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Abstract

The importance of customer satisfaction was identified by many industries as a key factor
of competitive advantage. So, for companies in the small package shipping industry it can
be reasonable to increase the service quality even at the expense of transportation cost in
order to gain customer loyalty. These companies noticed that customer satisfaction can be
increased by providing consistent service in the form of visiting customers with the same
driver at approximately the same time of the day over a certain time period. Motivated
by this real world problem, the consistent vehicle routing problem (ConVRP) combines
traditional vehicle routing constraints with the requirements for service consistency. This
paper presents a fast solution method called template based adaptive large neighborhood
search for the described problem. Compared to state-of-the-art heuristics, the developed
algorithm is highly competitive on the available benchmark instances. Additionally, new
test instances are provided. These seem to be more challenging due to the variation of
different model parameters and consequently help to identify interesting effects. Finally, a
relaxed variant of the original ConVRP is presented. In this variant, the departure times
from the depot can be delayed to adjust the service times of the customers. Experiments
show that allowing later departure times considerably improves the solution quality under
tight consistency requirements.

Keywords: vehicle routing, periodic distribution problems, large neighborhood search,
metaheuristics

1 Introduction

The consistent vehicle routing problem (ConVRP), as defined in Groër et al. [7], is an extension
of the periodic vehicle routing problem. It is used to model services like the ones performed
by companies in the small package shipping industry. This problem category involves the
construction of routes over a given time period, e.g., several days, such that customer demands
are met. However, a simple delivery is nowadays not enough for companies to differentiate
themselves in a competitive environment. Many companies in the above mentioned industry
started to focus on customer satisfaction to increase customer loyalty and to obtain competitive
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advantage. From the customers’ point of view, an important criterion for high quality service is
consistency. The ConVRP considers traditional vehicle routing constraints and also accounts for
this additional requirement. In this context, consistency is modeled in two ways. First, in order
to form a stronger relationship between the supplier and the customer, a customer can only be
assigned to one driver. Second, to enable the customers to prepare themselves for a delivery,
they have to be serviced at about the same time of the day. Consistency requirements link the
days in the planning period together. Therefore, it is not possible to divide the multi-period
problem into several single-period problems.

In contrast to fleet-focused vehicle routing problems that have been studied extensively, the
ConVRP is the first VRP variant that focuses primarily on customer satisfaction [7]. Campbell
and Thomas [1] emphasize the importance of on-time delivery for package delivery companies
to maintain competitiveness. They introduce the probabilistic traveling salesman problem with
deadlines to model stochastic deliveries that have to be executed until a determined time. An
overview of operative issues in the small package shipping industry is given in Wong [23]. After
describing a typical day of a service provider who performs local delivery and pickup tasks, the
author highlights the characteristics that distinguish this problem from standard vehicle routing
problems.

The ConVRP itself is introduced by Groër et al. [7]. Motivated by a real world problem that
has to be dealt with by companies in the small package shipping industry, the authors combine
traditional VRP constraints with the requirements for service consistency. Their solution ap-
proach for the ConVRP is based on a template concept, in which a set of template routes is
resolved to obtain the daily routes for all days in the planning period. High quality template
routes are generated by applying a record-to-record travel algorithm [11]. Tarantilis et al. [22]
solve the ConVRP by applying a template-based tabu search algorithm. The algorithm is di-
vided into two stages. In the first stage high quality templates are built. The daily routing
plans that are derived from the templates are post-optimized in the second stage.

Sungur et al. [21] address the courier delivery problem (CDP) in which time and driver
consistent services are considered. Customer requests and service times are stochastic. The
CDP integrates (soft) time windows for customer visits but driver consistency is not restricted
to one driver per customer. The problem is solved by a master and daily scheduler heuristic
(MADS). Similar to the template concept, MADS generates a master plan that can be converted
into daily schedules with few modifications.

The bi-objective time-consistent vehicle routing problem (TCVRP) is introduced by Feillet
et al. [5]. Their work is motivated by the need to provide time consistent transportation for
handicapped persons through a given time period. In contrast to the ConVRP, where the total
travel time is minimized while bounding the difference between the earliest and the latest arrival
time for each customer, the TCVRP integrates a second objective. It involves minimizing the
maximum number of time classes. Two services for the same customer i on day α and β may
be assigned to the same time class if their arrival times aiα and aiβ fulfill |aiα − aiβ | ≤ L.
L represents the maximum arrival time difference within a time class. Driver consistency is
not considered during the solution finding process, but a post-processing phase is performed
to minimize the average number of drivers per customer. The TCVRP is solved by large
neighborhood search (LNS) [19].

The effect of incorporating different driver management strategies into the periodic vehicle
routing problem (PVRP) is investigated in [20]. The authors use a tabu search heuristic (TS)
to minimize an aggregated objective function. This function is composed of the total travel
distance plus a measure that represents the cost or benefit of the different driver assignment
strategies. Time consistency is not considered.

Consistency in the context of inventory routing problems (IRP) is examined by Coelho et al.
[3]. The classical IRP model is extended by six problem-specific consistency features and the
problem variants are solved by adaptive large neighborhood search (ALNS).
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ALNS, as introduced by Ropke and Pisinger [17] is an extension of LNS [19] and it is also
related to the ruin and recreate principle applied by Schrimpf et al. [18]. ALNS has been applied
successfully to solve different variants of the vehicle routing problem [13, 16, 17], the technician
and task scheduling problem [4] and the service technician routing and scheduling problem [9].
For a survey on large neighborhood search see [14].

The contribution of this paper is twofold. First, we present a new solution method for
the ConVRP called template based adaptive large neighborhood search (TALNS). It combines
the ALNS by Ropke and Pisinger [17] with the template concept presented in Groër et al.
[7]. Second, we introduce a relaxed variant of the ConVRP in which later departures from
the depot than the earliest possible starting times are permitted. It is demonstrated that this
slight relaxation of the starting times leads to improved time consistency, while the travel times
remain almost unchanged. To test our algorithm, we use available data sets from the literature
and show that it is highly competitive. On the basis of existing benchmark instances we design
new data sets in which time consistency is modeled in a more realistic way. We provide heuristic
solutions for these new data sets.

