Management and Orchestration of Distributed Data
Sources to Simplify Access to Emulation-as-a-Service

Thomas Liebetraut and Klaus Rechert
Albert-Ludwigs University Freiburg
Hermann-Herder-Str. 10
79104 Freiburg i. B., Germany

{firsthame.lasthame}@rz.uni-freiburg.de

ABSTRACT

Emulation-as-a-Service makes emulation widely available for
non-experts and thus, emulation could prove valuable as a
tool in digital preservation workflows. Providing these em-
ulation services to access preserved and archived digital ob-
jects poses further challenges to data management. Digi-
tal artifacts are usually stored and maintained in dedicated
repositories and object owners want to or are required to
stay in control over their intellectual property.

In this paper we propose a distributed storage and data ac-
cess model that ensures that the user stays in control over
his digital objects by simultaneously providing efficient data
transport and support for (space) efficient management of
user modifications. Finally, a mechanism for orchestration
of both storage and emulation services to re-enact a single
pre-defined setup is presented.

General Terms
Infrastructure

Keywords
Emulation as a Service, Distributed Data, Framework, Cloud
Computing

1. INTRODUCTION

Emulation of legacy computer systems is technically chal-
lenging and requires computing power as well as specialized
knowledge about computing technology. These challenges
pose a hurdle to non-technical users of emulation services
that want to preserve and access digital objects like inter-
active art or legacy software. The goal of the Emulation-as-
a-Service (EaaS) [10] framework is providing emulation ser-
vices to these non-technical users like memory institutions
or owners of digital object collections.

To implement the EaaS service model and make it usable
for preservation purposes, a certain modularization and di-

iPres 2014 conference proceedings will be made available un-
der a Creative Commons license.

With the exception of any logos, emblems, trademarks or
other nominated third-party images/text, this work is avail-
able for re-use under a Creative Commons Attribution 3.0
unported license. Authorship of this work must be at-
tributed. View a copy of the licence.

vision of duties is required. Therefore, the EaaS framework
is divided into the actual emulation service provided by the
service provider, archives storing and maintaining digital ob-
jects provided by their respective owners, and modular work-
flows to access and interact with the digital object. While
providing and maintaining emulation components requires
highly specialized knowledge and will probably always be
done by specialized service providers, the archive compo-
nent is designed to be provided by different institutions.

Libraries and owners of collections of digital objects, may
want to or are even required to stay in control over their
intellectual creations, making it necessary to keep these dig-
ital objects in a separate archive. Consequently, there are
potentially many decentrally organized archives that are op-
erated independently from each other. They all may have
different requirements on how to maintain and create the
archived data and there may be little or no coordination be-
tween different archive providers. In some cases, users may
choose not to use a public archive or storage service and cre-
ate their own micro-archives that suit their specific needs.
Some may only exist over the course of a single session. In
such a decentralized structure, archives and emulation ser-
vices may appear and disappear as well as digital objects
may be relocated to other archives. But also object owners
or users may decide to switch to a different EaaS provider.
For this, we propose a comprehensive set of interfaces and
metadata to orchestrate an EaaS service and coordinate ac-
cess to multiple heterogeneous archives in a unified way.

An EaaS service provider may opt to provide various ready-
made emulated computer environments, so-called base im-
ages with operating systems (OS) and drivers already in-
stalled and configured, sharing the costs of maintenance and
technical expertise to create these environments. Instances
of emulated environments, i.e. an installed and configured
OS plus software stack on a virtual disk image, may reach
up to hundreds of GB in file size. Even with currently avail-
able network bandwidth, copying a full environment to an
EaaS Cloud service is inefficient and impairs the user expe-
rience. In addition, users may need to change, customize or
personalize environments. Hence, user modifications need
to be tracked and stored for subsequent usage. Therefore,
we propose a distributed storage and data access interface
that (1) ensures that the user stays in control over his dig-
ital objects, (2) provides efficient data transport even with
limited bandwidth and (3) supports efficient management of
user modifications.

http://creativecommons.org/licenses/by/3.0/legalcode

2. RELATED WORK

The concept of legacy platform emulation is closely tied to
the development of computer systems and is well established
as a tool to bridge a technological gap [7]. Recently, emula-
tion has evolved as a tool for preservation of complex digital
assets [12, 16, 17]. Furthermore, emulation setups have been
formalized to assess authenticity and performance [4], and
specific aspects of simulation of individual technical compo-
nents such as CRT screen simulation have been addressed [3,
14].

While these works have greatly promoted emulation in a sci-
entific context as well as the professional use of emulation
in digital preservation, many of these aspects have to be or-
chestrated and implemented individually for each purpose.
For instance, emulation has been used to provide access to
a large collection of legacy CD-ROMs [2, 18]. Furthermore,
requirements and workflows have been developed for prepar-
ing ready-made environments to render certain digital arti-
facts [11]. To enable several institutions to make use of and
potentially contribute to the collection, the digital objects
were made available through a distributed filesystem and
required a specific emulator setup on the user’s site.

