
Risk Driven Selection of Preservation Activities
for Increasing Sustainability

of Open Source Systems and Workflows

Tomasz Miksa, Rudolf Mayer
Stephan Strodl, Andreas Rauber

SBA Research, Vienna, Austria

Ricardo Vieira, Goncalo Antunes
INESC-ID Information Systems Group

Lisbon, Portugal

ABSTRACT
The increasing demands faced by repository systems and
the growing popularity of workflow systems introduces new
risks, creating new challenges to the digital preservation
community. The application of risk management practices
to digital preservation is a way of managing the risks as-
sociated with the use of such systems and to optimize the
application of digital preservation treatments to such risks.
In this paper, we present results of a case study conducted
on two use cases: a repository system and an automated
workflow representing a typical digital preservation quality
assessment process. We used a risk assessment approach to
identify risks related not only to the technical but also or-
ganizational and legal aspects. We assigned controls which
decrease their impact and explained how the digital preser-
vation related controls can also improve the current func-
tioning of the repository system and increase reproducibility
of the workflows.

1. INTRODUCTION
In recent years, the digital preservation community has been
investigating different ways of dealing with the preserva-
tion of static contents like scans of books or music record-
ings. Several solutions were proposed and successfully imple-
mented. They range from frameworks and metadata vocab-
ularies to distributed repository systems. Keeping up with
the paradigm shift in science and the deluge of data [17], the
digital preservation solutions are being enhanced to address
the requirements of preserving complex objects like scien-
tific data, workflows and processes. Nowadays, the digital
preservation actions aim not only to safeguard the heritage
to future generations but also to enhance the reproducibility
of data-driven research.

There are several studies on repository systems which com-
pare their functions and evaluate whether they address the
needs of institutions in need of such [12]. Most of the sys-
tems are open source, which can be related to the fact that it

iPres 2014 conference proceedings will be made available under a Creative
Commons license. With the exception of any logos, emblems, trademarks
or other nominated third-party images/text, this work is available for re-use
under a Creative Commons Attribution 3.0 unported license. Authorship of
this work must be attributed. View a copy of this licence.

is often assumed that open source solutions are considered
to have higher preservability than their commercial coun-
terparts. Such an assumption is also taken for the repro-
ducibility of modern research, i.e. the scientific experiment
is supposed to be reproducible when it is published under
an open source license.

Yet, this assumption can be challenged. Being open source
is not, by itself, a guarantee of the higher longevity of repos-
itory systems. At some point their preservation will be re-
quired, which can be a challenge due to the fact that these
systems are more than databases which collect metadata and
store the preserved objects. These systems are quite often
distributed, benefiting from the integration of several exter-
nal services which are provided by external entities. There
is a potential risk that the functionality of the system can
be severely affected when one of these services becomes un-
available or changes are made to its functionality.

In the worst case this may hinder the possibility of retriev-
ing and presenting the preserved objects to the user. Simi-
lar threats are also affecting scientific workflows, which very
often contain references to external services. Furthermore,
workflows often require access to external libraries and soft-
ware applications which need to be present during execution
but are not explicitly defined in the workflow specification.

For this reason, we investigated potential threats to open
source repository systems and workflows. A case study was
conducted on two use cases: a repository system based on
Fedora Commons, and a typical Taverna workflow used dur-
ing preservation quality assessment. Both of them are avail-
able under the open source licenses. We used a risk assess-
ment method based on ISO 31000:2009 and aligned with the
TIMBUS preservation framework. The case study identified
a wide spectrum of risks related not only to the technical but
also organizational and legal aspects. We assigned controls
which help to decrease their impact and detail the solutions
delivered by the TIMBUS project that help to control the
risks which are related, not only to digital preservation, but
also to the current functioning of the repository system and
reproducibility of modern research.

The paper is structured as follows. Section 2 presents the
state of the art in risk management and explains the process
preservation framework which guided our assessment. More-
over, changes in the web services that may affect both the

http://creativecommons.org/licenses/by/3.0/legalcode


repository system and the scientific workflows are discussed
in this section. Section 3 describes two use cases on which
the case study was performed. In Section 4, the approach
used for risk assessment of both cases is presented and the
results are discussed. Section 5 describes selected controls
applied to both use cases. Finally, conclusions are presented
in Section 6.

2. STATE OF THE ART
This section explains the risk management approach applied
on the case study and provides an overview of available stan-
dards. It also places the risk management process within
the process preservation framework. Finally, possible kinds
of changes in web services are discussed.

2.1 Risk Management
Risk Management (RM) concerns the assessment and con-
trol of risks, with risk being defined as the combination of
the likelihood of an event and its consequences [9]. Its ul-
timate goal is to manage the uncertainty associated with
risks, either by mitigating risks with negative consequence
on objectives or by taking advantage of risks with positive
consequence on objectives [9].

Although different standards, methods and tools exist for
targeting specific domains, ISO 31000:2009 [11] describes a
generic and domain-independent framework for risk man-
agement, providing the underlying concepts and principles,
along with a process. The risk management process defined
by the standard is depicted in Figure 1.

The process starts by defining the internal and external con-
text of the project. The external context might consist of
a description of the regulatory environment of the project
or any other element that might affect data management.
The internal context includes defining all the elements of
the project, i.e. its objectives, resources, data, processes,
systems, among others that may be relevant to consider.