2 Problem definition

The ConVRP is defined on a complete directed graph G = (N,A), where N = {0, 1, ..., n} is the
set of customers and the depot {0}. A = {(i, j) | i, j ∈ N, i 6= j} is the set of arcs. Customers
are visited on routes traversed by a homogeneous fleet of vehicles in the set K = {1, ...,m}.
There is a sufficient amount of vehicles available (i.e., m = n). Each vehicle k ∈ K with given
capacity Q is located at the depot from where it departs at time 0 and where it must return to
before time T . The planning horizon involves |D| days where D is the set of days. On each day
d ∈ D, each customer i ∈ N\{0} has a predetermined demand qid that must be delivered and
a service time sid. We use auxiliary parameters wid equal to 1 if customer i requires service on
day d (qid > 0) and equal to 0, otherwise. Each arc (i, j) ∈ A is associated with travel time
tij. We assume that the travel time matrix complies with the triangle inequality. Consistency
requirements dictate that each customer i ∈ N\{0} must be assigned to the same vehicle k
over the entire planning period. Furthermore, the difference between the earliest and the latest
arrival time at each customer over all days ∈ D must be within the maximum arrival time
difference L. Vehicle idling to reduce the arrival time difference is not allowed.

The model uses the following binary variables:

xijkd =

{

1, if arc (i, j) is traversed by vehicle k on day d,

0, otherwise;

yikd =

{

1, if customer i is assigned to vehicle k on day d,

0, otherwise;

The continuous variables aikd denote the arrival time at customer i by vehicle k on day d. Given
this notation, the ConVRP can be formulated in the following model. The only modification to
the original MIP of [7] is the extension of the aid variables with the index k to better comply
with our applications.

Minimize
∑

d∈D

∑

k∈K

∑

i∈N

∑

j∈N

tijxijkd (1)

subject to:

y0kd = 1 ∀ k ∈ K, d ∈ D, (2)
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a0kd = 0 ∀ k ∈ K, d ∈ D, (3)
∑

k∈K

yikd = wid ∀ i ∈ N\{0}, d ∈ D, (4)

∑

i∈N\{0}

qidyikd ≤ Q ∀ k ∈ K, d ∈ D, (5)

∑

i∈N

xijkd =
∑

i∈N

xjikd = yjkd ∀ j ∈ N, k ∈ K, d ∈ D, (6)

wiα + wiβ − 2 ≤ yikα − yikβ ∀ i ∈ N\{0}, k ∈ K,α, β ∈ D,α 6= β, (7)

aikd + xijkd(sid + tij)− (1− xijkd)T ≤ ajkd ∀ i ∈ N, j ∈ N\{0}, k ∈ K, d ∈ D, (8)

aikd + xijkd(sid + tij) + (1− xijkd)T ≥ ajkd ∀ i ∈ N, j ∈ N\{0}, k ∈ K, d ∈ D, (9)

aikd + wid(sid + ti0) ≤ Twid ∀ i ∈ N\{0}, k ∈ K, d ∈ D, (10)

L− T (wiα + wiβ − 2) ≥ aikα − aikβ ∀ i ∈ N\{0}, k ∈ K,α, β ∈ D,α 6= β,
(11)

xijkd ∈ {0, 1} ∀ i, j ∈ N, k ∈ K, d ∈ D, (12)

yikd ∈ {0, 1} ∀ i ∈ N, k ∈ K, d ∈ D, (13)

aikd ≥ 0 ∀ i ∈ N, k ∈ K, d ∈ D. (14)

The objective function (1) minimizes the total travel time. Inequalities (2) and (3) define
that each route starts from the depot at time 0. Constraints (4) guarantee that each customer
is serviced on each day he requires a service and inequalities (5) make sure that the vehicle
capacity is not exceeded. Constraints (6) ensure that all assigned customers have exactly one
predecessor and one successor. Driver consistency is guaranteed in (7). Inequalities (8) and
(9) set the arrival times at the customers on the condition that vehicle idling to improve time
consistency is not allowed. Inequalities (8) also prevent sub-tours. The completion of the routes
within the maximum travel time is enforced by inequalities (10). Constraints (11) ensure that
the arrival time difference for each customer is not greater than L.

3 Solution framework

We propose a template based adaptive large neighborhood search (TALNS) to solve the Con-
VRP. Given an initial solution, ALNS integrates several destroy methods to repeatedly remove
parts of a solution and several repair methods to rebuild the partial solution [14]. In contrast
to standard vehicle routing problems, we do not apply ALNS to the actual routing plan but
to the template on the basis of which the routing plan is generated. In the following, we first
describe the template concept and then the different design elements of the proposed TALNS.

3.1 The template concept

Due to the consistency requirements, the daily schedules are linked by the customers who require
service on multiple days. To handle these interdependencies, we use the solution approach
suggested by Groër et al. [7]. It relies on the generation of template routes from which the
actual daily routes are derived. The template contains all customers who are relevant for
consistency. These are the customers who require service on two or more days. We refer to
them as frequent customers and collect them in set Nf . To obtain the daily routes, the template
routes are resolved as follows. First, excessive customers are removed. Excessive customers are
those, who are considered in the template but do not require service on that particular day.
Second, customers who only request service on one day during the planning horizon are inserted
on the corresponding day. This process is illustrated in the following example: assume a set
of customers who must be served over a three days planning horizon as given in Table 1. The
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Customer 1 2 3 4 5 6 7 8

Day 1 1 0 1 0 0 1 0 1
Day 2 1 1 0 1 0 1 1 0
Day 3 0 1 0 0 1 1 1 1

Number of services 2 2 1 1 1 3 2 2

Template 1 1 0 0 0 1 1 1

Table 1: Demand pattern

columns give the customers from 1 to 8 and the first three rows define whether a customer
requests a service (value 1) or not (value 0) on the corresponding day. The last but one row
sums the number of services over the entire planning horizon and the last row defines the
customers who are considered in the template. All customers who are visited at least twice
are part of the template (value 1). The remaining ones are ignored (value 0). Services are
performed by vehicles that can visit at most three customers a day. A possible solution for the
example is shown in Figure 1. In the template, all frequent customers are served by two routes.
Based on the template routes the daily schedules are derived. On the first day, customers 2
and 7 are removed and customer 3 is inserted. The same approach is continued to obtain the
remaining daily schedules.
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Figure 1: Example: template and corresponding solution.

