
Using data archiving tools to preserve archival records in
business systems – a case study

Neal Fitzgerald
GLAMATEK

Brisbane, Queensland, Australia
neal.fitzgerald@gmail.com

ABSTRACT
The preservation of archival records from government business
systems is a pressing concern for archival institutions worldwide.
Most business systems developed over the last 20 years do not
have in-built recordkeeping functionality. Archivists and records
managers face the task of identifying, extracting and preserving
archival records from these systems. I use a public authority
collection management system as a case study to explore how
currently available archiving tools might form part of a practical
method to identify, extract and prepare digital archival records for
ingestion into a digital preservation archive.

Keywords
Digital preservation, SQL Server, databases, business systems.

1. BUSINESS SYSTEM ARCHITECTURE
The most common business system architecture is an application
layer built on top of a commercial relational database layer. The
database layer holds the system data in related tables and usually
some code in stored procedures and triggers that perform
database access and update functions. The application layer is
made up of code modules that contain the business rules, manage
workflows and generate user interface screens. It presents the data
in different ways, summarizes it and produces reports. It turns the
data into information. You need the application layer to make full
sense of the database layer [4].
Database management systems use Structured Query Language
(SQL) to access and manipulate data stored in rows and columns
of related tables. Databases are designed to minimize redundant or
repeated data. It is common to use codes to link to common values
stored in separate lookup tables. Repeating fields and transactions
are also decomposed into separate tables. Views are database
objects that store a single SQL query. They are often used to bring
back together decomposed elements of common system entities.
They act like virtual tables that can be referenced in database and
application code.

2. RECORDS IN BUSINESS SYSTEMS
Generally business systems are not recordkeeping systems. Data is
fluid and changing. Historical data is often overwritten to reduce
storage costs and keep the system running efficiently so it is hard
to reconstruct the system state at any point in time. Historical data
that is maintained is often not tamper proof [4]. Historical reports,
summaries, snapshots or extracts created by the business system
are often held outside the database. These could be printed on
paper, or held in a file system, data warehouse or eDRMS
(electronic document & records management system).
In the IT world a record is a row in a database table. To archivists
records are information created, received and maintained as

evidence and information by an organisation or person, in
pursuance of legal obligations or in the transaction of business
[ISO 15489]. I use the word in this sense throughout this paper.
In Queensland, a public record is any form of recorded
information, either received or created by a public authority,
which provides evidence of the business or affairs of that public
authority [5]. Public records may need to be retained permanently
or expire after a fixed period (the retention period).
The International Council on Archives has developed Guidelines
and Functional Requirements for Records in Business Systems to
make design suggestions for new systems and as a way to review
recordkeeping functionality in existing systems. The guideline
states that to identify records as evidence we need to:
1. Determine the broad business functions and specific

activities and transactions carried out by the business system.
2. For each function, activity and transaction or business

process managed by the system, consider what evidence is
required to be retained by the organisation.

3. For each requirement for evidence, identify the content or
data that make up the evidence.

Records might consist of a number of inter-related data elements
connected across one or more tables [3].

3. THE PROBLEM
A recent Queensland Government ICT audit identified a number
of business systems for decommissioning. Government wants to
reduce the cost of software licensing, hardware maintenance and
specialist skills. Systems containing data with ongoing business
use will be kept running or virtualised until the data is archived,
migrated or no longer required. Systems with data that is no
longer currently used are to be switched off as soon as possible.
Agencies need to identify the records in the business systems that
have not expired and are still within their retention period. If all
the records in the system have expired, then the systems can be
switched off without further action. For systems with unexpired or
permanent records, agencies need processes and tools to extract
these records in a format that can be preserved and rendered for
long term access.

4. TOOLS & APPROACHES
A common approach to preserving business system records is to
export the contents of all of the tables in the database in an open
XML format. If records must be deleted after their retention
period expires (for example some criminal records), unwanted
data must be deleted from the database before archiving or from
the archive package after archiving. Tools like RODADB and
SIARD that use this approach have functions to load the XML
archive to a different SQL database platform to allow ongoing