The KEEP project ! addressed this problem by networked
provisioning of various complex emulator setups [5, 8]. While
a networked approach reduces technical and organizational
hurdles on the client’s side significantly, it still requires tech-
nical expertise and manual tasks carried out by the user.
Furthermore, data management, especially maintenance of
specific environments has not been addressed yet.

A more community-centered approach is the Olive platform 2,
which is specifically designed to allow collaboration of differ-
ent curators on a Cloud-based library. Olive also uses local
emulation using a thin client approach to run virtual ma-
chines, but it uses its own protocol to stream data necessary
to execute the virtual machine over the network. Modifica-
tions to a virtual machine, for example, newly installed soft-
ware, can be transferred back to the archive, making deriva-
tives of digital objects possible [13]. With our proposed data
management approach, we split generic computer and soft-
ware environments, potentially ready-made for emulation
purposes, from highly specific user adaptions and user data.
This way, the object owner remains in complete control of
both how and by whom the objects are accessed as well as
how and by whom the objects are stored and maintained
but still benefits from cost-effective shared maintenance of
common components.

3. REQUIREMENTS & ARCHITECTURE

Emulation-as-a-Service is built as a distributed architecture
that separates the different tasks required to re-enact a sin-
gle digital object. This separation allows for every com-
ponent to be maintained by respective specialists. Basi-
cally, the EaaS model is divided into the emulation service
itself that handles the emulation task, and archives that pro-
vide digital objects. While common objects like operating
systems and software can be shared in federated storage

'Keeping Emulation Environments Portable, http://wuw.
keep-project.eu/, last retrieved 2/1/2014
*https://olivearchive.org/

r I;le;etﬁin:ge_ 1 I_ T 7 T Emulation-as-a-Service _I
N e T

GO At Tnl =N 5] =

w Access | | = "] I

Policy | wbLA || wELA || uwEilf bl

I

Re-Enact Env.

Object

Access User

Figure 1: The EaaS distributed architecture with
service provider and different archive providers.

archives, e.g. to share maintenance costs, digital objects
preserved at a memory institution remain in the full control
of these institutions (cf. Fig. 1).

In order to provide a public EaaS service model, an abstract
description of how these different entities are to be coordi-
nated is necessary. This description can then be used by
an EaaS service’s emulation components to bring together
all the necessary bits and pieces to enable interactive user
access to complex digital objects. Hence, the emulation com-
ponent should not make any assumptions on the structure
of the archive storing requested digital objects. Similarly,
the archive or respectively its description must not assume
a specific implementation of the emulation site. Finally,
for emulation-based preservation of digital objects techni-
cal meta-data should be an abstract description of how to
re-enact a specific computer environment that does not de-
pend on a particular emulator software that will ultimately
face the same digital obsolescence problem like all digital
objects and technology.

3.1 Emulation Environment

To allow an individual computer environment to be replica-
ble in the future, an abstract description of such a computer
environment is required that is independent from emulator-
specific configuration or its implementation details. There-
fore, we introduce a comprehensive and abstract description
of a computer system, the emulation environment. This
technical metadata describes a computer environment to an
extent that an emulation component can use it to reproduce
the original environment. It includes the hardware archi-
tecture (platform) to be emulated as well as all devices that
are optional to that platform (disk drives, sound cards, input
devices, etc.).

These device descriptions might depend on external resources
or assets like firmware ROM code or disk images that consist
of binary data. For instance, an operating system, software
and other digital objects are provided on emulated media

http://www.keep-project.eu/
http://www.keep-project.eu/
https://olivearchive.org/

types such as virtual hard disks or CD-ROMs. After this
data is created or retrieved from actual media or hardware
and is preserved on a bit level, it has to be made available
to the EaaS framework.

The data archives that provide preserved digital objects are
not necessarily part of a specific EaaS service but can be pro-
vided by different data-centers or institutions. This means
that all the digital objects required by an emulation envi-
ronment may not be directly available for the EaaS service
provider. Therefore, the data objects that are required by an
emulation environment are referenced using data bindings.

These bindings reference the digital object using an URL
that identifies the object’s location or using a persistent
identifier. Each binding is identified and accessed by the
emulation component using an identifier unique within the
emulation environment. To the emulation component these
bindings are independent of the actual data location, access
policy and other properties. This is achieved by the use
of special data connectors that hide the complexity of actu-
ally accessing the digital object’s URL and provide a simple,
file-like access method to the data. Certain details of this
access can still be specified by the emulation environment,
though, for instance enforcing a specific transport protocol.
While the data in an archive has to be read-only to guaran-
tee long-term preservation constraints and to support effi-
cient concurrent access, bindings always have to be writable
from an emulator point of view. Technical restrictions in
the emulated operating systems and saving customizations
to the environment requires modifications to be tracked and
stored for subsequent usage. To make the emulation envi-
ronment metadata useful for archival and preservation pur-
poses, it can also be extended with descriptive metadata
like environment title, authoring information and creation
dates. Similarly, the description may also contain informa-
tion about what software is installed in the environment or
which digital objects can be accessed.