By using the template concept, driver consistency is always guaranteed since the customer-
to-driver assignment is not changed during the template’s resolution. Additionally, the customer
sequence in the template routes is transferred to all daily routes. The resulting precedence
principle supports the compliance with the time consistency requirement.

In order to create template routes that can easily be transformed into a feasible solution,
daily request information must be incorporated into the template construction. This is done
in two ways. First, for each frequent customer we compute an artificial demand qai and an
artificial service time sai. These values are used throughout the template construction. In
contrast to Groër et al. [7], they are defined as the mean of the original demand and service
time values over all days in D and not only the days a customer requests service. Thus, our
variant implicitly considers the service frequency of each customer; qai and sai are computed as
follows:

qai =

∑

d∈D qid

|D|
∀i ∈ Nf (15)

sai =

∑

d∈D sid

|D|
∀i ∈ Nf (16)

Second, artificial maximum tour lengths, Ta, and capacity values, Qa, are used in the template
construction. They control the number of routes in the template and thus, the number of routes
in the daily schedules.

If Ta and Qa are set to small values, each customer will be visited on a separate route in
the template and in the corresponding solution. Such a solution would always be feasible with
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a maximum arrival time difference of 0. The total travel time, however, would be very high.
The effect of using tight artificial constraints in the template generation is shown in Figure 2.

Large Ta and Qa values, on the other hand, lead to long template routes. Given the triangle
inequality, these routes result in shorter travel times. Yet, when the template is resolved, it
is more likely that the resulting solution violates the real T and Q constraints and the time
consistency requirement. A solution obtained by using large Ta and Qa values is illustrated in
Figure 3.
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Figure 2: Artificial constraints, Ta and Qa, are set to small values. The solution is feasible but
the total travel time is very high.
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Figure 3: Artificial constraints, Ta and Qa, are set to large values. The solution has a short
total travel time but it might violate the maximum travel time T , the maximum capacity Q, or
the time consistency requirement L.

For diversification purposes we use different Ta and Qa values every time a new template
is generated. The way we set the values deviates from the approach used in [7]. In [7] an
estimate for both artificial constraints is made on the basis of the mean number of visits per
day. Depending on whether the obtained solution is feasible or not, the constraints are either
relaxed or tightened. In contrast to the estimation, we define upper and lower bounds for both,
Ta and Qa, and search the interval between the bounds. The upper bounds, Qa and Ta, are
calculated as follows.
First, for each day d, two lower bounds on the number of vehicles are defined - one in terms of
tour length and one in terms of capacity. They are denoted as NVT d and NVQd, respectively.
The daily lower bounds based on capacity considerations are defined as:

NVQd =

⌈∑

i∈Nf
qid

Q

⌉

∀d ∈ D. (17)

In order to compute the daily lower bounds based on the maximum tour length, NVT d, we
first estimate the total daily travel times. This is done by applying Kruskal’s algorithm [10]
to define the minimal spanning tree (MST) among all frequent customers requesting service on
day d and the depot. We use the property that the total length of the MST on day d, denoted
as f(MSTd) plus the cost of the shortest edge from the depot to any customer is a lower bound
for the cost of the optimal TSP solution and therefore also a lower bound for the cost of the
optimal VRP solution. By, adding the aggregated service times on day d we get a lower bound
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for the total duration of all tours. Dividing this value by the maximum tour length yields
another lower bound for the vehicle number NVT d:

NVT d =

⌈

f(MSTd) + mini∈N\{0} t0i +
∑

i∈Nf
sid

T

⌉

∀d ∈ D (18)

Let f(MSTtemplate) denote the total travel time of the MST among all frequent customers
i ∈ Nf and the depot. Using artificial demands qai and service times sai (equations (15) and
(16)), and NVQd and NVT d, we are now able to compute Qa and Ta:

Qa =

∑

i∈Nf
qai

maxd∈DNVQd − (1− ε)
(19)

Ta =
f(MSTtemplate) + mini∈N\{0} t0i +

∑

i∈Nf
sai

maxd∈DNVT d − (1− ε)
(20)

By bounding the artificial constraints to Qa and Ta during the template generation, it is guar-
anteed that the number of template routes never falls below the bounds defined in (17) and
(18). To avoid upper bounds that are lower than the optimal values, we reduce the maximum of
the daily lower bounds on the vehicles (NVT d, NVQd) by a value that is asymptotic to 1. This
value is expressed by 1− ε, where ε is a small number. In our experiments we used ε = 0.0001.

Non-frequent customers are not considered in the calculation of NVQd and NVT d. Including

all customers in the calculation would lead to lower Qa and Ta values and consequently, more
template routes would be required (even though not all customers are represented in the tem-
plate). This approach would prevent solutions in which frequent customers are served by the
minimum number of routes and all non-frequent customers are served on separate routes.

Lower bounds, Qa and Ta, are set to the artificial constraint values that yield the first
feasible solution.

3.2 Constructing an initial solution

The construction heuristic builds the initial template routes. However, their resolution does
not necessarily lead to a feasible solution. A template is accepted as the initial one if it results
in a solution that satisfies the capacity and the tour length constraints. The time consistency
may be violated. It is much harder to adhere to the time consistency requirement as it is only
considered implicitly by the template concept.

To begin with, the artificial tour length Ta and capacity Qa limits are set to their upper
bounds (equations (19) and (20)). We then iteratively generate and resolve different templates
while tightening the artificial tour length and capacity constraints until an initial template
is found. More precisely, every violation of a constraint in the obtained solution leads to a
reduction of the respective artificial limit, Ta and Qa, by 1%.

