
Reviving Antique Software: Curation Challenges and the
Olive Archive

Daniel Ryan
Carnegie Mellon University

WEH 4418, 5000 Forbes Ave
Pittsburgh PA 15213
+1 (412) 268-5278

dfryan@andrew.cmu.edu

Gloriana St. Clair
Carnegie Mellon University

WEH 4418, 5000 Forbes Ave
Pittsburgh PA 15213
+1 (412) 268-5278

gstclair@andrew.cmu.edu

ABSTRACT
A growing percentage of the world's intellectual output is in the
form of executable content, such as simulation models, tutoring
systems, data visualization tools, and expert systems. To preserve
this content over time, we need to freeze and precisely reproduce
the execution that dynamically produces that content. Olive, a
rough acronym for “Open Library of Images for Virtualized
Execution,” is a system built at Carnegie Mellon University.
Olive preserves and provides access to this executable content. It
relies on virtual machine (VM) technology to bundle software
with all of its dependencies. These VMs are streamed over the
internet in real time to ensure a smooth user experience while
maintaining fidelity to the original execution environment[1].
This demonstration examines some of the challenges the Olive
team has encountered in the process of preserving software over
the last several years. Among these difficulties are technical
challenges, problems of scale, legal limitations, and a lack of
existing curation standards for executable content.

General Terms
infrastructure, preservation strategies and workflows, specialist
content types, case studies and best practice.

Keywords
preservation, software, virtualization.

1. INTRODUCTION
Born-digital interactive content makes up an increasing proportion
of creative and scholarly output around the world today. The
global, instantaneous, and unrestrainable nature of software has
made it a major part of our cultural heritage. Significantly,
executable content draws its cultural impact from its interactivity:
users have to participate and interact with software in order to
understand what it does, how it works, and why it is useful.

Historically, libraries, museums, and other cultural memory
organizations have been effective in preserving the developing
record of civilization globally, and in assisting the users of that
record to understand it and to use it to create new knowledge. In
the arts and humanities, citizens and scholars can view cave
paintings at Lascaux, the Bayeux tapestry, the Bill of Rights, the
archival papers of U.S. Senator John Heinz, and over twenty

million books. Published scholarly work is more widely
disseminated than it has ever been. Those interested in their
heritage can listen to traditional music, study ancient commercial
records and texts, and attend plays written by Shakespeare.
Currently, these seekers cannot use primary source materials from
the growing realm of executable content, because the execution
environment is not compatible with modern technology. Instead,
scholars must rely on a variety of secondary sources, including
screenshots, descriptions, and community commentary.

In Preserving Digital Information, Report of the Task Force on
Archiving of Digital Information, Don Waters and John Garrett
made a daunting prediction that if libraries did not seek to
preserve digital information, the result would be difficult. “Failure
to look for trusted means and methods of digital preservation will
certainly exact a stiff, long-term cultural penalty[2]."

The pervasiveness of executable content is a worldwide
phenomenon. When historians look back on the nature of society
during the computer revolution, they will need working, perfectly
faithful instances of the software in use and the experience of
interacting with it. When sociologists seek to understand exactly
which characteristics of Angry Birds drove many adults
internationally to spend large portions of time flinging digital
birds at digital houses, they will need to run it and play it
themselves. No explanation or description could suffice.

2. PROJECT HISTORY
In 2012, Carnegie Mellon computer science professor Mahadev
Satyanaranan (Satya) approached the Dean of Libraries, Gloriana
St. Clair, to discuss a project for which he saw an application that
might be suited to the University Libraries. Satya had been
working with Vasanth Bala (Vas) at IBM Research to package
and stream virtual machines for fast application deployment.. This
project was known as Internet Suspend/Resume® (ISR). As the
project evolved, Satya and Vas began to see ISR's potential for
preserving software. The ISR team understood the technical and
infrastructural challenges behind such a project, and thought it
was worth investing the time and money to devise a solution.
Neither IBM nor Satya was interested, however, in keeping old
things around forever. They agreed to begin by reaching out to
the Carnegie Mellon Libraries, where Gloriana had established a
reputation as a digital pioneer and an extensive collaborator with
the computer science department. Thus, the Olive project was
born. St. Clair assured Satya that not only were she and the CMU
Libraries interested in solving this problem, but also that the
library community shared her sense of responsibility around
executable content.
In 2010, IBM hosted a meeting to test the idea that libraries and
campus computing might be interested in preserving executable