The emulation environment is the basic building block to or-
chestrate the different components of the EaaS framework.
It allows for separation of the emulation component and
the archive and makes it possible to view emulation envi-
ronments as a real document that can be referred to and
be collaborated on. Changes made to an emulation envi-
ronment can be ingested back into an archive which makes
them again available as a new, derived environment.

3.2 Persistent Identification

While the emulation component heavily relies on the avail-
ability of data, the origin if this data does not matter. In
the case of archives provided outside of the EaaS service
provider, using static references to an archive to link the
emulation environment with associated data is not feasible
and would complicate migration to other EaaS or storage
providers. Especially when implementing the archive com-
ponent using dynamic Cloud storage solutions that can be
allocated on-demand, referencing data by its network loca-
tion (i.e. IP or host name) is not applicable as data can move
to another host and may only be available for a limited time
at the specified network location.

To solve this problem it makes more sense to ignore image

locations altogether and refer to data using a unique and
persistent identifier (PI) such as Uniform Resource Name
(URN), Digital Object Identifier (DOI), or The Handle Sys-
tem (HDL) [1]. If the archive moves to another host or some
digital objects move to another archive (or are distributed
among many archives), the same PI can be used to resolve
all available image locations, allowing load-balancing and
dynamic allocation of resources in the cloud.

3.3 Persistent User Sessions

Once objects are stored in an archive and an appropriate en-
vironment has been created to access these objects, the en-
vironment should be immutable and cannot be modified ex-
cept explicitly by an administrational interface. This guar-
antees that a memory institution’s digital assets are unal-
tered by the EaaS service and remain available in the future.
It also allows efficient concurrent access handling without
the need to implement a complex and possibly expensive
data and session management to avoid interfering with other
users’ sessions.

This immutability, however, is not easy to handle for most
emulated environments. Just booting the operating system
may change an environment in unpredictable ways. When
the emulated software writes parts of this data and reads it
again, however, it probably expects this data to represent
its modifications. Also, users that want to interact with the
environment must be able to change or customize it per-
manently. Therefore, data connectors have to provide write
access for the emulation service while they cannot write the
data back directly to the serving archive.

4. IMPLEMENTATION

The outlined requirements are used to orchestrate several
components required to make digital objects in auxiliary
archives accessible by an EaaS service instance. Individ-
ual data bindings that represent a single digital object are
connected to by using data connectors on the EaaS site that
are configured by the binding specification in the emulation
environment. They can then be referenced by URLs of the
form binding://identifier, e.g. to define a hard disk’s
data. Data connectors provide a generic interface between
the archives and the actual emulation software to access
heterogeneous data sources. They implement the network
transport protocol, handle network connectivity and pro-
vide all the input and output operations that are common
for a standard local file, like reading, writing and random ac-
cess. Optionally, they also provide methods to authenticate
the current user session to the archive if this is necessary to
access protected digital objects. Different data connectors
can be provided to support different network transport and
authentication protocols in order to access different memory
institutions’ archives.

This concept requires some support from the archive to make
archived objects accessible from the EaaS framework. Usu-
ally, digital objects from archives are not accessible directly
as a single bit-copy of the original medium. Elaborate house-
keeping information and further metadata is usually stored
alongside the original object. To allow data connectors to
access the individual digital object over the network, an
archive server component has to be deployed at the memory
institution’s site that translates the internal data structures

used to archive the digital object to a network protocol suit-
able for accessing these objects. This archive component
hides the complexities of bookkeeping and accessing pre-
served objects while granting or restricting access to indi-
vidual objects. Consequently, the archive component can
be highly specific to the needs and structure of the archive
that are usually determined by the archiving institution. At
the same time, it enables the EaaS service to access the raw
data of individual digital objects in a unified way.

The distributed nature of this approach requires an efficient
network transport of data to allow for immediate data access
and usability. However, digital objects stored in archives can
be quite large in size. When representing a hard disk image,
the installed operating system, together with installed soft-
ware, can easily grow up to several GB in size. Even with
today’s network bandwidths, copying these digital objects in
full to the EaaS service may take minutes and derogates the
user experience. While the archived amount of data is usu-
ally large, the data that is actually accessed frequently can
be very small. In a typical emulator scenario, read access
to virtual hard disk images is block-aligned and only very
few blocks are read by the emulated system [15]. Transfer-
ring only these blocks instead of the whole disk image file is
typically more efficient, especially for larger files.

Therefore, the network transport protocol has to support
random data access and sparse reads without the need for
actually copying the whole data file. While direct file access
provides these features if a digital object is locally avail-
able to the EaaS service, it is not applicable in the gen-
eral case of separate emulation and archive servers. Special-
purpose network file systems like NFS (Network File Sys-
tem) or SMB (Server Message Block) provide file-like access
to remotely exported files over the network. They, how-
ever, require a complex setup in the host operating system
of both, the emulation service itself and the archive servers
at the memory institutions. Additionally, this setup has to
be done for every archive server that has to be available to
an individual emulation component.