We use a greedy approach [13, 17] to insert customers into the template during the con-
struction phase. The heuristic inserts customers one after another at their cheapest position
until all customers have been assigned. Every feasible insertion position is checked for every
unscheduled customer. The customer who causes the least increase in the total travel time is
then inserted at his best position. Formally speaking, let ∆fi,k represent the change in the total
travel time if customer i is inserted at his cheapest position into route k. For customers who
cannot be inserted feasibly, ∆fi,k is set to infinity. The customer i∗ is inserted into template
route k∗ for which

(i∗, k∗) := arg min
i∈Nf ,k∈K

∆fi,k. (21)
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The same approach is used to insert non-frequent customers during the resolution of the tem-
plate. Here, unassigned non-frequent customer i∗ is inserted at his best position into daily route
k∗ for which

(i∗, k∗) := arg min
i∈N\{{0}∪Nf },k∈K

∆fi,k. (22)

An empty route is added every time it is not possible to insert further customers into feasible
positions.

In this context, feasibility refers to the artificial capacity and tour length constraints during
the template construction and to the real constraints during the resolution. The check for time
consistency is only performed once the schedule is completed.

3.3 Template based adaptive large neighborhood search

We use the TALNS to improve the initial template and consequently the initial solution. The
TALNS integrates several sub-heuristics that are used to repeatedly destroy and repair the
current template [13, 16, 17].

The pseudocode of the TALNS is presented in Algorithm 1. In each iteration, one destroy
and repair sub-heuristic pair is selected based on its performance in past iterations (line 3). The
chosen pair is applied to generate a new template (line 5). The destroy sub-heuristic removes
assigned customers from the template routes. The removed customers are reinserted into the
template by using the according repair sub-heuristic. The reinsertion is performed with regard
to the selected artificial constraints Ta and Qa (line 4). The new template is resolved (line 6),
i.e, excessive customers are removed and non-frequent customers are inserted on each day as
described in Section 3.2. The decision to move to the new template (respectively solution) or
not is made by using the simulated annealing acceptance criterion (line 7).

In case the initial solution violates the time consistency constraint, the first priority is to
find the first feasible solution. To ease the search, we further tighten the artificial template
constraints and force the template routes to become shorter. We reduce both, Ta and Qa, by
1% every 50th iteration until the obtained solution complies with all constraints. The artificial
constraints that led to the first feasible solution are set as lower bounds, Ta and Qa, for Ta and
Qa.

In the remaining TALNS iterations the artificial limits Ta and Qa are selected randomly
between their corresponding lower and upper bounds (line 4):

Qa = Qa + y(Qa −Qa) (23)

Ta = Ta + y(Ta − Ta) (24)

The random number y is chosen in the interval [0,1]. The last step is to update the perfor-
mance of the applied destroy and repair sub-heuristic pair (line 14). The TALNS terminates as
soon as a given number of iterations is reached.
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Algorithm 1 TALNS

Require: initial template τ and corresponding solution s ⊲ Section 3.2
1: sbest = s ⊲ f(s) = ∞ if s is infeasible
2: repeat

3: select a pair of destroy and repair operators d and r ⊲ Section 3.3.2
4: select Ta ∈ [Ta, Ta] and Qa ∈ [Qa, Qa] ⊲ Equations (23) and (24)
5: τ ′ = generateNewTemplate(τ , d, r, Ta, Qa)
6: s′ = resolveTemplate(τ ′)
7: if accept(s′,s) then ⊲ Section 3.3.1
8: τ = τ ′

9: s = s′

10: end if

11: if f(s′) < f(sbest) then
12: sbest = s′

13: end if

14: update joint performance of operators d and r ⊲ Section 3.3.2
15: until maximum number of iterations is reached
16: return sbest

3.3.1 Acceptance criterion

A simulated annealing framework [8] is used to decide whether a new template τ ′ that pro-
duces solution s′ should become the current incumbent template τ or not. We accept a new
template τ ′ when the corresponding solution’s objective value f(s′) is lower than that of the cur-

rent incumbent solution, f(s). Inferior solutions are accepted with probability e−(f(s′)−f(s))/t̂.
Parameter t̂ denotes the current temperature and it is initialized only when the first feasible
solution (with respect to all constraints) is found:

t̂ = −
wt̂

ln 0.5
f(s) (25)

Based on [13, 17] we set t̂ such that a wt̂ % worse solution is accepted with a probability of
50%, where wt̂ is a parameter to be determined. The temperature is then decreased by using
the geometric annealing schedule, t̂ = t̂c; c denotes the cooling rate.

Infeasible solutions are rejected until t̂ has been initialized (f(s′) is set to infinity). After-
wards, violations of the time consistency requirement are tolerated but penalized. If we obtain
a solution that only violates the time consistency requirement we use an artificial objective
function, fa(s

′), to calculate the acceptance probability.

fa(s
′) = f(s′) + (lmax − L)e(

iTALNS
δ

−ppenalty) (26)

The impact of the penalization is controlled by parameters ppenalty, δ, and the current number
of TALNS iteration iTALNS . The higher iTALNS (i.e., the further the search process), the lower
the probability of accepting infeasible solutions. Setting δ to 6000 was found to work well
during the implementation of the algorithm. lmax denotes the maximum arrival time difference
of solution s′.

The best found solution sbest is replaced if s′ is feasible and f(s′) < f(sbest).