After establishing the context, the assessment of the risks
based on the collected information is performed. It is com-
posed of three different steps: (1) risk identification, where
all relevant assets, vulnerabilities, events and risks are iden-
tified; (2) risk analysis, where the value of the assets, the
exposure to vulnerabilities, the likelihood of events, the risk
consequence, and ultimately the risk severity are estimated;
and (3) risk evaluation, where the information produced in
the two previous steps to check against risk criteria is eval-
uated, culminating in a decision on whether a specific risk
is acceptable or tolerable. Depending on the context of the
risk assessment, different risk assessment techniques can be
applied to the process. The standard describes several of
those techniques and their suitability for the different steps
of the process.

These risk assessment steps result in the prioritization for
risk treatment, with the identification of controls. If the
controls are sufficient to lower the overall risk level into ac-
ceptable values, then a risk report is defined. All the steps
of the process should be communicated to the interested
parties for consultation and validation. Additionally, the
process should be run continuously, with constant monitor-
ing and review of the different steps, if necessary, so that

Figure 1: Risk management process according to
ISO 31000:2009 [11]

Figure 2: Risk concepts [2]

the risk management is effective.

Digital preservation is one of the domains where risk man-
agement has been applied, as it is about recognizing that
during its lifecycle, data is subject to risks that can affect
their proper use and interpretation. Different works con-
cerning risk management applied in this domain have been
published, including the ISO 16363:2012 [10], that provides
a risk management process for assessing the trustworthi-
ness of digital repositories, and the Digital Repository Au-
dit Method Based on Risk Assessment (DRAMBORA) [13],
which also describes a process for assessing digital preserva-
tion repositories. Additionally, in [3], the authors identify a
set of typical threats and vulnerabilities that can be miti-
gated using Digital Preservation techniques.

TIMBUS proposes a risk management-based approach to
the preservation of business processes [15]. In that sense,
digital preservation is seen as a risk treatment, with the
clear interfaces existing between the TIMBUS processes and
the risk management process. The risk management process
adopted by TIMBUS follows the ISO 31000:2009 standard.
A conceptual model is used along with the process, defin-
ing a set of risk management concepts, based on the work
described in [2]. The model, which can be seen in Figure
2, is based on the ISO 31000:2009 family of standards, and
was created to support sharing, reuse and processing of risk
concepts. The model defines risk as “an effect of uncertainty



Figure 3: TIMBUS framework for process preserva-
tion, BPMN model

and is expressed by the combination of the likelihood of an
event and its consequences when exploiting a vulnerability
of an asset” [2]. Asset is defined as something (e.g. pro-
cess, data, hardware, software, people) that has value to the
project. A risk is expressed by a risk severity (or risk level)
that is a combination of its consequence with the likelihood
of the event triggering the risk. Finally controls are defined
as actions that can be taken to mitigate risks. Controls can
reduce the exposure of a vulnerability, reduce the likelihood
of an event, reduce the risk consequence, transfer the risk
and accept the risk. A risk policy represents a set of controls
that were applied to mitigate the risks in a specific context.

2.2 Framework for Process Preservation
A process model for digitally preserving a process is de-
scribed in detail in [16], and depicted in Figure 3. It is cen-
tred around the risk management approach detailed above,
and can be divided into three phases: plan, preserve and
redeploy.

The plan phase concerns the capture of the business pro-
cess context. To this end, a context meta-model is used to
systematically capture these aspects that are essential for
its preservation and verification upon later re-execution [1].
This model is implemented in the form of an OWL ontol-
ogy, which provides both generic core concepts and domain-
specific concepts that are used for capturing information in
specific domains. The generic concepts are based on Archi-
Mate [7], which provides a template to describe a business
by around 30 different concepts on the business, application
and technology layer. A number of domain-specific concepts
dealing with Software licenses and Patents, Software ap-
plication dependencies, and Digital preservation meta-data,
among others, are provided.

Assessment of Preservation Approaches is responsible for
the identification and evaluation of different preservation ap-
proaches (controls) for the process. Some specific controls
will be discussed together with the use case description in
Sections 4 and 5. Each approach is specified in a Process
Preservation Plan, which also defines procedures for captur-
ing the process data and later redeploying and verifying the
process.

During the preservation phase, these controls are applied,
and validation and verification data are captured from the
source system for redeployment. The redeployment phase
specifies the re-initiating of the preserved process in a new

environment at some point in the future. Necessary adjust-
ments to the target environment are performed, and finally,
the process can be re-executed and the taken measurements
can be validated.

2.3 Changes in services
According to the classification presented in [14], there are
four ways in which a web service may change. In this section,
those changes are discussed, as they may apply to these
use cases and, additionally, because the general classification
may apply to any kind of service (not only web services).

A web service can become unavailable. This will likely
stop execution of the process, unless alternative paths and
exception handling has been implemented for such a case.
Reasons for unavailability can range from temporary tech-
nical problems, to bankruptcy of the service provider. Such
situations are straight forward to detect, for instance, by us-
ing time-outs which would alert to the unavailability of the
web service.