In contrast, the Network Block Device (NBD) [6] protocol
provides a simple client/server architecture that allows di-
rect access to single digital objects as well as random access
to the data stream within these objects. Furthermore, it
can be completely implemented and run without adminis-
trational privileges on the host operating system and has a
very simple software design that does not require a complex
infrastructure on the archive servers.

4.1 Handle It!

In order to access digital objects, the emulation environment
needs to reference these objects in the emulation environ-
ment. Individual objects are identified in the NBD server by
using unique export names. Consequently, a URL schema of
the form nbd:<hostname>:<port>:exportname=<name> can
be used to declare the network location of an individual dig-
ital object.

While this NBD URL schema directly identifies the digi-
tal object and the archive where the digital object can be
found, the data references are bound to the actual network
location. In a long-term preservation scenario, where emu-

lation environments, once curated, should last longer than
a single computer system that acts as the NBD server, this
approach has obvious drawbacks. Furthermore, the Cloud
structure of EaaS allows for interchanging any component
that participates in the preservation effort, thus allowing for
load-balancing and fail-safety. This advantage of distributed
systems is offset by static, hostname-bound references.

Therefore, the Handle System is used as persistent object
identifier throughout our reference implementation to iden-
tify resources. The Handle System provides a complete tech-
nological framework to deal with these identifiers (or “Han-
dles” (HDL) in the Handle System) and constitutes a feder-
ated infrastructure that allows the resolution of individual
Handles using decentralized Handle Services. Each institu-
tion that wants to participate in the Handle System is as-
signed a prefix and can host a Handle Service. Handles are
then resolved by a central resolver by forwarding requests to
these services according to the Handle’s prefix. As the Han-
dle System, as a sole technological provider, does not pose
any strict requirements to the data associated with Handles,
this system is used as a PI technology.

Each Handle consists of a set of typed records that the Han-
dle server has to return upon request. While there are some
predefined record types like “URL” or “EMAIL”, individual
Handle Services are able and encouraged to define their own
record types that fit their needs. As currently the only in-
formation required in bwFLA is the actual network location,
the URL type is used to encode the actual NBD URL. Be-
cause there can be more than one record of the same type
in a Handle, several of these URLs can point to different
archive providers or provide different transport types. Han-
dles are then referred to in the emulation environment us-
ing URLs of the form hdl:11270/61fecaebea36... where
11270 is the prefix registered to the bwFLA project and the
following string an arbitrary identifier.

The Handle Service resolving Handles for the bwFLA prefix
is installed locally on one of the network nodes that run the
bwFLA software, but is available globally. While it makes
sense for owners of digital objects to make use of similar
Handle Services to consistently refer to their objects inde-
pendently from the archives that host the object, it is not
expected that this is an inherent part of the EaaS infras-
tructure. As Handles are used throughout the emulation
environments to identify data, the Handle Service has to be
independent of a specific EaaS provider in order to preserve
these emulation environments and possibly migrate them to
different EaaS providers. This can be achieved either by
each owner of digital objects to register his own Handle pre-
fix, or to provide a institutionalized service similar to the
DOI foundation that is more suitable for the needs of data
expected by the EaaS framework.

4.2 Persistent User Sessions

The concept of interacting with re-enacted environment is
an important part of the EaaS framework. Both, base sys-
tems provided by the service provider that curators can build
their own environment on and users that interact with the
final environment require modifications to an existing envi-
ronment. Only saving these modifications and making them
accessible to others makes sharing of resources possible, re-

ducing maintenance costs. At the same time it opens new
possibilities for community-based curation efforts to allow
contemporary witnesses to fine-tune and improve the user
experience of digital objects like art or software [9].

A single EaaS instance not only consists of the digital objects
themselves but also includes the emulation environment as
orchestration and management metadata. Modifications to
this metadata can easily be handled because the emulation
environment can simply be copied due to its small file size.
If the user attaches new drives or otherwise modifies the
metadata, a new emulation environment can be created that
includes the new hardware as well as the configuration of the
base system. In most cases, however, the hardware environ-
ment does not change but the data on hard disks or other
drives does. For example, installing software or configuring
the software environment result in modifications to the un-
derlying data. Also, just booting the operating system may
change an environment in unpredictable ways and users that
want to interact with the environment may change certain
aspects of it. When the emulated software writes parts of
this data and reads it again, it expects this data to represent
its modifications.

As digital objects are not to be modified directly in the
archive, a mechanism to store modifications locally at the
EC while reading unchanged data from the archive has to
be implemented. Such a transparent write mechanism can
be achieved using a copy-on-write access strategy. While
NBD allows for arbitrary parts of the data to be read upon
request, not requiring any data to be provided locally, data
that is written through the data connector is tracked and
stored in a local data structure. If a read operation requests
a part of data that is already in this data structure, the
previously changed version of the data should be returned to
the emulation component. Similarly, parts of data that are
not in this data structure were never modified and must be
read from the original archive server. Over time, a running
user session has its own local version of the data, but only
those parts of data that were written are actually copied.