3.3.2 Selection of sub-heuristics

In each iteration of the TALNS, we generate a new template by applying one destroy sub-
heuristic d, and one repair sub-heuristic r. The selection of these operators is performed by
using the adaptive selection mechanism proposed by Pisinger and Ropke [13]. In our case,
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however, the selection and remuneration of the destroy and repair operators are done pairwise
rather than separately. Slightly better results could be achieved with this selection mechanism in
[9]. We record the joint performance of the sub-heuristic pairs and assign weights ρdr according
to their past performance. The better the results obtained by a pair, the higher its weight and
therefore its probability φdr for being chosen in future selections. If ηd and ηr are the number
of available destroy and repair sub-heuristics, respectively, we define the selection probabilities
as follows:

φdr =
ρdr

∑ηd
d=1

∑ηr
r=1 ρdr

(27)

Roulette wheel selection is used to choose one pair in every iteration.
To link a pair’s weight to its performance, the pairs can earn scores, ψdr, every time they

are applied. The scores are collected during time segments of 100 iterations according to the
following pattern:

ψdr =



















































ψdr + σ1, if the destroy-repair pair yielded a solution that

improved the global best solution sbest;

ψdr + σ2, if the destroy-repair pair yielded a solution that

was not visited before and improved the incumbent solution s;

ψdr + σ3, if the destroy-repair pair yielded a solution that was not visited before and

was accepted as the new incumbent solution s, although it was worse;

ψdr, otherwise.

σ1, σ2 and σ3 are user defined parameters. To find out whether a solution was visited before or
not, we compare the solutions’ objective values.

Initially, weights ρdr are set to one and the scores ψdr are set to zero. After each time
segment, the weights are updated as follows and all ψdr values are reset to zero.

ρdr = preact
ψdr

max(1,Θdr)
+ (1− preact)ρdr (28)

The influence of the new solutions on the weights is controlled by the reaction factor preact;
Θdr counts how often pair dr was selected in the current segment.

3.3.3 Destroy sub-heuristics

Before the chosen destroy sub-heuristic can be applied we have to determine the number of
customers to remove, u. We choose u randomly in the interval
[min {0.1|Nf |, 30},min {0.4|Nf |, 60}] as suggested in [13].

In the following sections, the applied destroy sub-heuristics are presented and their charac-
teristics to work on different types of neighborhoods are pointed out. They are all based on
[13, 16, 17].

Random removal The random removal operator randomly chooses customers and removes
them from the template routes. This is done repeatedly until u customers have been removed.
The aim of the operator is to diversify the search.

Worst removal The worst removal operator iteratively identifies and removes customers who
contribute the most to the template’s total travel time. The idea is to favor the reinsertion of
customers at cheaper insertion positions than the current ones. Let h denote the predecessor of
customer i on its current route and let j be the successor of i. Then,

d(i, τ) = thi + tij − thj (29)
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represents the saving obtained by temporarily removing customer i from the template, τ .
To avoid outlying customers to be removed over and over again the removal is randomized.
All d(i, τ) values are sorted in list L in decreasing order. In every iteration customer i :=
L[ypworst|L|] is removed. y is a random number in the interval [0, 1) and pworst the parameter
that controls the impact of randomization. The d(i, τ) values are updated and one customer is
removed in every iteration until u customers have been removed.

Related removal The related removal operator [19] is based on the observation that it is
easier to interchange customers within a schedule when they are somehow related. The related-
ness, R(i, j), between two customers i and j, is a composed expression consisting of geographical
vicinity, tij, difference in demand, qai, and similarity in visit frequency, γij . The smaller R(i, j),
the higher is the similarity between two customers. The importance of each measure is controlled
by parameters λ, µ, ν, respectively.

R(i, j) = λtij + µ|qai − qaj | − νγij (30)

Relatedness, γij , in terms of visit frequency is characterized by the number of days on which
either both customers i and j are serviced or none of them.

γij = |D| −
∑

d∈D

|wid − wjd| (31)

Including γij in R(i, j) does not favor the interchangeability of the customers in the template.
Yet, it supports the grouping of similar customers which again supports the compliance with
time consistency when the template is resolved. The procedure is initialized by removing a
randomly chosen customer from the template and inserting it into the set of removed customers
S. In each iteration one customer is chosen randomly from S to calculate the R(i, j) values.
Just like in the worst removal heuristic, the removal is randomized to obtain a certain degree of
diversification. Therefore, all R(i, j) values are sorted in list L in increasing order, and customer
i := L[yprelated|L|] is removed from the template and added to S. Again, y is a random number
in the interval [0, 1) and prelated is the parameter that controls the impact of randomization.
The removal is continued until u customers have been removed.

Cluster removal The cluster removal operator [16] shares the idea of removing related cus-
tomers. Hence, it can be interpreted as a variant of the related removal operator. Relatedness,
however, is defined only in terms of geographical distance. The cluster removal operator re-
moves complete clusters of customers even if u would be exceeded. To identify clusters, the
minimal spanning tree among all customers in the same template route is defined [10]. By
deleting the longest arc of the tree we obtain two clusters. One of them is selected randomly
and all customers belonging to the selected cluster are removed.

The first route is selected randomly. The following routes are selected as follows. A customer
from the currently removed cluster is chosen randomly. The next route to destroy is the one
that contains the customer who has the smallest distance to the previously selected customer
and has at least three customers. The procedure is continued either until the number of removed
customers is at least u or no more routes with at least three customers exist.

3.3.4 Repair sub-heuristics

After customers have been removed, the greedy heuristic and four variants of the regret heuristic,
as applied in [13, 16, 17], are used to reinsert all removed customers back into the template
routes. The operators work at the template level. So, only the artificial tour length and capacity
constraints, Ta and Qa, are considered during the repair phase.
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Greedy heuristics The greedy heuristic for constructing the initial template is also used as
a repair sub-heuristic. It inserts customers, one after another, until all frequent customers are
inserted. For each unassigned customer ∈ Nf each feasible insertion position is checked and
the customer who can be inserted the cheapest is assigned to his cheapest position. For further
details see Section 3.2.

