
Demonstration of an Integrated System for
Platform-independent Description of Human-Machine

Interactions

Oleg Stobbe, Klaus Rechert and Dirk von Suchodoletz
Albert-Ludwigs University Freiburg

Hermann-Herder Str. 10
79104 Freiburg i. B., Germany

1. MOTIVATION
When using emulation to render digital objects, a dedicated
system environment is required. This environment typically
consists of a set of software, i.e. an emulator, replicating
the original hardware, operating system, hardware drivers,
application as well as tools and utilities. Typically such
technical meta-adata is modeled using a view-path. Config-
uration and operating knowledge, however, is also required
and needs to be described and preserved to secure determin-
istic future environment and workflow replication.
One possible solution is to capture and replay human-machine
interaction in an abstract way. A model for recording and
capturing interactions between human users and an emu-
lated machine has already been proposed [2]. With the in-
tegration of such a system in an Emulation-as-a-Service ser-
vice model [1], usability has been improved significantly by
integration the capturing and replay into EaaS workflows.
This demo’s purpose is to demonstrate the system’s usabil-
ity and utility for digital preservation tasks like automation,
documentation and replication of interactive tasks.

2. ARCHITECTURE & IMPLEMENTATION
To capture and replay any user-interaction either directly
with the running emulated system or with the emulator, an
interaction workflow description (IWD) recorder is added
to EaaS’s emulation components. Emulation components
abstract each emulator’s individual complexity and provide
unified interfaces for interaction with the emulated environ-
ment. In contrast to so-called macro-recorder, the IWD-
system does not interact directly with the emulated operat-
ing system and thus, is platform independent and extensible
to cover new, upcoming interaction paradigms.
The basic idea of IWD is to simulate a human user’s behav-
ior: before executing a single interaction, e.g. mouse move-
ment, mouse click, keyboard input, the system needs to be
in the appropriate state, i.e. providing a proper context for
a certain action and a potential previous event has to be pro-
cessed completely. More formally, a single event is described

iPres 2014 conference proceedings will be made available un-
der a Creative Commons license.
With the exception of any logos, emblems, trademarks or
other nominated third-party images/text, this work is avail-
able for re-use under a Creative Commons Attribution 3.0
unported license. Authorship of this work must be at-
tributed. View a copy of the licence.

through a precondition, i.e. the system has to be in a spe-
cific, pre-defined state pc, an action a, and the expected out-
come eo of the user-action (evi :=< pc, a >i→ eoi). Both,
pre- and postcondition of each interaction are verified by us-
ing the emulator’s visual output and the emulator’s internal
machine state. Furthermore, we assume that each postcon-
dition is also precondition for the next event.
In the current version synchronization is implemented us-
ing visual/graphical output only. Before executing the next
action, the system waits for the screen to reach a state ”sim-
ilar enough” to the one, at the time of the action’s record-
ing. Pre- and post-conditions are rather simply automati-
cally generated by fingerprinting the emulators output.

2.1 Recording Architecture
When using EaaS to instantiate a dedicated emulated sys-
tem environment the user is able to simply enable recording
of the session’s interactions. Recording is performed on the
server-side running as a background task independently of
the way the user interacts with the emulator (e.g. using a
web client or a dedicated VNC, RDP, etc.). An abstract in-
terceptor interface allows to capture, filter and manipulate
any message sent between the user’s client and the emu-
lation component. On the server-side, two worker threads
analyze the user’s stream of input events and the emulator’s
output. Specific sync-instructions and timestamps are used
for synchronization of both streams. To support visual syn-

In
te
rn

et

Input
Events

Video &
Audio

Trace-File

Emulation as a Service

Client
(e.g HTML5-Browser)

Interceptor Emulation
Component

Event 0
Event 1

...

Event n

C
lie

nt
-Q

ue
ue

Update 0
Update 1

...

Update m

S
er
ve

r-
Q
ue

ue

Recorder

Client-Events
Processor

Server-Updates
Processor

Sync

Figure 1: Recording of human-machine interactions
using an EaaS setup.

chronization, the emulator’s visual output is reconstructed

and drawn on the server-side. For instance, all screen up-
dates are processed before a mouse-click event. From this,
a snapshot of n × m pixels surrounding the mouse cursor
is written to the trace file. This also design provides some
simple by-products such as the creation of screenshots as
well as screencast movies both annotated with the emula-
tion’s context information. The resulting IWD trace file has
been reworked from previous versions making it both human
readable (text-based) and efficient to parse and execute.