A web service can change its communication inter-
face, not always jeopardising the full execution of the pro-
cess. Such a situation may also be easily detected. It may re-
quire short pauses in the process execution until the changes
are adopted into the process. Of course, in case of signifi-
cant changes in the communication interface (e.g., switch
from REST to WSDL), time needed for reconnecting the
web service into the process may require more effort.

The functionality of a web service may change, which
denotes that the outputs of the web service change, while the
interface stays the same. Unlike the first two threats, this
threat is hard to detect, as the process may not break, but
instead will be delivering outputs which are not correct or
are different from expected. Such a situation might be de-
tected only much later and on a different level, e.g., when
some general statistics regarding process performance are
changed. Such a situation may occur for several reasons.
One of the reasons may be the changes at the semantic
level, e.g., switching the unit of measurement from inches
to centimetre due to a server configuration change. Other
possibilities are bug fixes in the underlying algorithm (which
may introduce other bugs as well), or intentional changes in
the functionality, e.g., faster but less accurate computational
algorithms.

A web service may change its non-functional be-
haviour, which may not always stop the process from cor-
rect execution, but can occur temporarily and therefore be
hard to notice. The examples of such cases could be dif-
ferent timing characteristics or delays, effects of buffering,
etc. They also need to be detected, because there may be
a threshold from which the web service cannot deliver its
functionality properly, and therefore stop or alter execution
of a dependent system.

3. USE CASES
In this section, an overview of two open source use cases is
presented. The technical aspects that are relevant for the
risk assessment presented later in this paper are explained.
The first use case deals with a repository system, while the
second use case is a typical digital preservation workflow.



Different as they may seem, the later analysis shows that
they have much in common. We used these two cases in
order to demonstrate the broad applicability of the TIMBUS
preservation framework and the risk driven approach.

3.1 Fedora Commons Based Repository
This use case concerns a real installation of a repository
system at a university. Due to the fact that the analysis
described in this paper may reveal sensitive data, we cannot
disclose any information which would allow its identification.
Therefore in the remainder of the paper we will refer to the
repository system used in the use case as the “repository
system”.

The repository system described here is a university-wide
digital asset management system with long-term archiving
functions. It offers the possibility of archiving valuable as-
sets, together with normalised metadata and content for-
mats, offering multilingual access. Students, researchers and
co-operators with the proper authorisation can upload and
link the objects which, among others, can be text, image,
and audio files in multiple formats. Searching and browsing
of the contents is possible without logging in.

The repository system is used in many ways. It holds scans
of precious books and incunabula, which can be accessed
through a book viewer module. Projects run in the different
institutes and faculties of the university archive their col-
lections of audio recordings or historical documents in the
repository system. The importer module allows creation
of virtual collections of different content types that can be
grouped, archived and published together.

Implementation The system consists of two main compo-
nents, the backend and the frontend. The backend is re-
alized with the use of Fedora Commons1, which is an open
source system that allows for storing, managing, and access-
ing digital objects. It also provides modules for searching
(GSearch: Fedora Generic Search Service) and interfaces for
the exchange of metadata (OAI-PMH - Open Access Initia-
tive Protocol for Metadata Harvesting). The web frontend
is responsible for the presentation of contents, or editing of
metadata. The frontend was developed at the university.
The communication between these two components is re-
alised through the use of XML interfaces (REST-Calls).

Content Transformation The Fedora repository holds lo-
cal content in the form of digital objects. The frontend in-
teracts with the Fedora repository through the Fedora API,
as seen in the Figure 4. The backend may also interact
with other systems to obtain the content stored on differ-
ent servers (distributed content) or may use web services to
get additional information about the contents or to perform
data transformation (e.g., format conversion, video stream-
ing). These services are of particular interest, because they
may change in different ways and therefore alter the infor-
mation and the content delivered to the end users of the
repository system.

In order to understand why services are so crucial for dig-
ital objects in a Fedora based repository, it is important

1http://www.fedora-commons.org

Figure 4: Backend (Fedora) as a mediator for ser-
vices and content [6]

to understand the structure of a digital object. The digital
object consists of four main parts: (1) a digital object identi-
fier, (2) a descriptive part, including key metadata necessary
to manage and discover the object and its relationships to
other objects, (3) an item perspective which is the set of con-
tent or metadata items, and (4) a service perspective which
provides methods for disseminating content.

Such a structure allows creating an object which has all data
provided as static or dynamic data. For example, in the case
of static data, a scientific paper can be stored in the Fedora
repository in three formats: HTML, PDF, TEX and all of
them will be grouped under one digital object. No dissem-
inators (services performing operations on content) will be
used to produce the content, because the content will be pro-
vided at the moment of creation of the digital object. How-
ever, the same final (visible to the end user) result could be
obtained with the use of disseminators. It would be possible
to store, for example, only the TEX file and use web ser-
vices to generate on demand a PDF or HTML version of the
document. This second solution allows saving storage space
in the repository, but introduces dependency on the services
(disseminators). Such dependencies are unavoidable in case
of interactive contents like interactive art, games, computer
programs, which need a special environment to render these
artefacts.

Key functionalities We will discuss in the following section
the key functionalities provided by the repository system.
They have high impact on the content presented to the user
and introduce other dependencies which may need to be
considered during the risk analysis.