Regret heuristics Similar to the greedy approach, the regret heuristic [15] inserts frequent
customers one after another by checking every feasible insertion position. It includes, however, a
look ahead component denoted as regret. This value represents the possible loss that may arise
if a customer’s insertion is postponed to later iterations. In the basic variant of the heuristic,
the customer with the largest difference between inserting him into his best route at the best
position and inserting him into his second best route at the best position is inserted in every
iteration. This concept is extendable to consider more than two routes [13, 17]. So, difficulties
in future insertions can be identified earlier. Let ∆f qi denote the change in the total travel time
for inserting customer i at his cheapest position in his q-cheapest route. If it is not possible to
insert a customer into a route, ∆f qi is set to infinity. In every iteration, the customer i∗ to be
inserted is given by:

i∗ := argmax
i∈Nf







min(q,m)
∑

h=2

(∆fhi −∆f1i )







(32)

Parameter q defines the number of routes considered in the current regret heuristic variant and
m is the number of currently available routes. As in the greedy heuristic, an empty route is
added whenever it is not possible to assign further customers.

Following [14], we use four regret heuristics, each with a different setting for q with q ∈
{2, 3, 4,m}.

3.4 Further improvements

Due to the complexity of the ConVRP caused by daily interdependencies, it is difficult to predict
reasonable insertion positions based on partial solutions. Therefore, and to increase the degree of
diversification beyond the level of the simulated annealing criterion, we also randomize the route
construction procedures as suggested in [17]. The randomization is done by drawing a random
number, denoted as noise term, pnoise, in the interval [−ηmaxi,j∈N\{0} tij , ηmaxi,j∈N\{0} tij ] and
adding it to the customers’ insertion cost. Parameter η controls the amount of randomization.
Every time a customer’s insertion cost C is calculated, we add pnoise to obtain C ′. Whether a
repair sub-heuristic inserts customers according to C or C ′ into the template, depends on the
past performance of the heuristics with and without noise. The decision is made by using the
adaptive selection mechanism as described in Section 3.3.2. For the insertion of non-frequent
customers during the template’s resolution, the decision whether to apply noise or not is made
with equal probability.

The TALNS focuses only on the construction of minimal cost template routes. Thereby,
it relies on the template concept to obtain good and feasible solutions. However, a low cost
template does not necessarily result in a low cost schedule. This is especially true when only
a small portion of the customers is considered in the template. On the other hand, a solution
may be influenced negatively if the majority of the customers is inserted into the template but
many customers have to be deleted from the routes during the resolution. The mentioned issue
increases with longer planning periods.

To deal with these difficulties, we apply a truncated 2-opt operator [12] to the daily routes
every time we obtain a solution that at least complies with the tour length and the capacity
restrictions. Truncated means that only sequences with a maximum of three customers may be
reversed. Given the time consistency requirement that prevents the reversal of long sequences,
a lot of computational time can be saved by the restriction.
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The effect of this operator is twofold: first, the routes obtained after employing the 2-opt
operator may not comply with the precedence principle anymore; that is, customers ∈ Nf

may no longer be visited in the same order on all days. Experiments by Groër et al. [7] for
the ConVRP show that in 2 out of 10 instances deviations from the precedence principle are
needed to obtain the optimal solution. Second, non-frequent customers who are not restricted
by consistency may be moved to different positions in the near neighborhood. Moving these
customers to different positions might fill the holes caused by the removal of excessive customers.

The 2-opt operator accepts only feasible modifications. Therefore, besides improving the
objective function value, it may also repair previously infeasible solutions.

In contrast to the TALNS, the consistent record-to-record solution approach presented in [7]
operates only at the template level and does not include any post optimization. So, the solutions
adhere to the template’s precedence principle. The template-based tabu search approach [22]
integrates a post-optimization phase that is run every time a new template is resolved. Here,
different neighborhood operators are used to move non-frequent customers to different posi-
tions. Frequent customers are not moved. Therefore, the precedence principle of the underlying
template is also not altered.

4 The ConVRP with shiftable starting times

In this section, we propose an alternative to the original ConVRP model and two solution
approaches for it. The original ConVRP is quite rigid since all vehicles have to leave the depot
at time 0 and waiting times between customer visits are not allowed (see inequalities (3) and (9)
in Section 2). The consequence of such a rigidness is illustrated in the following example. Let
us consider two customers, 1 and 2, with service time 0 who have to be serviced over a planning
period of three days. The maximum arrival time difference L is 1. Tour length and capacity is
unbounded. On the first day both customers require service, on the second day only customer
1 and on the third day only customer 2. All possible connections require a travel time of 1 time
unit. The optimal solution that requires one vehicle is presented in Figure 4.

When all vehicles have to leave the depot at time 0, the obtained solution results in a current
maximum arrival time difference lmax = 1, and the total travel time TT = 7. If L was set to a
value smaller than 1, two vehicles, one for each customer, would be needed to solve the example.
The resulting cost would be TT = 8.
Now, consider that a delayed departure from the depot is allowed. In this case, as can be seen
in Figure 5, the vehicle could depart at time 1 on day 3. This would result in a solution with
lmax = 0.

In our relaxed ConVRP variant, the constraint for the starting times to be 0 is omitted
(inequality (3)). That is, a later departure from the depot is allowed.

Given the altered model, solutions that are infeasible because of the time consistency require-
ment can be repaired by adjusting the vehicles’ departure times and, therefore, the customers’
arrival times. To integrate this concept into the solution method, we call a repair mechanism
every time the TALNS produces a template solution that cannot be resolved feasibly because
of the time consistency requirement. The repair mechanism then tries to make the daily plan
feasible by shifting the routes’ starting times. The template routes are not affected by the repair
mechanism.

In the next two sections we propose an exact and a heuristic repair approach.

4.1 An exact repair approach

To optimize the starting times a0kd of all tours on all days, we solve the following LP model
with IBM’s ILOG Cplex 12.1, Concert Technology 2.9.

