.

[17] R. van Diessen. Preservation requirements in a deposit
system. Technical report, IBM/KB Long-Term
Preservation Study Report Series #3, IBM
Netherlands, Amsterdam, 2002.

[18] C. Webb. Guidelines for the Preservation of Digital
Heritage. National Library of Australia, 2005.

[19] I. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005.

	iPres-Proceedings 61
	iPres-Proceedings 62
	iPres-Proceedings 63
	iPres-Proceedings 64
	iPres-Proceedings 65
	iPres-Proceedings 66
	iPres-Proceedings 67
	iPres-Proceedings 68
	iPres-Proceedings 69
	iPres-Proceedings 70
	iPres-Proceedings 71
	iPres-Proceedings 72
	iPres-Proceedings 73
	iPres-Proceedings 74
	iPres-Proceedings 75
	iPres-Proceedings 76
	iPres-Proceedings 77
	iPres-Proceedings 78