iPres 2014 conference proceedings will be made available under
a Creative Commons license.
With the exception of any logos, emblems, trademarks or other
nominated third-party images/text, this work is available for re-
use under a Creative Commons Attribution 3.0 unported license.
Authorship of this work must be attributed. View a copy of this
licence.

content. Participants were enthusiastic about the technology,
anxious about the legal situation, and worried about both the
economic and the organizational issues.
Both IMLS and the Sloan Foundation gave grants for a proof of
concept phase of Olive development. Since October 2012, the
Olive project has received $497,000 from the Institute for
Museum and Library Services, and $400,000 from the Sloan
Foundation, to support a proof of concept effort and development.
Part of the funding sought from the Sloan Foundation was
awarded to Ithaka S+R for a whitepaper on sustaining an entity
like Olive after the core research and development has been
completed. The report recommends an additional three years of
funding for intensive R&D, followed by the formation of a
sustaining coalition of interested parties sharing the financial
burden of the operational costs of such an archive.

3. APPROACH
3.1 Execution Fidelity
Software reproduction is a complex problem, the solution of
which requires the perfect alignment of many moving parts.
Achieving execution fidelity has long evaded preservationists and
has stymied the efforts of the digital library community to archive
executable content[8][3][4]. Even minor changes can cause a
breakdown in the stability of the execution environment. These
changes can include dynamically linked libraries, preferences,
configuration files, clock timings, hardware capabilities, and
more. Simply constructing the appropriate environment in which
legacy software will execute often requires expert knowledge of
the original environment. We refer to the successful alignment of
all of these variables as execution fidelity[5][6]. As legacy
software falls further into deprecation, the level of knowledge
required to achieve execution fidelity becomes increasingly rare.

3.2 Virtual Machines
In order to encapsulate an execution environment, Olive relies on
virtual machine technology. Communicating with a virtual
machine monitor, VM images are supplied with a virtualized
representation of a computer architecture and instruction set see
Figure 1). Virtual machine monitors leverage the actual hardware
of a machine (the host machine) to ensure that the operating
system and applications inside are unable to distinguish between
the virtual environment and a real legacy system. This precise
imitation of hardware is why Olive relies on virtualization as a
preservation strategy.

Figure 1: Olive Client Architecture

Olive is built on standard, unmodified web technologies (standard
web servers, HTTP for communication) and works to stream VM
images in pieces as they are requested. Execution can happen
either directly on a user's computer or on a compute node
dedicated to VM execution.

3.3 Examples & Demo
There are several pieces of software archived in Olive, but here
we will focus on only two brief examples:

1. The Great American History Machine (see Figure 2): A
piece of educational software written in the late 1980's
by Professor David Miller at Carnegie Mellon. This
software was used to teach early American History at
institutions across the United States. It offers unique
tools for exploring census and election data. Professor
Miller and his team did not have the technical resources
to migrate this tool when Windows 3.1 became
deprecated, so the software fell into disuse until we
recovered it.

2. Mystery House (see Figure 3): Mystery House is the
original graphically-rendered adventure game written
for the Apple II. It brought graphical interaction to the
mainstream just over 30 years ago, yet actually running
that software today is a significant challenge; not only
did we need the original disk image, but we also had to
find an Apple II emulator and the accompanying ROM
(read-only memory), which was originally built into the
machine. Without archival, executable instances of
software like Mystery House, we lose our ability to
reflect on the history of computer games and
human/computer interaction.

These examples highlight the potential for olive to preserve and
provide access to software which might otherwise be lost.