We used the qcow2 container format®, part of the QEMU
project, to keep track of local changes to the digital ob-
ject. Besides supporting copy-on-write, it features an open
documentation as well as a widely used and tested refer-
ence implementation with a comprehensive API, the QEMU
Block Driver. The qcow2 format allows to store all changed
data blocks and the respective metadata for tracking these
changes in a single file. To define where the original blocks
(before copy-on-write) can be found, a backing file defini-
tion is used. QEMU’s Block Driver API provides a contin-
uous view on this qcow2 container, transparently choosing
either the backing file or the copy-on-write data structures
as source.

This mechanism allows modifications of data to be stored
separately and independent from the original digital object
during an EaaS user session, allowing to keep every digi-
tal object in its original state as it was preserved. Once
the session has finished, these changes can be retrieved from
the emulation component and used to create a new, derived

3The QCOW?2 Image Format, https://people.gnome.org/
“markmc/qcow-image-format.html, last access 8/15/14.

I —
| User- |
modifications
o =< g !
| User- 2 |
modifications = |
| » 4 s
l User- % l
| @ modifications E |
| Daa L register
L - ———— - User
Environment
connect
read-only

IP
User-
modifications

ODBCl = | RDP |

Data

Emulation
Component

Base Image
HDL/DOI

| connect

read-write

|
|
|
|
|
|
| Reference to
|
|
|
|
|
|

Figure 2: Data access workflow for derived envi-
ronments. The eser environment exists only at the
EaaS service provider until it is explicitly registered
at the archive (if allowed).

data object (cf. Fig. 2). As any Block Driver format is
allowed in the backing file of a qcow2 container, the backing
file can also be a gcow2 container again. This allows “chain-
ing” a series of modifications as copy-on-write files that only
contain the actually modified data. This greatly facilitates
efficient storage of derived environments as a single qcow?2
container can directly be used in a binding without having
to combine the original data and the modifications to a con-
solidated stream of data. However, this makes such bindings
rely not only on the availability of the qcow2 container with
the modifications, but also on the original data the qcow?2
container refers to. Therefore, consolidation is still possible
and directly supported by the tools that QEMU provides to
handle qcow?2 files.

Alternatively, a filesystem-based approach like UnionFS*
could be used to track, store and maintain changes made to
a system. These unification filesystems “stack” several modi-
fication layers on top of each other. While a filesystem-based
approach offers convenient tools to track individual files, the
metadata required to reconstruct these changes is implemen-
tation specific. Using a simple, block-oriented approach of
maintaining a virtual disk’s differential changes has some
advantages in a digital preservation scenario, due to its sim-
ple meta-data structure. The result of changed blocks are a
simple entries in a block mapping table (c.f. Listing 1 which
defines which file the data should be read from. This simple

1A Stackable Unification File System, http://unionfs.
filesystems.org/

https://people.gnome.org/~markmc/qcow-image-format.html
https://people.gnome.org/~markmc/qcow-image-format.html
http://unionfs.filesystems.org/
http://unionfs.filesystems.org/

representation allows a manual reconstruction, even if the
original implementation is not available anymore.

Listing 1: An excerpt from the block mapping table
used in qcow?2.

Offset Length Mapped to File

0 0x10000 0x270000 derived.qcow2
0x10000 0x10000 0x60000 base.qcow2
0x10000000 0x10000 0xab0000 base.qcow2
0x20000000 0x210000 0x50000 derived.qcow2
0x20210000 0x800000 0x2b0000 base.qcow2
0x30000000 0x10000 0xac0000 base.qcow2
0x3ffe0000 0x20000 0x80000 base.qcow2

Once the data modifications and the changed emulation en-
vironment are retrieved after a session, both can be stored
again in an archive to make this derived environment avail-
able. If there is no efficient transparent write support and
a full copy is used instead, the changed copy can be used
directly. In case of a copy-on-write approach, only those
chunks of data that actually were changed by the user have
to be retrieved. These, however, reference and remain de-
pendent on the original, unmodified digital object. It can
then be accessed like any other archived environment.

4.3 Collection containers

Sometimes it is useful to archive several individual data ob-
jects combined in a single container. For example, when a
software is distributed on more than one installation medium,
all the images belong to the same software with each single
one of them useless without all the other. To make this
collection one single digital object, they can all be tied to-
gether into a container format, e.g. a UDF image or a tar
archive. To refer to this new digital object and access indi-
vidual images from it, the data connectors in our reference
implementation support a mechanism to access the contents
of containers.

To determine whether a digital object is a container, the
data references can be used. If only the binding://name
form is used, the digital object is accessed directly. As
soon as a reference of the form binding://name/subobject
is used to make use of a sub-object, the binding name is used
as a container, requiring the use of the “collection connector”
to access the data. To avoid implementing the NBD access
protocol twice, this collection connector can be used on top
of the NBD connector.