The Image Converter is used every time users access a web
page with a summary about a digital document. For exam-
ple, if the user browses through a collection of PDFs and
opens one of them then they are presented with a preview
of the first page of the paper which is a PNG file gener-
ated from the first page of the original file. This is achieved
with the use of ImageMagick2 and the corresponding Perl
module which needs to be installed in the operating system
underlying the repository system. If a different version of
ImageMagick is used, it may happen that the conversion
may result in a different output. Therefore, all of the de-
pendencies of the repository system need to be documented
carefully in order to be able to reproduce the same render-
ing.

The repository system also uses a streaming server which is

2http://www.imagemagick.org



run by the IT department of the university and is not a part
of the repository system itself. When a video is accessed
through the repository system there is a check if the video
is already available at the streaming server. If it is, then the
video is played to the user; otherwise the video has to be
decoded by the server and then presented to the user. The
video is displayed in a web browser window. In both cases,
the streaming server has to be available. If it is not, or if it
has changed (e.g. different codec library installed), the user
may be presented with different rendering or, in the worst
case, with no rendering at all.

3.2 Quality Assessment Workflow
Workflows have become popular as a means for specify-
ing and automating computational experiments [5]. They
serve a dual function: first, as detailed documentation of
the executed process (i. e. the input sources and processing
steps taken for the computation of a certain data item), and
second, as re-usable, executable artefacts for data-intensive
analysis. Using a workflow, a process is defined as a series of
analysis steps which specify the flow of data between them.

We investigated a number of workflows published by third
parties, many of them in the domain of digital preservation,
such as workflows for file characterisation or format migra-
tion. The workflow that we will utilise as case study in this
paper deals with duplicate detection in the book digitisation
domain [8]. When scanning books, a software searches for
errors in the scanned images. Due to the time lag of the error
detection, errors are usually detected only when the scan-
ning process has already scanned several more pages since
the event occurred.

In such a case, the scanning process goes back to the er-
roneous page and restarts from there, thus re-scanning the
erroneous and subsequently scanned pages. As the initial
set of scans is not deleted, this leads to a set of duplicate
scanned pages. The purpose of the duplicate detection is
to perform a quality assurance of the document collection
before the ingest into a repository system. The workflow
specifically runs a duplication detection, and evaluates the
performance of that duplication detection, with the help of
a manually created ground truth that correctly identifies
duplicate pages. Knowing the performance of the duplica-
tion detector is important to evaluate whether relying on
the software solution only is sufficient, or a manual quality
control step is needed in addition.

The workflow is authored in the Taverna workflow engine,
and depicted in Figure 5. The actual duplicate detection is
done via the matchbox application, developed as part of the
SCAPE project. Matchbox (visible as the step ”matchbox”
in Figure 5) is implemented in Python, and called from the
workflow via an external tool invocator, i.e. a system call.
More specifically, the matchbox application is not available
locally on the machine that executes the Taverna workflow,
but is accessed as a remote service, via an SSH (secure shell)
connection, on a different server. The output of the Match-
box algorithm is parsed in the ”parse matchbox stdout”step,
and the resulting matches as well as the log output of the
application, are available as process outputs.

In order to evaluate the performance of the duplicate de-

Figure 5: Duplicate Detection workflow, authored
in the Taverna Workflow engine

tection, reported matches are compared against a previ-
ously provided ground truth (passed via the process input
”gt filelist path”), which contains the above mentioned true
information on which pages are actual duplicates. This eval-
uation is implemented as a Java Beanshell script ”match-
box evaluate”, which calls functions from a Java library pro-
vided in a JAR file to this processor step, and provides the
workflow output ”report”, which combines correctly/incorrectly
identified duplicates, missed duplicates, and measurements,
such as precision, recall, and F-measure.

While workflows are a step towards longevity and preserva-
tion of process executions, they themselves are not sufficient,
as the execution environment, and external dependencies,
are not properly addressed. In the use case example, an
interesting aspect undermining that fact is the call to the
Matchbox application, which is not performed via a local
system call, but via an SSH connection on a remote server.
Not only does that introduce a dependency on an external
system, this call is also protected by the standard secure
shell authentication mechanism, requiring a user name and
password. To run the workflow, one thus additionally needs
these credentials. Furthermore, the dependency on this ex-
ternal system means that the functioning of the workflow
depends entirely on the functioning of that service.

Another interesting aspect is the step matchbox evaluate,
which, as mentioned above, is a Beanshell script that ex-
tensively uses an externally provided Java library for most
of its functionality. This dependency to the Java library is
declared in the workflow, but the actual library is not part
of the workflow definition file, and thus has to be preserved
separately. Another difficulty is the complex structure of
the output of matchbox. All output information is returned
in one text file, with a custom-defined format structuring
the information on which pictures are identified as dupli-
cates. Firstly, there is no documentation on the exact out-
put format available, and in addition, the format was slightly
changing throughout the different versions of development



of ”matchbox”.

The matchbox evaluate component, which processes the out-
put to do the evaluation, was developed by a different or-
ganisation than the duplicate detection itself, and the devel-
opment of these two components was not always synchro-
nised. Thus care has to be taken that the versions used of
these two components are compatible to each other. Con-
figuration management can help with this, but as there is
not much information available on when the remote service
would change its interface or structure and format of the
returned result (such as at least notifications of a change),
this issue is not easily resolved.