4. CHALLENGES
4.1 Technical Challenges

Figure 2: Great American History Machine (Windows 3.1)

In the simplest terms, Olive will be like YouTube for executable
content. Olive provides a tool for preserving and remotely
accessing software. To preserve this content over time, we need
to freeze and precisely reproduce the execution that dynamically
produces the content. While this may sound simple, many have
studied the problem over the last two decades, but only now are
successful efforts underway.
Here are a few of the technical challenges we have encountered
while trying to achieve a working implementation of Olive:

 Low latency streaming and caching of VM images[8];
 Lack of backward compatibility in updated releases of

dependent software;
 Bugs which existed in old software/hardware but only

present themselves in modern systems;
 Effective, secure, and flexible implementation of access

controls, and
 Failure of modern VMMs to represent faithfully the

extended memory space required to run certain systems.
For example, the version of qemu/kvm bundled with Ubuntu
12.04 was several releases out of date as compared with that
packaged with Redhat Enterprise Linux. VMs built on RHEL 6.x
would fail to boot when exported to an Ubuntu 12.04 machine
with qemu/kvm installed from the normal Ubuntu repository. In
order to overcome this difficulty, the software Olive provides for
packaging VMs strips down and validates the XML. This XML is
responsible for defining the configuration of a VM in order to
ensure continuing compatibility, both forward and
backward[7][8].
In another edge case, we discovered that Windows 3.1 mouse
support suffered from a strange bug which caused the mouse
pointer to jump randomly around the screen. Upon investigation,
the Olive development team learned that the serial mouse drivers
for Windows 3.1 contain an off-by-one error which is only
exposed when mouse updates occur more than 40 times per
second. On older mice, this did not cause problems because they
did not send updates so frequently. However, modern laser mice
send information much more often than 40 times per second.
After tracking this issue down, we were forced to construct a
binary patch for the driver.

4.2 Legal Challenges
The world’s accrued wisdom is available to scholars and students
globally. In general, the pre-1923 U.S. content can be benefited

from without much concern about being sued for reusing that
work in the creation of newer work. For instance, Shakespeare’s
output can be performed in all kinds of redacted and enhanced
formats and interpretations. Shakespeare’s heirs may wince but
they cannot and do not sue. In striking contrast, the family-profit-
maximizing Tolkien Estate manages its assets by aggressively
controlling all aspects in all formats. J. R. R. Tolkien himself sued
Ace Books for publishing a pirated paperback edition of The Lord
of the Rings. Ace paid damages and Tolkien’s publisher moved to
meet demand by bringing out an authorized paperback. The
Tolkien Estate continues to be zealous in managing its property.
For a less popular author, this approach might be detrimental.
Generally, most post-1923 content requires some kind of license
in most countries. Presently, Olive is a closed research project,
which affords it certain protections from infringement claims
under fair use provisions of the copyright law. However, we
recognize the need for an open, accessible archive for software,
and CMU General Counsel Mary Jo Dively commissioned an
extensive risk assessment of varying levels of public access to
Olive. We are continuing to study this report.

4.3 Curation Challenges
Many collections of historical material are established, managed,
and maintained by curators, who are responsible for selecting
content, developing and applying an acquisition process, and
keeping that content secure from degradation. Often this means
protecting works of art from sunlight and flash photography, or
protecting books from falling apart. When the object of curation
is a piece of software in executable form, however, the process of
curation is not particularly well defined. For a given piece of
software, curation might involve identifying the hardware it
requires to operate, locating an emulator for that hardware (if
necessary), determining the platform and version required to run
the software, configuring the emulator, installing and configuring
the platform, locating and importing dependent drivers, installing
the software, ensuring faithful behavior, generating metadata, and
tracking down related rights information, and packaging and
uploading the containing VM.

This set of tasks would be daunting enough given a modern, well
documented technology stack. For old or deprecated software, the
dependency stack will often require extensive expertise to
configure and install successfully, if it is still possible to identify
and acquire the full dependency stack at all. Documentation for
these configuration and installation procedures is often lacking,
and finding an expert will become increasingly difficult.