IWD := blocks{trace, meta-data, index}

trace := {<timestamp>|<instr_len>|<instr>}*

instr := <op_len>.<op>,<arg_length>.<arg>,...;

A trace block contains the session’s events as an abstract de-
scription, such as the user’s input-events, emulator output
and synchronization data. For instance,
520274|24|5.mouse,3.251,3.782,1.0;

describes a mouse movement instruction (to 251,782) which
occurred 520274ns after the start of the recording. The
length of the instruction is 24 chars. For synchronization,
events like:
6226615|6434|5.vsync,2.13,2.77,2.40,2.30,6400.[...];

describe pre- respectively postconditions. In this case 40×30
pixels at position (13, 77) are expected to be similar to the
Base64-encoded bitmap.
The trace file’s meta-data section contains simple key/value
pairs providing information regarding the trace file’s cre-
ation context, e.g. a reference to the environment and emu-
lator used as well as descriptive meta-data to be displayed.
The trace file ends with an auto-generated index section that
provides technical information for efficient parsing.

2.2 Replay
To replay an IWD, the trace-file is fed directly to the emu-
lation component. If requested, the user is able to observe
the emulator’s visual output. For replay, also two worker
threads are used, one for processing the trace file and an-
other one for processing the emulator’s output.
When replaying user interactions, it is possible that the em-
ulator may drop events, e.g. if it cannot keep up with in-
put processing. Furthermore, an action may take a varying
amount of time for complete execution, such that recorded
timestamps of events are not useable for input synchroniza-
tion. Hence, the replay system has to adapt to the emula-
tor’s behavior. Since most input events produce a number of
corresponding screen-updates1, these updates, respectively
the update patterns, are used for input synchronization and
flow-control, i.e. delay processing of the next events un-
til expected screen-regions are updated, hence the action’s
outcome is visible. Since screen-updates are not determinis-
tic both by size or position, an expected update pattern
is considered as successfully received if it covers the up-
dated screen region. This way, visual synchronization is also
available for environments without direct mouse input. Fur-
thermore, this method is computationally efficient since no
screen content has to be processed. Fig. 2 shows a recording
of a console-based session. The yellow rectangle marks the
screen area expected to be an outcome of an previous input
action.
1 For efficiency reasons only a set of tiles, covering changes
on the screen are transferred.

Figure 2: Replay of a console based user interac-
tion with visualized screen-updates (grey) and visual
synchronization (yellow).

3. RESULTS, ISSUES & OUTLOOK
With a recording and replay system integrated into the EaaS
framework, this system can be used with all available system
environments. Yet, the system is usable for simple automa-
tion tasks as our tests still exposed unresolved issues, like
failed or dropped mouse events (e.g. the mouse event had
no effect and the window did not close). Furthermore, some
animations, system-clock widgets caused problems due to
non-deterministic screen-update events. These issues will be
addressed by both implementing more robust pre- and post-
condition checks as well as incorporating non-visual feedback
from the emulation component (e.g. cpu and I/O status).
Other issues found in our tests, like unexpected error mes-
sages e.g. due to networking issues, missing menu-options
or files, need to be addressed by the recording user.
Despite these yet unresolved issues, the presented system
and its integration into EaaS workflows provides a stable
base for new features for the digital preservation commu-
nity to automate and document tasks on interactive systems.
Furthermore, by unifying the communication with EaaS’s
emulation components, first steps for emulator-independent
replay of interactions have been made. With this, captured
interactions with today’s emulators can be replayed with a
future emulator hosting the same system environment.

4. REFERENCES
[1] K. Rechert, I. Valizada, D. von Suchodoletz, and

J. Latocha. bwFLA – A Functional Approach to Digital
Preservation. PIK – Praxis der
Informationsverarbeitung und Kommunikation,
35(4):259–267, 2012.

[2] K. Rechert, D. von Suchodoletz, R. Welte, M. van den
Dobbelsteen, B. Roberts, J. van der Hoeven, and
J. Schroder. Novel workflows for abstract handling of
complex interaction processes in digital preservation. In
Proceedings of the 6th International Conference on
Preservation of Digital Objects (iPRES2009), pages
155–161, 2009.