4. RISK ASSESSMENT
In this section, we explain how we followed the TIMBUS
preservation framework described in Section 2.2 and de-
picted in Figure 3. We also present the results for both
of the use cases.

4.1 Performing the assessment
Following the risk assesment process depicted in Figure 1
and described in Section 2.1, our first step was the identi-
fication of assets, events, risks and potential consequences.
We utilized a combination of following techniques to collect
this information:

• Checklist - list of risks previously defined, resulting
from previous assessments with similar objectives. In
this case, we used domain-specific lists, namely DRAMB-
ORA and TRAC (Trustworthy Repositories Audit &
Certification: Criteria and Checklist).

• System analysis - system/workflow documentation in-
cluding its model and direct investigation of the run-
ning system/workflow. This technique involves analysing
several processes performed by the system/workflow
from different perspective (business view, infrastruc-
ture view)

• Brainstorming - it had the objective of identifying risks
that were not detected from the checklists and system
analysis.

• Semi-structured interviews - the risk assessment team
met with the system operators to conduct individual
interviews. They were asked a set of questions, en-
couraging them to look at a situation from a different
perspective and thus identify new risks.

• Legal risks were analysed in accordance to the national
and international legal documents by legal experts.

In the following steps, we analysed the risks and events.
For each of the events we assigned the likelihood using a
range of 5 values: very low, low, medium, high, very high.
We used the same scale for assessing the consequences of
the risks. Having done this, we created a risk matrix (see
Figure 6). The dimensions of the matrix are likelihood and
impact. By putting each risk into the cell that corresponds
to its likelihood and impact, an overview of the severity of
the risks was obtained.

The colours of the cells represent the risk level classes ac-
cording to the established risk criteria, which represent the
associated range of severity. This helped us to understand
which risks need special attention when designing controls
in the next step. The controls were designed for each of
the risks identified and were applied to treat the risk, thus
decreasing its severity. Naturally, the process of risk assess-
ment needs to be periodically repeated in order to confirm
that there are no new risks and if the controls are mitigating
the risks efficiently.

Figure 6: Risk Matrix for the repository case

4.2 Results
We applied the risk assessment process described in the
above section to both of the use cases. In this section we
present an overview of the results and explain the selection
of controls.

Fedora Commons Based Repository We identified 29 events
and 19 risks which constituted in total 46 pairs of events
triggering the risks. We associated them with 5 different
asset types, namely: organization, repository functionality,
data stored in repository, repository system software. Such
a wide variety of assets shows that the risk assessment fo-
cused not only on the risks related to digital preservation
and software availability, but also on the risks related to the
organizational context and legal issues. Table 1 shows some
examples of pairs of events and risks identified, together with
the assets they concern.

According to the risk assessment process we formulated con-
trols for each of the risks and events. The results of this anal-
ysis were presented to the management of the repository and
are going to be a base for the discussion on improvements
to the repository system and its broad context. In the re-
mainder of this section we would like to focus on a subset of
controls which can be introduced using concepts and tools
delivered by the TIMBUS project. Thus we demonstrate
how the solutions from the digital preservation domain can
mitigate a wide range of risks and not only those which are
directly related to digital preservation.

Table 4.2 presents a list of TIMBUS related controls which
can be used to minimize the likelihood of events or con-
sequence of risks. It also depicts how their values change
after control application. One can notice that some of the
controls appear more than once in the controls column, e.g.
Context Model Instantiation. Thus by applying one control
we benefit from mitigating multiples risks. Furthermore, in
the case of Context Model Instantiation we are controlling
at one time events related to the typical digital preserva-



Table 1: Subset of assets, events and risks for the repository case
Asset Event Risk
Organization Change of business model Financial loss due to change of business model
Repository Functionality Internal or external attacks Functionality fault due to internal or external attack
Repository Functionality Loss of expert knowledge Functionality faults due to loss of expert knowledge
Organization User’s illicit activities Reputation loss due to ilicit use of repository from user
Repository Software Software faults Software unavailability due to software faults
Data Changes to content model Loss of data integrity due to changes in data model

tion problems like Environment changes, but also business
related risks like Loss of expert knowledge or Changes in
organizational structure. In Section 5 we show how two of
these controls were implemented, i.e. Context Model Instan-
tiation and External dependencies monitoring.

Quality Assurance Workflow The subset of the risks iden-
tified for this use case is given in Table 4.2. It has to be
noted that this use case has much fewer social and other
contextual aspects to consider compared to the repository
use case. This is due to the workflow itself being a mostly
technical artefact, and the original environment where the
workflow was executed being unknown and thus not a part
of the use case. Thus, most risks concern technical aspects.

One important group of risks concerns the externally pro-
vided services, i.e. the duplicate detection algorithm. This
service may be hosted outside of the organisation running
the workflow, and outside of their control. Furthermore,
the service is not following any protocol such as a WSDL
web service, the communication, expected parameters and
expected return values are not explicit in the workflow def-
inition. Finally, the service requires an authentication, for
which the user name and password are not kept along with
the workflow definition.

Another group of risks is concerned with the library used in
the workflow to process the results from the duplicate de-
tection. This library can become unavailable, as it is not
packed together with the workflow definition, or can have a
fault, or can be incompatible with the version of the external
service. The workflow engine itself is also a risk, as it may
become unavailable, or incompatible with the operating sys-
tem the workflow is deployed on. Finally, knowledge about
the workflow setup, execution and interpretation is very of-
ten implicit, tacit knowledge of the owner of the workflow.
If that person is not available anymore (e.g. due to changing
jobs), it might not be possible to run the workflow anymore.