Minimize lmax (33)
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Figure 4: Solution: departure from depot = 0, lmax = 1
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Figure 5: Solution: departure from depot is shiftable, lmax = 0

subject to

(aiα − aiβ)wiαwiβ ≤ lmax ∀ i ∈ Nf , α, β ∈ D,α 6= β (34)

aikd + sid + tij = ajkd ∀ (i, j) ∈ Akd, j 6= 0, d ∈ D, k ∈ K (35)

aikd + wid(sid + ti0) ≤ Twid ∀ i ∈ N\{0}, k ∈ K, d ∈ D (36)

aikd ≥ 0 ∀ i ∈ N, k ∈ K, d ∈ D (37)

The objective (33) is to minimize the current maximum arrival time difference, lmax, to make the
solution feasible. The arrival time difference for each frequent customer is defined by constraints
(34). Equations (35) (derived from (8) and (9)) link the arrival times of consecutive customers
where set Akd gives the chosen arcs of route k on day d. Constraints (36) ensure that the vehicles
return to their depot until T . To avoid deliveries beyond usual business hours we do not bound
the tour duration but the time interval in which a tour can be conducted. Non-negativity is
stated in constraints (37).

4.2 A heuristic approach

To repair a routing plan heuristically, we iteratively identify the customer i∗ with the largest
difference in his arrival times (computed as in constraints (34)). Let us denote the day when
customer i∗′s service starts earliest as α and the day when i∗′s visit starts the latest as β. If
i∗′s route k on day β is already delayed, we first try to reduce that delay by decreasing the
departure time from the depot as follows:

a0kβ = a0kβ − (lmax − L) (38)

If this is not possible because of the non-negativity constraint (37), we try to delay route k′s
starting time on day α:

a0kα = a0kα + (lmax − L) (39)
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The shifting of the starting times is performed until the routing plan is either repaired (lmax ≤
L), lmax is not decreasing from one iteration to the next or when the latest return to the depot,
T , would be exceeded.

5 Computational Results

The described algorithm is implemented in C++ and run on an Intel Xeon X5550 computer
with 2.67GHz. Results are obtained by running the TALNS with 30000 iterations 10 times per
instance. All results reported in the following sections are average values of these 10 runs.

5.1 Data sets

The data set used to test the described algorithm was proposed by Groër et al. [7]. It is based
on the Christofides benchmark instances for the vehicle routing problem [2] and consists of 12
instances with a planning horizon of five days each. The number of customers range from 50 to
199 and the visit frequency is 70%. The visit frequency is the probability with which requests
were assigned to customers and days during the instance generation. We refer to this data set
as data set A.

To allow for more extensive tests, we extended the original benchmark data set and generated
two modified sets. The modifications concern the visit frequency, which was set to 50% and
90%, respectively. The demands and the service times were set to their original values. The
lower the visit frequency in the instance generation, the higher the probability that a customer
has no request at all. In case a customer had no request, we assigned one visit on a random
day.

In order to investigate the influence of the maximum arrival time difference constraint on
the results, we tested four different L values for each instance. To define reasonable L values we
ran the algorithm on all instances without bounding the arrival time differences. The vector of
maximum arrival time differences obtained during these runs is denoted L1. The vectors with
the reduced maximum arrival time differences, L0.8, L0.6 and L0.4, are calculated by multiplying
L1 by 0.8, 0.6 and 0.4, respectively. For easier handling we rounded all values to integers. We
collect the modified instances in data set B.

As the real-world data set used by Groër et al. [7] is not available, we also adapted Gehring
and Homberger’s [6] benchmark instances for the vehicle routing problem with time windows
(VRPTW) to test the algorithm’s behavior on larger problem instances (data set C). These are
divided into six different classes. Each class is characterized by a different spatial distribution
of the customer locations (clustered (C1, C2), random (R1, R2) and random clustered (RC1,
RC2)) and by different scheduling horizons (short scheduling horizon (R1, C1, RC1), long
scheduling horizon (C2, R2, RC2)). We used one instance of each class with 1000 customers
and extended them to a planning horizon of 25 days (i.e., five consecutive weeks with five days
each). To turn the single period instances into periodic ones we chose a service frequency of
50%. The demands and service times were chosen randomly according to a Poisson distribution
with the mean equal to the demands and service times in the original VRPTW instances. The
time windows were omitted.

All generated instances are available at http://prolog.univie.ac.at/research/ConVRP/.

5.2 Parameter tuning

The TALNS is controlled by several parameters. The initial setting was chosen according to the
values suggested by Ropke and Pisinger [17]. We then used the benchmark data set of Groër
et al. [7] and their L values to fine tune the parameters. A sequential approach was used to tune
one parameter after another. The parameter value that resulted in the best average objective
value over five runs was chosen.
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wt̂ c preact σ1 σ2 σ3 ppenalty η pworst prelated λ µ ν
0.01 0.9999 0.18 24 3 4 2 0.025 2 4 6 7 12

Table 2: Parameter setting

Within the acceptance criterion, we tuned parameter wt̂ that controls the starting tem-
perature, cooling rate c, and the penalty factor for infeasible solutions, ppenalty. The tuned
parameters for the TALNS are the reaction factor preact and the scores for performance σ1,
σ2 and σ3. In the repair phase, the noise parameter η was adjusted. In the destroy phase,
the randomization parameters pworst and prelated and the weights for the relatedness elements
λ, µ and ν were set. The parameters were tested in the same order as listed in Table 2. The
sequential tuning of all parameters was repeated three times. Table 2 provides the final values.

The parameter tuning led to an improvement of 0.1% on average. Therefore, we conclude
that the algorithm behaves robustly with respect to the chosen parameters.

5.3 Results for benchmark instances (data set A)

In a first step we examine the impact of the number of TALNS iterations on the solution
quality. Table 3 shows the total travel times plus the aggregated service times 1, TT , of the
best solutions found during the development of the algorithm. In the first column we indicate
the instance names and the corresponding number of customers that have to be served. The
remaining columns give the average gap to the best results found and the running time, CPU ,
in seconds for the solutions found after 10, 30, 50, and 70 thousand iterations, respectively.

Clearly, the solution quality improves with longer running times. To be competitive in
terms of solution quality and running time we chose 30000 iterations for our experiments. This
number of iterations is sufficient to obtain stable results over several runs. The resulting average
variation coefficient (standard deviation / mean) is 0.0097 for a sample of 10 runs.