4.4 Example

Listing 2 shows an example emulation environment from
our reference implementation describing an IBM OS/2 sys-
tem. Apart from some management information like the
title or an ID, it identifies the system architecture (line 4)
and includes a drive specification (lines 9-17). The drive
specification tells the EC about the virtual disk interface
to use (line 11) and all necessary bus information. To re-
fer to the data contained in the virtual hard disk, a special
URI scheme referring to a binding is used instead of the ac-
tual location of the virtual hard disk image (line 10). This
binding (lines 29-33) is then defined in terms of an HDL
reference with automatic transport protocol negotiation in
case the HDL resolves to more than one transport method

(line 31). Finally, the binding also selects the copy-on-write
access method (line 32) instead of a full copy, essentially
enforcing a failure if none of the archives support random-
seek read access. A second drive (lines 19-27) together with
another binding (lines 35-38) demonstrates how the binding
mechanism can be used for larger collections of floppy im-
ages for which it makes sense to archive them in one single
container (e.g. as a tar archive or a UDF image). Sub-
components of this container can be accessed directly in the
emulation environment with the EC providing an appropri-
ate data connector to unpack this container.

Using this information, the EaaS framework can determine
an EC suitable for emulating the requested system architec-
ture (x86 PC). The EC then instantiates a suitable emula-
tor configuration and connects to all defined bindings by the
mechanisms described above. Additional environment con-
figuration like an attached CD-ROM containing some digital
artifact could be added by simply adding another <drive>
element and choosing the correct PI for the CD-ROM. Like-
wise, the binding-mechanism also makes it possible to de-
clare ROM-images or similar data.

Listing 2: An example emulation environment con-
figuration.

1 <emuEnvironment xmlns="EmuEnvironment">
2 <uuid>2016</uuid>

3 <title>IBM 0S/2 2.11</title>

4 <arch>i386</arch>

5 <description>
6

7

8

9

</description>

<drive>
10 <url>binding://system_hdd</url>
11 <iface>ide</iface>
12 <bus>0</bus>
13 <unit>0</unit>
14 <type>disk</type>
15 <boot>true</boot>
16 <plugged>true</plugged>
17 </drive>
18
19 <drive>
20 <url>binding://floppys/diskl.img</url>
21 <iface>fdc</iface>
22 <bus>0</bus>
23 <unit>0</unit>
24 <type>floppy</type>
25 <boot>false</boot>
26 <plugged>true</plugged>
27 </drive>
28
29 <binding id="system_hdd">
30 <url>hdl:11270/0ecd47a3...</url>
31 <transport>auto</transport>
32 <access>cow</access>
33 </binding>
34
35 <binding id="floppys">
36 <url>hdl:11270/c41d0444...</url>
37 <transport>auto</transport>
38 <access>cow</access>

39 </binding>
40 </emuEnvironment>

For digital preservation purposes, it is often not sufficient
to have this functional description of an environment. If

any component of the emulation environment (especially the
data referred to by bindings) is lost, the original purpose of
the environment can no longer be determined. Therefore,
the <description> element in the emulation environment
contains a behavioral description of the emulated computer
system like operating system, installed software, special con-
figuration and customization this software underwent and
other curation information. Using this archival information,
a curator could, if he had access to all single original software
components, re-create the complete environment.

S. USE-CASES AND EXAMPLES

To provide a better understanding of the EaaS image-archive
interfaces and prototypical implementation, the following
three use-cases demonstrate how the current implementa-
tion can be used in practical scenarios. An obvious scenario
is the creation of so called derivatives of emulated computer
systems, i.e. specifically adapted system environments suit-
able to render a specific object or to be used in a specific
context. In a similar scenario a data object is injected into
the environment which is then modified for later access, i.e.
installation of a viewer application and adding the object to
the autostart folder. Finally, an existing hard disk image
(e.g. an image of a real machine’s hard disk) is ingested
into the system. This scenario requires, besides the techni-
cal adaption of the hardware environment suitable to be run
in an emulator, private files are to be removed before public
access.

Fullscreen Show Keyboard
@ file iSupport Help

CDROM
a zero K available

Microsoft_Dffice_98 sit Items remaining to UnStuff: 188

UnStuffing: Microsoft Graph
[—

StuffIt™ Copyright © 1990-1999 g}, Aladdin Systems

CEDEEDD PO FUER

Save as derivate image

Name: | Office 98 | Save Derivate

Figure 3: Installing uploaded software package and
creating a derivative environment.

5.1 Derivatives — Tailored Runtime Environ-

ments
Typically, an EaaS provider provides a set of ready-made
environments, so-called base images. These images contain
a basic OS installation which has been configured to be run
on a certain emulated platform. Depending on the user’s
requirements, additional software and/or configuration may
be required, e.g. the installation of certain software frame-
works, text processing or image manipulation software. To

do so, the user is able to upload a software installation pack-
age, which is then injected into the emulated environment,
e.g. as CD-ROM or DVD medium. Once the software is
installed, the modified environment can be saved and made
accessible for object rendering or similar purposes (cf. Fig.
3).