A subset of the identified controls for the workflow use case is
given in Table 4.2. Some controls are the same or similar to
the ones identified for the repository case; in general, similar
observations as in the repository use case hold true: some of
the controls appear more than once, thus mitigating more
than one risk at the same time.

5. CONTROLS
In this section, we describe the selected controls and their
application to the use cases in detail. The description ex-
plains how the control works, and in what way the risks or
events are controlled. We selected the controls which ad-
dress the entities on a high level of likelihood/consequence.

5.1 External dependencies monitoring
External dependencies monitoring is aimed at identifying
the types of changes described in Section 2.3. Detecting
this type of changes will not have an impact on the likeli-
hood of the events happening, but it can help to reduce the
consequence. This is on the one hand due to being able to
detect a change earlier than when detecting it by a process
triggered by the system itself. Potentially, we are able to
detect and issue a fix to the issue before the problem sur-
faces in any process execution. Further, having monitored
the service, we might have data available that allows us to
more quickly identify the specific problem with the service,
thus being able to find a solution for it quicker. External de-
pendencies monitoring is applied in both use cases, as they
both rely heavily on them.

Regarding the repository system, all of the services used are
currently hosted within the infrastructure of the university.
However, not all of them are under direct control of the
repository system support team. Furthermore, due to the
constant development of the repository system and provision
of new services, it is likely that some of the services may be
provided by external partners. The repository system can
use any kind of web service regardless of its location. Such
flexibility may cause potential threats. For example, when
a service is down, many functions of the repository system
depending on it will become unavailable or at least have
their functionality limited. Furthermore, changes in the im-
plementation of the external service may be unnoticed, but
may impact the system. For this reason, we decided to mon-
itor external services for their availability and changes and
have response scenarios prepared in advance to mitigate the
consequences of the service change.

We implemented the control using the Web Service Moni-
toring Framework (WSMF)[14]. The WSMF allows inter-
cepting traffic communication between the system and the
analysed web service. During standard operation of the ser-
vice the data intercepted is stored as ground truth data. It
is later used for validation of the service. We periodically
sent the requests gathered in the ground truth data to the
monitored web service and compared the responses with the
ground truth data responses. On this basis we can detect
whether the behaviour of the web services is changed. Fig-
ure 7 presents the application that allows performing these
actions. For now we are able to detect changes in the Im-
age Converter module of the repository system. The WSMF
can also be applied to monitor web services responsible for
conversion of content model by disseminators.

As shown in Table 4.2, the control External dependencies
monitoring decreases the consequence of Functionality faults



Table 2: Subset of controls for the Repository use case
Control name Control type New Value Old Value Controlled Entity
List of users with administration rights Likelihood medium high Modification using administration rights
Context Model Instantiation Consequence medium high Changes in organizational structure
Context Model Instantiation Consequence medium high Loss of Expert Knowledge
External dependencies monitoring Consequence medium high Functionality faults
Group policies Likelihood medium high Modification using administration rights
Context Model (Infrastructure View) Likelihood low medium Environment changes
Mock-ups of services Consequence medium high Functionality fault
Preservation of system and data Consequence low medium Shortcomings in semantic understandability
Software escrow Consequence medium high Functionality fault
Substiution of missing components Consequence low high Functionality fault

Table 3: Risks identified for the Workflow use case
Event Risk
Authentication failure External service unavailability due to authentication failure
Correct Library version not found Workflow execution failure due to library dependency unavailability
Data files not available Workflow execution failure due to unavailability of data dependencies
Library faults Workflow execution failure due to library dependency faults
Library unavailability Workflow execution failure due to library dependency unavailability
Loss or lack of documentation Shortcomings in semantic understandability due to loss or lack of documentation
External Service faults Workflow execution failure due to external service dependency fault
External Service unavailability Workflow execution failure due to external service dependency unavailability
Workflow engine faults Workflow execution failure due to workflow engine fault
Workflow engine unavailable Workflow execution failure due to workflow engine unavailability
Workflow executed on unsupported OS Workflow execution failure due to unsupported operating system

Figure 7: Web Service Monitoring Framework con-
trol panel [14]

from the high to the medium likelihood. This is because
any potential changes influencing the functionality of the
repository system are quickly noticed and instant preventive
actions can be taken.

For the Workflow use case, the application is very similar -
we can also apply the WSMF to the external service used,
and are thus able to detect any changes at an earlier stage.
Thus, we can reduce the consequences of external services
becoming unavailable. According to Table 4.2 the conse-
quence of External service unavailability is reduced from
high to low.

5.2 Context Model Instantiation
The context model, introduced in [1] and described in Sec-
tion 2.2 gives a comprehensive picture of the environment
the process is embedded in. This allows for a documentation
of the process steps, the actors, and their connection and de-
pendency towards the technological infrastructure that pro-
vides the execution platform in a comprehensive and formal
manner. Its formal representation enables reasoning, and
checking for compliance.