access over time, but this requires knowledge of the database
structure and SQL query skills.
Commercial database archiving software tools like HPAIO and
CHRONOS [1] are primarily designed to purge data from large
transactional databases to reduce storage costs and improve
performance. They use a similar export-all-tables approach for
retiring business systems, but they also have functionality to
assemble ‘data objects’ (and so archival records) from their
constituent columns and tables and extract these in XML format.
If we preserve these archival records, users do not need
knowledge of the database structure or SQL skills to access them.
Database warehousing software is used by some agencies for
enterprise level reporting, trend analysis and data mining across
data assets from different business systems. It may be possible to
leverage this software to extract and preserve records [4].
In a recent blog post [6] State Records of NSW discuss a number
of methods of preserving and presenting the information in
business systems to suit different classes of users. A searchable
collection of pdfs might suit family researchers. An open source
SQL database might suit agency IT staff to re-create reports from
an archived system. RDF linked open data might suit a researcher
wanting to create visualizations of the data.
In business systems applications, records as evidence of business
transactions will often be presented to the user on a single screen
or a set of related screens. At the National Archives of Sweden the
‘preservation object’ in a business system is documented with a
screen shot, a mapping of the screen fields to database table
columns, and the corresponding SQL query [2]. If the assembled
archived records in XML format can be rendered in a form similar
to the original business application screen including the field
values, screen labels, field ordering and grouping, this would
provide a human friendly way to present the records for access
and also provide a visual check of the record accuracy.

5. RECORD PRESERVATION MODEL
I propose a four stage preservation model illustrated in Figure 1.

Figure 1. Preserving archival records in business systems.

1. Identify the archival records by analyzing the functions of the
system that assist decision making or document business
processes or actions and determine their retention periods.
2. Determine the data elements that document the system
transactions performed to fulfill these functions by reviewing
system documentation, application code, database structures and
user interface screens and interviewing knowledgeable staff.
3. Assemble the data elements to produce a consolidated
representation of the archival record.
4. Extract and export the consolidated records whose retention
periods have not expired in an open format.

6. THE CASE STUDY
This case study uses an agency collection management system. It
has a staff module for maintenance of the collection catalogue and
a web based search interface for public access to the collection.

6.1 Defining the functional archival records
The agency has a retention and disposal schedule, which specifies
the agency archival records held in the collection management
system at a high level and their retention periods. One set of
records is the digitized image register which I use as an example.
The retention and disposal schedule specifies that the metadata
describing the images needs to be preserved until superseded.

6.2 Determining the data elements
6.2.1 Reviewing the application screens
My starting point for determining the data elements making up the
image register records was the corresponding enquiry screen in
the application staff module. This screen showed descriptive
metadata, staff who created and approved the image, and virtual
exhibitions in which it appears.

6.3 Assembling the archival records
A 19.7Gb backup of the Microsoft SQL Server database layer was
restored into a Microsoft SQL Server 2008 R2 installation on a
Dell Optiplex 990 PC with Intel core i5-2400 @3.1GHz with 8Gb
of RAM, running the Windows 7 64-bit operating system.
I used the SQL Server Management Studio tool to construct an
SQL query to model the image register archival record. As I
proceeded I compared the query results against values displayed
for the example images on the image register enquiry screen.

6.3.1 Reviewing the database
The database has over 300 tables. Table and column names are
generally descriptive. There are no entity relationship (ER)
diagrams and no declared foreign keys, so I looked at database
and application code for clues to the table relationships.
Reviewing the table names, I found a candidate main table for the
image register record query with column names matching the
screen labels and two large object binary columns containing jpeg
images. These images are access copies and do not need to be
preserved in the record. Preservation TIFF versions are kept
elsewhere on the file system.
A simple SQL query on this table returned some values matching
those on the screen and some codes. I found a stored procedure
that displays image metadata for the public web interface. It
contained an SQL query that showed joins to some of the lookup
tables. I added these tables to my record query and the results
matched the screen except for the staff and exhibitions data.

6.3.2 Reviewing the application code
I found the application module that produced the image register
screen. It contained somewhat cryptic and fragmented Visual
Basic code that constructed an SQL query. It used the same joins
to the lookup tables found in the database layer stored procedure.
The code also showed the joins to the staff lookup and exhibitions
tables. I added these joins to the SQL query and it returned all
data as displayed on the image register screen.

6.3.3 Creating the archival record table
I created a view object to document my query and used the query
to make a new database table with all the elements of the record.
Tables in relational databases have 1-to-1, 1-to-many or many-to-
many relationships. Many-to-many relationships are usually
decomposed into two 1-to-many relationships via a chaining table.
The relationship between image register table and code lookup

tables are one to one. A single image code field corresponds to
one value in the lookup table. The relationship between the image
register and the exhibition tables is many-to-many. We can
represent this by two 1-to-many relationships. An image may be
in more than one exhibition. An exhibition has a number of
images. The image screen shows the image details and lists all the
exhibitions in which it appears in a scrolling window and the
exhibition screen shows the exhibition details and lists its images.
When tables with a 1-to-many relationship are joined in an SQL
query, the result is a Cartesian product of the two tables. In our
example, if an image occurs in a number of exhibitions, there will
be a row for each exhibition and the image data will be repeated
with each row of the result. Because images rarely appear in
multiple exhibitions, the output from the record query in this case
is not significantly larger than the size of the original tables.
In other cases there may be a large number of child rows for a
large number of parent rows. An assembled record table could be
orders of magnitude larger and add significantly to the archive
size. I used the SQL Server XML functions with my query to
create XML with a single copy of the image data for each image
and nested exhibition elements. With the full dataset the query
failed with a memory error, common in my experience on a
number of platforms. An alternative is to use XSLT style sheets
after archiving to create hierarchically structured XML.