Erutor Contaurstan

BN ENND T ER =N FU EUE DD L EY A,

Figure 4: Ingest of CD-ROM art. Object is copied
to the compouter’s desktop and added as “autostart”
object.

5.2 Object-specific Customization

In case of complex CD-ROM objects with rich multimedia
content from the 90s and early 2000s such as encyclopedias
and teaching software, typically a custom viewer applica-
tion has to be installed to be able to render its content. For
these objects, an already prepared environment (installed
software, autostart of the application (cf. Fig. ?7?)) would be
useful and would surely improve the user experience during
access as “implicit” knowledge on using an outdated envi-
ronment is not required anymore to make use of the object.
Since the number of archived media is large, duplicating for
instance a Microsoft Windows environment for every one
of them would add a few GB of data to each object. Usu-
ally, neither the object’s information content nor the current
or expected user demand justify these extra costs. Using
derivatives of base images, however, only a few MB are re-
quired for each customized environment since only changed
parts of the virtual image are to be stored for each object. In
the case of the aforementioned collection of multimedia CD-
ROMs, the derivate size varies between 348kB and 54MB.

5.3 Authenticity vs. Redaction

Another scenario of increasing importance is the preserva-
tion complete user system like the personal computer of
Villem Flusser in the Villem Flusser Archive®. Such com-
plete system environments usually can be achieved by creat-
ing a hard disk image of the existing computer and use this
image as the virtual hard disk for EaaS. Such hard disk im-
ages can, however, contain personal data of the computer’s
owner. While EaaS aims at providing interactive access to
complete software environments, it is impossible to restrict
this “interactiveness”, e.g. to forbid access to a certain di-
rectory directly from the user interface. Instead, our ap-
proach to this problem is to create a derivative work with
all the personal data being stripped from the system. This
allows users with sufficient access permissions (e.g. family

® Villem Flusser Archive, http://www.flusser-archive.
org/

http://www.flusser-archive.org/
http://www.flusser-archive.org/

or close friends) to access the original system including per-
sonal data, while the general public only sees a computer
with all the personal data removed. The redacted version of
the disk image is inextricably linked to the original image,
such that any action of the redaction process can be audited.

6. CONCLUSION & OUTLOOK

The presented architecture and implementation provides means

to connect an external archive to an EaaS infrastructure
and to curate its objects using emulation-based preserva-
tion workflows. It provides a functional view on both, data
and the hardware configuration of a computer system in-
stead of specifying a direct network location or hardware
model, both of which may be meaningless in the far future.

At the same time, the EaaS service allows to make preserved
environments accessible to a broad audience and provides
a community-centered curation approach in which changes
made by individual users to improve the authenticity of an
environment can easily be made available to the rest of the
community without losing the original version of the envi-
ronment. This also makes it possible to track improvements
and understand how computer systems and software works,
allowing for a better restoration process in the future.

The interfaces and architecture presented in this paper also
provide several features to overcome common problems in
a distributed network. First, large digital objects can be
accessed efficiently over the network. First, digital objects
can now be efficiently accessed over the network. Together
with a location-independent PI to reference data, this al-
lows for a complete separation of the archive and the emu-
lation services, also on an organizational level. New digital
objects do not need to be registered at the EaaS service
provider and the emulation service does not require direct
access to the archive’s storage backend in order to re-enact
a single object’s behavior and utility. Digital objects can
rather be used directly after making them available using
either their NBD network location directly, or, preferably,
after they have been registered at some PI service. As this
service is usually not dependent on the implementation of a
specific EaaS framework, this is a much more versatile ap-
proach. This also leads to the possibility of quickly adding
new archives to the system without having to coordinate
with the EaaS service provider. The pure archive compo-
nent can easily be implemented on any platform and does
not rely on specific features to be available. The reference
implementation should be able to run on any POSIX com-
patible system with network access without any modifica-
tions. Therefore, using EaaS and the proposed data man-
agement concept, object owners are able to present their
objects (interactively) without actually releasing the envi-
ronment and, more importantly, the intellectual property to
the user. This is a required feature for digital art and sim-
ilar digital assets: to provide access to an almost unlimited
amount of users in order to unfold its potential impact on
today’s society, e.g. to use and interact with a piece of dig-
ital art, without anyone being able to copy it. The owner
remains in control of the object and is able to restrict access
any time simply by restricting access to their archive.

Second, the use of a copy-on-write mechanism together with
a transport protocol that allows fragmented access improves

the user experience. Instead of having to wait for a full copy
of the digital objects to be made, only minimal amounts of
data have to be transferred in order to make the environ-
ment usable immediately after the initialization. Further-
more, it allows a community-centered curation approach in
which changes made by individual users to improve the au-
thenticity of an environment can easily be made available
to the rest of the community without losing the original
version of the environment. This also makes it possible to
track improvements and understand how computer systems
and software works, allowing for a better restoration process
in the future.