The context model is an important control addressing a
number of risks identified in our use cases. In some of these
risks, having a context model that covers only the infrastruc-
ture aspects of our systems is enough, as these risks primar-
ily deal with dependencies and conflicts between software
applications. For some other risks, especially those regard-
ing the knowledge on how the process is executed, a full-scale
model that also covers application and business aspects is
required.

Regarding the repository use case, even if the services are
available locally the content presented to the user still may
be altered in comparison to what was projected previously.
Such a situation may occur when a user accesses some con-
tent (e.g., a video) which is rendered with different algo-
rithms (e.g. different video codecs) and therefore may have
a different look and feel of the digital object. In most cases,
this is not a big issue for daily use, but in terms of digital
preservation and documenting the significant properties of
the digital object correctly for preservation purposes it is of
great significance. Therefore when preserving a repository
system, the knowledge about all of the elements impacting
the final representation of the object have to be documented.

Also the dependencies of the repository system need careful
documentation, because they also may affect the final re-
sult presented to the user. The repository system depends
on many Perl modules and new implementations of mod-
ules may introduce changes in the behaviour of the system.
Hence, it is crucial to maintain information about the soft-
ware dependencies of the system in order to be able to recre-
ate the same look and feel, as well as behaviour at any time
in the future.

On-going development of the system, such as changes and
enhancements of metadata schemas in order to enable Repos-
itory system to archive contents from various scientific disci-



Table 4: Controls for the Workflow use case
Control name Control type New Value Old Value Controlled Entity
Substitution of missing components Consequence low high Application dependency fault
External dependencies monitoring Consequence medium high Application license expired
Substitution of expired components Consequence low high Application license expired
Context Model (Infrastructure View) Likelihood low medium Application or Library incompatibility
Context Model (Infrastructure View) Likelihood low medium Application unavailability
Storing credentials for external services Likelihood medium high Authentication failure
Context Model (Infrastructure View) Likelihood low medium Correct Library version not found
External dependencies monitoring Consequence medium high Data files not available
Archiving and Preservation of data Consequence medium high Data files not available
Substitution of faulty components Consequence low high Library faults
Context Model (Infrastructure View) Likelihood low medium Library unavailability
Context Model Instantiation Consequence medium high Loss or lack of documentation
External dependencies monitoring Consequence medium high External Service faults
Mock-ups of services Consequence medium high External Service unavailability
Software escrow Consequence medium high External Service unavailability
Context Model (Infrastructure View) Likelihood low medium Workflow executed on unsupported OS

plines, creates another preservation requirement. For exam-
ple, some digital objects may have been described through
use of a metadata schema, which was later modified by
adding new classifications and voluntary fields. However,
it may happen that this new information cannot be added
to the existing elements. These elements may then appear to
a future user as corrupted, because the user may think that
some of the metadata is missing despite the fact that the
schema (the newer one) enforces its existence. The problem
becomes even more complex when the concepts used in dif-
ferent versions of the schema are redefined and change their
meanings. In order to prevent incorrect reasoning and wrong
conclusions about the objects, it is essential to preserve the
original versions of the metadata schemas and couple them
with objects using them. All of these can be described in
the Context Model. Due to the non disclosure agreements
we are not allowed to present the example of the Context
Model for the repository case.

Concerning the open source workflow use case, the technical
part of the context model is an effective control regarding
dependency and incompatibility risks. With the concepts
provided by the meta-model, we can formally capture the
dependencies between the application and library compo-
nents used in the system. This helps when identifying issues
that could be caused by changing versions of certain parts of
the system setup. Furthermore, by having the full instanti-
ation of the context model, it becomes clear what sequence
of steps is needed to be carried out in the process, and how
each step is supported by certain parts of the infrastructure.
Also, existence of external services become clear, and their
impact to certain parts of the process is explicit. The data
flow between the steps is formally defined, which helps in
understanding how the data is processed.

A simplified version of a corresponding instance of the TIM-
BUS Context Model is depicted in Figure 8. The model
depicts the external system that is called via SSH. It also
shows the third-party library that is needed for the match-
box algorithm evaluation.

5.3 Application Substitution
An application is usually utilised to manipulate or render
a digital object. By replacing (substituting) the original
application interpreting the digital object the functionality

Figure 8: Context Model of the Duplicate Detection
workflow

of this application is emulated. This is an effective control
to mitigate risks that can stem from faulty or incompatible
software applications, libraries and components utilised in
the system. By replacing them with another component
that provides equivalent behaviour, but does not exhibit the
risks, we successfully mitigated that risk by application of
emulation.

As part of the TIMBUS project, we developed a service
that allows for automatic identification of potential alter-
native software implementations, and thus application emu-
lation. The service is built around knowledge bases obtained
from linked data sources such as Freebase3[4], as well as soft-
ware packages as they are present often in Linux operating
systems, where virtual packages provide a categorisation of
packages that provide the same functionality. The service
then operates on a representation of the system, authored
by using the context model, and proposes potential replace-
ments, that in turn should be analysed by a digital preser-
vation expert for their usefulness and feasibility.

3http://www.freebase.com/



This approach can be used in the case of the repository sys-
tem to decrease the consequence of Functionality fault risk
(see Table 4.2). For example if the Tomcat application server
that is a container for most of the repository backend is ob-
solete and loses the community support, it can be replaced
with a compatible one, like Jetty, which may not have this
problem. Moreover, multiple Java and Perl libraries may
also need to be substituted. One of the potential reasons
could be low security of the component, then such a vul-
nerable library may be replaced with a recommended alter-
native. This shows again that the digital preservation tools
can also ease day to day maintenance of the system.