Figure 1: Mystery House on Apple II emulator

Figure 2: Crowdsourced Publication Workflow

As part of a grant from the Institute for Museum and Library
Services, the Olive team agreed to preserve Doom, the original
first-person shooter game written for MS-DOS. Beginning with an
image of the original MS-DOS 6.22 installation floppy disk, we
soon learned that reliable instructions for achieving a successful
system configuration were scarce, poorly documented, and largely
dependent upon third party additions with similar challenges.
Similar issues arose when we attempted to install Windows 95.

Because of the degree of expertise required and the sheer quantity
of software which is in jeopardy of becoming extinct, we
currently plan to investigate crowd-sourced curation models in the
next phase of our work. As we move forward, our development
team is implementing functionality to allow new VMs to be
published as a changeset applied to an existing VM, which would
eliminate the need to confront a complex dependency stack more
than once. A sample curation workflow supported by this model
can be seen in Figure 4.

5. CONCLUSION
Preserving software in its execution environment is critically
important to our institutional goal of preserving the cultural
record. The Olive Archive is an infrastructure designed to limit
challenges to future curators, but will begin to rely more heavily
on community involvement in the coming years. Many important
questions must be addressed by curators and preservation experts
as institutions take on the daunting challenge of capturing,
describing, checking, cleaning, migrating, and maintaining
collections of software in virtual machines.

6. ACKNOWLEDGMENTS
The Olive Archive is supported by grant funding from the
Institute for Museum and Library Services and from the Sloan
Foundation. We are grateful to Vas Bala and IBM for initially
supporting this research, to Carnegie Mellon for financial, legal,
technical and moral support, and to Deanna Marcum and Ithaka
S+R for their ongoing insight and assistance. Final thanks to the
advisory group and to our project team: Erika Linke, Mahadev
Satyanarayanan, Keith Webster, Benjamin Gilbert, Jan Harkes,
Jerome McDonough, and Anita de Waard.

7. REFERENCES
[1] Open source software at the Olive Archive can be found

available at https://github.com/cmusatyalab.
[2] Donald Waters and John Garrett, “Preserving Digital

Information, Report of the Task Force on Archiving of
Digital Information,” Council on Library and Information
Resources, May 1996. Available:
http://www.clir.org/pubs/abstract//reports/pub63.

[3] P. Conway. Preservation in the Digital World.
http://www.clir.org/pubs/reports/conway2/, March 1996..

[4] P. Conway. Preservation in the Age of Google: Digitization,
Digital Preservation, and Dilemmas. Library Quarterly,
80(1), 2010.

[5] B. Matthews, A. Shaon, J. Bicarreguil, and C. Jones. A
Framework for Software Preservation. The International
Journal of Digital Curation, 5(1), June 2010.

[6] Satyanarayanan, Mahadev ; Bala, Vasanth ; Clair, Gloriana
St. ; Linke, Erika ; Georgakopoulos, Dimitrios (Bearb.) ;
Joshi, James B. D. (Bearb.): Collaborating with executable
content across space and time.. In:CollaborateCom : IEEE,
2011. - ISBN 978-1-4673-0683-6, S. 528-537.

[7] Gilbert, Benjamin. 2013. Building VMNetX with qemu and
libvirt. Workshop. Carnegie Mellon University (Jun. 2013),
https://olivearchive.org/static/documents/vmnetx-gilbert.pdf.

[8] Bowman, M., Debray, S. K., and Peterson, L. L. 1993.
Reasoning about naming systems. ACM Trans. Program.
Lang. Syst. 15, 5 (Nov. 1993), 795-825. DOI=
http://doi.acm.org/10.1145/161468.16147.

[9] Yoshihisa Abe, Roxana Geambasu, Kaustubh Joshi, H.
Andrés Lagar-Cavilla, and Mahadev Satyanarayanan. 2013.
vTube: efficient streaming of virtual appliances over last-
mile networks. In Proceedings of the 4th annual Symposium
on Cloud Computing (SOCC '13). ACM, New York, NY,
USA, , Article 16 , 16 pages.
DOI=10.1145/2523616.2523636
http://doi.acm.org/10.1145/2523616.2523636