Finally, a more structured emulation environment allows for
a more future-proof approach to emulation-based preserva-
tion. The emulation environment separates the functional
description of a hardware system and the archival meta-
data required to understand the system. Each of them can
be exchanged independently from each other, either using
a different approach to describe the hardware in a possi-
ble future EaaS solution, or using a different preservation
metadata that describes how the environment was built and
preserved and how it can be used.

7. REFERENCES

[1] Arms, W. Y., May 2001. Uniform resource names:
Handles, purls, and digital object identifiers.
Commun. ACM 44, 5 (May 2001), 68—

[2] Brown, G., 2012. Developing virtual cd-rom
collections: The voyager company publications.
International Journal of Digital Curation 7, 2 (2012),
3-22.

[3] Guttenbrunner, M., and Rauber, A., 11 2011.
Re-awakening the philips videopac: From an old tape
to a vintage feeling on a modern screen. In Proceedings
of the 8th International Conference on Preservation of
Digital Objects (iPres 2011) (11 2011), pp. 250-251.
Posterpresentation: iPres 2011 - 8th International
Conference on Preservation of Digital Objects.

[4] Guttenbrunner, M., and Rauber, A., May 2012. A
measurement framework for evaluating emulators for
digital preservation. ACM Trans. Inf. Syst. 30, 2 (May
2012), 14:1-14:28.

[5] Lohman, B., Kiers, B., Michel, D., and van der
Hoeven, J., 2011. Emulation as a business solution:
The emulation framework. In 8th International
Conference on Preservation of Digital Objects
(iPRES2011) (2011), National Library Board
Singapore and Nanyang Technology University,
pp. 425-428.

[6] Machek, P., 1997. Network block device.
http://atrey.karlin.mff.cuni.cz/ Davel /nbd /nbd.htm.

[7] Marsland, T., and Demco, G., 1978. A case study of
computer emulation. Canadian Journal of Operational
Research and Information Processing 2 (1978), 16.

[8] Pinchbeck, D., Anderson, D., Delve, J., Alemu, G.,
Ciuffreda, A., and Lange, A., 2009. Emulation as a
strategy for the preservation of games: the keep
project. In DiGRA 2009 — Breaking New Ground:
Innovation in Games, Play, Practice and Theory
(2009).

[9] Rechert, K., Espenschied, D., Valizada, I., Liebetraut,

[11]

[12]

[13]

T., Russler, N.; and von Suchodoletz, D., 2013. An
architecture for community-based curation and
presentation of complex digital objects. In Digital
Libraries: Social Media and Community Networks,
ICADL 2013 (2013), Springer, pp. 103-112.

Rechert, K., Valizada, 1., von Suchodoletz, D., and
Latocha, J., 2012. bwFLA — A Functional Approach to
Digital Preservation. PIK — Prazis der
Informationsverarbeitung und Kommunikation 35, 4
(2012), 259-267.

Reichherzer, T., and Brown, G., june 2006.
Quantifying software requirements for supporting
archived office documents using emulation. In Digital
Libraries, 2006. JCDL ’06. Proceedings of the 6th
ACM/IEEE-CS Joint Conference on (june 2006),

pp. 86-94.

Rothenberg, J., 1995. Ensuring the longevity of digital
information. Scientific American 272, 1 (1995), 42-47.
Satyanarayanan, M., Bala, V., St. Clair, G., and
Linke, E., 2011. Collaborating with executable content
across space and time. 7th International Conference
on Collaborative Computing: Networking, Applications

(14]

(15]

(16]

(17]

(18]

and Worksharing (CollaborateCom), October (2011),
528-537.

Scott, J., 2012. What a wonder is a terrible monitor.
Online http://ascii.textfiles.com/archives/3786.
Tang, C., 2011. Fvd: a high-performance virtual
machine image format for cloud. In Proceedings of the
2011 USENIX conference on USENIX annual
technical conference (Berkeley, CA, USA, 2011),
USENIXATC’11, USENIX Association, pp. 18-24.
van der Hoeven, J., van Diessen, R., and van der Meer,
K., 2005. Development of a universal virtual computer
(uvce) for long-term preservation of digital objects.
Journal of Information Science 31, 3 (2005), 196-208.
van der Hoeven, J., and van Wijngaarden, H., 2005.
Modular emulation as a viable preservation strategy.
In Proceedings of the 9th European Conference on
Research and Advanced Technology for Digital
Libraries (Berlin, Heidelberg, 2005), ECDL’05,
Springer-Verlag, pp. 485-486.

Woods, K., and Brown, G., 2010. Assisted emulation
for legacy executables. International Journal of Digital
Curation 5, 1 (2010).

http://ascii.textfiles.com/archives/3786

	Introduction
	Related work
	Requirements & Architecture
	Emulation Environment
	Persistent Identification
	Persistent User Sessions

	Implementation
	Handle It!
	Persistent User Sessions
	Collection containers
	Example

	Use-Cases and Examples
	Derivatives – Tailored Runtime Environments
	Object-specific Customization
	Authenticity vs. Redaction

	Conclusion & Outlook
	References