6. CONCLUSIONS
This paper describes the results of a case study conducted
on two use cases: a repository system and an automated
workflow representing typical digital preservation quality as-
sessment processes. We followed the TIMBUS preserva-
tion framework and risk assessment process defined by ISO
31000:2009 to identify potential risks and their impact on
the sustainability of systems and workflows.

The case study revealed a wide range of risks affecting not
only the technical aspects of the cases but also organizational
aspects. First and foremost, it confirmed the concerns that
the repository systems may need to undergo several digital
preservation actions. Hence, there should be more attention
to this problem within the digital preservation community
and the contents of the repositories are not the only thing
we need to worry about. Furthermore, the preservability
of both systems and workflows is endangered due to a high
dependence on external services and insufficient documen-
tation of their dependencies.

Using tools developed within the TIMBUS project we demon-
strated how these risks can be substantially mitigated. We
used the external dependencies monitoring, context model
instantiation and application emulation as controls to achieve
this aim.

ACKNOWLEDGMENTS
This research was co-funded by COMET K1, FFG - Aus-
trian Research Promotion Agency, by the FCT - Fundação
para a Ciência e a Tecnologia, under project PEstOE/EEI/
LA0021/2013, and by the European Commission under the
IST Programme of the 7th FP for RTD - Project ICT 269940/
TIMBUS.

7. REFERENCES
[1] G. Antunes, M. Bakhshandeh, R. Mayer, J. Borbinha,

and A. Caetano. Using ontologies for enterprise
architecture analysis. In Proceedings of the 8th Trends
in Enterprise Architecture Research Workshop
(TEAR), in conjunction with the 17th IEEE
International EDOC Conference, Vancouver, Canada,
September 9-13 2013.

[2] J. Barateiro. A Risk Management Framework Applied
to Digital Preservation. PhD thesis, Universidade
Técnica de Lisboa, Instituto Superior Técnico, 2012.

[3] J. Barateiro, G. Antunes, F. Freitas, and J. Borbinha.
Designing digital preservation solutions: a risk
management based approach. The International
Journal of Digital Curation, 5:4–17, 2010.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: A collaboratively created graph
database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08,
pages 1247–1250, New York, NY, USA, 2008. ACM.

[5] E. Deelman, D. Gannon, M. Shields, and I. Taylor.
Workflows and e-science: An overview of workflow
system features and capabilities. Future Generation
Computer Systems, 25(5):528–540, May 2009.

[6] Fedora Commons Community. Fedora commons
tutorial 2: Getting started: Creating fedora objects
using the content model architecture. Technical
report, 2007.

[7] T. O. Group. ArchiMate 2.0 Specification. Van Haren
Publishing, 2012.

[8] R. Huber-Moerk, A. Schindler, and S. Schlarb.
Duplicate detection for quality assurance of document
image collections. In Proceedings of the 9th
International Conference on Digital Preservation
(IPres2012), Toronto, Canada, October 1-5 2012.

[9] ISO. ISO Guide 73:2009 – Risk management –
Vocabulary. International Organization for
Standardization, 2009.

[10] ISO. ISO 16363:2012 – Space data and information
transfer systems – Audit and certification of
trustworthy digital repositories. International
Organization for Standardization, 2012.

[11] ISO/FDIS. ISO/FDIS 31000:2009 – Risk management
– Principles and guidelines. International
Organization for Standardization, 2009.

[12] Y. Li and M. Banach. Institutional repositories and
digital preservation: Assessing current practices at
research libraries. D-Lib Magazine, 17(5/6), 2011.

[13] A. McHugh, R. Ruusalepp, S. Ross, and H. Hofman.
The digital repository audit method based on risk
assessment (DRAMBORA). In Digital Curation
Center and Digital Presevation Europe, 2007.

[14] T. Miksa, R. Mayer, and A. Rauber. Ensuring
sustainability of web services dependent processes.
International Journal of Computational Science and
Engineering (IJCSE), 2014. Accepted for publication.

[15] S. Strodl, D. Draws, G. Antunes, and A. Rauber.
Business process preservation: How to capture,
document & evaluate? In Proceedings of the 9th
International Conference on Preservation of Digital
Objects, Toronto, Canada, 1–5 October 2012.

[16] S. Strodl, R. Mayer, G. Antunes, D. Draws, and
A. Rauber. Digital preservation of a process and its
application to e-science experiments. In Proceedings of
the 10th International Conference on Preservation of
Digital Objects, Lisbon, Portugal, September 2013.

[17] M. Van der Graaf and L. Waaijers. A Surfboard for
Riding the Wave. Towards a four country action
programme on research data. A Knowledge Exchange
Report. 2011.


	Introduction
	State of the Art
	Risk Management
	Framework for Process Preservation
	Changes in services

	Use Cases
	Fedora Commons Based Repository
	Quality Assessment Workflow

	Risk Assessment
	Performing the assessment
	Results

	Controls
	External dependencies monitoring
	Context Model Instantiation
	Application Substitution

	Conclusions
	References