6.4 Exporting archival records
I was able to download trial versions of SIARD, RODADB and
HPAIO. CHRONOS staff demonstrated their software by WebEx.
The case study database had to be prepared to allow the tools to
connect by enabling TCP/IP, opening ports, starting services and
enabling SQL Server authentication.

6.4.1 HP Application Information Optimizer1
HPAIO was formerly known as HPDBA. HPAIO version 7.02 is
complex to install and operate. It archives data as XML or CSV
documents. It can export these documents to HP’s TRIM eDRMS.
It is quite complex to install and operate and has a lot of
functionality not required in our decommissioning use case.
The HPAIO Designer tool lets you create models of business
objects using a visual drag and drop interface to join the database
tables. You select a driving table and add lookup, chaining or
transactional tables, essentially creating the equivalent of an SQL
query. You can select a subset of columns in each table, rename
table columns and add selection conditions. A pdf document can
be produced listing the components that make up the model.
I used this tool to model the image register archival records using
the tables and joins discovered during the previous analysis.
HPAIO produced a nested hierarchical XML. The extract failed
for the full record set with a memory error. HPAIO embeds binary
image files within the XML, which would hinder monitoring
these embedded objects for format obsolescence over time.

6.4.2 CHRONOS
CHRONOS2 database XML export format is simple and compact.
It shows table structures, the queries in view objects, and the code
in stored procedures and triggers. Each table is stored in a

1http://www8.hp.com/au/en/software-

solutions/software.html?compURI=1175612#.UXTEHyJMj4-
2http://www.csp-sw.de/en/inhalt.php?kategorie=c271_CHRONOS

compressed CSV zip file with checksums stored for each row. It
can export a view object as if it was a real table, assembling the
data and creating a CSV file. If we create a view from our archival
record this gives a simple record extraction method. Exporting the
records as tables with the more compact compressed CSV format
rather than XML reduces the impact of the Cartesian product
problem described in 6.3.3 above. CHRONOS has user access
control, functionality to support WORM storage devices and
SHA-512 encryption to increase security and prevent data
tampering. We hope to have a pilot installation to test soon.

6.4.3 SIARD / SIARDK
The Swiss Federal Archives publishes the SIARD3 (Software
Independent Archiving of Relational Databases) open standard
database archiving XML format. They provide free tools to export
SQL databases to SIARD XML and tools to import the SIARD
XML into various database management systems for access.
The SIARD archive package is a ZIP64 packaged hierarchy of
folders and files. The header folder contains the SIARD schema, a
metadata.xml file (describing the database tables, views and
stored procedures), and an XSL style sheet for viewing the
package contents in a web browser. In the content folder there is a
folder for each table with the data in table.xml and a schema
describing the table structure in table.xsd. ZIP64 allows for large
packages whereas the ZIP format is restricted to 4Gb.
I installed SIARD version 1.50. The tool is java based and easy to
install and use. The database was converted to an 18.7 Gb SIARD
ZIP64 package in about 4 hours. There is a graphical user
interface for inputting the connection parameters and initiating
export and import tasks. The graphical user interface allows
browsing of SIARD archive packages. It also allows extra
descriptive metadata to be added to the package.
SIARD stores large object binary elements such as large text
blocks, images or video as separate files in the archive package
referenced from the XML. SIARD does store the contents of
database views, but did not store any code from stored
procedures, only their name and parameter declarations.
Potentially valuable information about database structure and
system function is lost.

6.4.4 RODADB
The RODADB command line tool has been derived from the
database ingestion and deployment components of the RODA
digital preservation repository4. It exports the database table
definitions and table content for all the tables in the database in
DBML XML format. The software also allows DBML to be
converted to a set of SQL statements that can be used to re-create
the tables in another database platform for access. I downloaded
RODADB version 1.1.1. It is java based application and easy to
install. The command line syntax is straight forward. RODADB
also stores the XML and large object binary images separately.
The output is a folder containing a single XML file with pointers
to the image files in the same folder. The case study database
export produced a 21Gb XML file and about 90,000 binary image
files (12Gb) in about 3.5 hours.

3http://www.bar.admin.ch/dienstleistungen/00823/00825/index.ht

ml?lang=en
4 http://www.keep.pt/produtos/roda/?lang=en

The DBML contains only table and key definitions and table data.
Views and stored procedures are ignored. The lack of a graphical
user interface might discourage some users. The DBML XML file
is significantly larger than the corresponding SIARD XML files,
but more directly readable, because it spells out the table column
names for each row.

7. RECOMMENDATIONS
We should preserve the database content in a format that can be
rendered in a number of ways for presentation. This way we can
satisfy the needs of different classes of users from members of the
public who want a Google like search and easy presentation
through a web browser, to agencies who want to manipulate
archived data in a similar way to when the business system was
still functioning, to future researchers who want datasets to mine,
visualize and mash up with other datasets [6].
The preservation effort expended on any business system will
depend on many factors including legal risk, information value,
available skills, available resources and historical importance.
For business systems being decommissioned:

• Use archiving tools that produce XML

• Create a full XML export of database tables

• Preserve as much contextual documentation as possible

• Identify and assemble archival records before archiving

• Document the archiving process

• Optionally preserve the original database layer backup file
XML is an open, text based format that does not require specialist
software to be rendered, so has a good chance of remaining
accessible in the long term. It can easily be transformed using
XSL style sheets to allow human friendly display formats for
access, and the creation of open data sets for data mining and
visualization. There are tools to load SIARD XML and RODA
DBML to a number of SQL database platforms for access by
those with SQL query skills.
A full database export will decrease the risk that important
information is lost unintentionally. In some cases some data may
be mandated for deletion and some duplicate or ephemeral data
may need to be deleted before archiving to save storage costs.
Contextual documentation might include user manuals, screen
shots, application and stored procedure code, database ER
diagrams, application architecture or UML diagrams, retention
and disposal schedules, records of interview with IT staff and
expert users. System reports and summaries produced by the
business system in the past may be useful artefacts.
Identifying and assembling archival records from their constituent
columns and tables in the database before archiving will aid future
accessibility. The process is an opportunity to gather together,
synthesize and crystallize information from contextual
documentation, application code, database layer code and expert
knowledge. The dataset modeling tools in HPAIO can be used to
achieve this. If using SIARD or RODADB, an SQL query can be
used to assemble the record elements into a new database table
before archiving. The developed query can also be documented
and stored as a view object in the database layer. Some systems
will have better documentation than the case study with database

ER diagrams, declared foreign keys and views or stored
procedures that correspond to the archival records. The process
may be easy and straight forward.
If storage permits the original database backup file could also be
preserved, so the archiving process itself can be verified while the
database software and operating environments are still available.
Documenting the archiving process in detail will give future
researchers confidence that the archived records are a true
representation of the original records in the business system.
If budgets are tight and a simple solution is needed, I would
recommend SIARD as the initial tool of choice. If possible, spend
time to identify and assemble the elements of the archival records
in new tables before archiving as SIARD XML.
Of the commercial products reviewed, CHRONOS looks very
promising. It exports more elements of the database in more
compact and open way. If an agency implementing the system has
a requirement to archive records and other data from currently
functioning business systems, the investment in licenses and
learning how to use the product would be worthwhile.

8. FUTURE WORK
I propose to further test and refine this work using business
systems implemented on other database platforms. I will further
experiment with the tools examined here and with other open
source and commercial data archiving and data warehousing tools
including CHRONOS. I will explore using XSLT style sheets to
transform the XML exported from the case study database using
the tested tools. Use cases will include rendering human friendly
access versions of the records, removing unwanted data, creating
hierarchical XML representations of assembled archival records
that have repeating data, preparing datasets for migration to a new
collection management system, creating Submission Information
Packages to ingest into a digital preservation archive.

9. REFERENCES
[1] Brandl, S., Keller-Marxer, P. 2007. Long-term Archiving of

Relational Databases with Chronos. Proceedings of the
PresDB’07 workshop, Edinburgh.

[2] Geber, M. 2012. Database Archiving in Sweden,
Presentation at ‘A Practical Approach to Database
Archiving’ workshop, Copenhagen.

[3] International Council on Archives 2008. Principles and
Functional Requirements for Records in Electronic Office
Environments – Module 3: Guidelines and Functional
Requirements for Records in Business Systems.

[4] O’Kane, T., Somerville, C. Data in Databases – it's not what
you think. Presentation at Future Perfect 2012, Wellington.

[5] Queensland State Archives 2013. What is a Public Record?
http://www.archives.qld.gov.au/Recordkeeping/GRKDownlo
ads/Documents/what_is_public_record_200409.pdf.

[6] State Records of NSW Future Proof blog 16 June 2013.
Migrating Business Systems to the Digital Archives
http://futureproof.records.nsw.gov.au/migrating-business-
systems-to-the-digital-archives-a-post-from-the-digital-
archives-team/