Best found 10000 iterations 30000 iterations 50000 iterations 70000 iterations
Instances (# Customers) TT Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s)

Christofides 1 5 0.7 (50) 2124.21 6.09 1.80 3.33 5.45 1.80 9.25 1.45 12.79
Christofides 2 5 0.7 (75) 3530.01 3.00 4.92 2.13 14.69 1.75 24.35 1.56 33.74
Christofides 3 5 0.7 (100) 3285.55 2.79 8.74 1.60 25.58 1.44 43.46 1.39 61.22
Christofides 4 5 0.7 (150) 4484.89 4.27 29.13 2.54 84.31 2.10 139.14 2.05 189.63
Christofides 5 5 0.7 (199) 5556.13 4.31 44.84 2.33 122.24 2.05 199.47 1.93 269.09
Christofides 6 5 0.7 (50) 4051.48 0.01 2.19 0.00 6.63 0.00 11.11 0.00 15.41
Christofides 7 5 0.7 (75) 6653.48 3.51 6.20 2.29 18.33 2.11 30.52 1.93 43.21
Christofides 8 5 0.7 (100) 7096.88 1.96 10.65 1.35 32.24 1.29 53.41 1.22 75.53
Christofides 9 5 0.7 (150) 10331.80 3.06 34.32 1.14 97.39 0.96 153.42 0.76 206.32
Christofides 10 5 0.7 (199) 12973.60 3.76 54.81 2.04 146.32 1.67 232.13 1.55 316.02
Christofides 11 5 0.7 (120) 4459.06 2.33 13.15 1.07 35.96 0.69 56.96 0.68 76.73
Christofides 12 5 0.7 (100) 3487.50 2.24 8.92 1.22 25.60 1.08 42.72 0.88 58.45

Average 5669.55 3.11 18.31 1.75 51.23 1.41 82.99 1.28 113.18

Table 3: Impact of TALNS iterations on the solution quality, TT , and the computation time,
CPU

An analysis of the destroy and repair sub-heuristics is presented in Tables 4 and 5, respec-
tively. The tables list the application frequency (number of calls / TALNS iterations), AF ,
for each sub-heuristic for each instance. The average computation time, CPU, for a single call
is given in milliseconds. The average application frequency and the average computation time
over all instances are shown in the last row of the tables.

With regard to the destroy operators, the random removal sub-heuristic is chosen in the
majority of the cases with 41% on average. This result indicates the need for diversification in

1We add the aggregated service times to the objective value to be consistent with the literature.
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the ConVRP. The regret sub-heuristics with q = 2 and q = 3 are together used in 57% of the
iterations to repair the destroyed templates. The application frequency of the least often applied
destroy and repair operator is 10% and 11% respectively. These values show that all operators
contribute to the actual performance of the algorithm. The repair operators are randomized in
49% of the cases (Section 3.4).

There are significant differences in the sub-heuristics’ computation times that can lead to
unpredictable total running times. The TALNS adapts the application frequency of the sub-
heuristics on the basis of the test instances to be solved. Yet, it is not possible to estimate
the share of each sub-heuristic in advance. As a result, instances with similar parameters (e.g.,
number of customers) may require different computation times. Stability in terms of running
time can be achieved by restricting the selection of complicated sub-heuristic pairs, e.g., by
normalizing the score ψdr in equation (28) ([13, 14]).

Stable running times are not a major concern in our applications. Therefore, we allow the
adaptive mechanism to choose freely without any bias.

Random removal Worst removal Related removal Cluster removal
Instances AF CPU(ms) AF CPU(ms) AF CPU(ms) AF CPU(ms)

Christofides 1 5 0.7 0.37 0.002 0.23 0.066 0.30 0.052 0.10 0.035
Christofides 2 5 0.7 0.48 0.003 0.12 0.153 0.30 0.128 0.11 0.037
Christofides 3 5 0.7 0.37 0.004 0.25 0.296 0.31 0.230 0.07 0.085
Christofides 4 5 0.7 0.49 0.006 0.18 0.751 0.28 0.584 0.04 0.098
Christofides 5 5 0.7 0.52 0.008 0.21 1.151 0.23 0.872 0.04 0.126
Christofides 6 5 0.7 0.30 0.003 0.25 0.064 0.27 0.045 0.17 0.029
Christofides 7 5 0.7 0.47 0.003 0.15 0.163 0.17 0.130 0.22 0.030
Christofides 8 5 0.7 0.38 0.004 0.24 0.307 0.31 0.237 0.08 0.074
Christofides 9 5 0.7 0.41 0.005 0.12 0.714 0.33 0.545 0.14 0.078
Christofides 10 5 0.7 0.41 0.007 0.09 1.119 0.36 0.836 0.15 0.110
Christofides 11 5 0.7 0.36 0.005 0.26 0.450 0.34 0.341 0.03 0.139
Christofides 12 5 0.7 0.42 0.004 0.17 0.281 0.34 0.233 0.07 0.058

Average 0.41 0.004 0.19 0.460 0.30 0.353 0.10 0.075

Table 4: Analysis of destroy sub-heuristics (AF denotes the application frequency of the re-
spective sub-heuristic)

Greedy heuristic Regret heuristic q=2 Regret heuristic q=3 Regret heuristic q=4 Regret heuristic q=m
Instances AF CPU(ms) AF CPU(ms) AF CPU(ms) AF CPU(ms) AF CPU(ms)

Christofides 1 5 0.7 0.21 0.056 0.22 0.089 0.19 0.084 0.19 0.091 0.20 0.095
Christofides 2 5 0.7 0.10 0.176 0.36 0.366 0.28 0.357 0.20 0.357 0.06 0.364
Christofides 3 5 0.7 0.13 0.370 0.27 0.578 0.23 0.569 0.23 0.574 0.14 0.609
Christofides 4 5 0.7 0.12 1.503 0.30 2.358 0.23 2.402 0.24 2.439 0.11 2.514
Christofides 5 5 0.7 0.04 2.495 0.41 3.437 0.31 3.538 0.20 3.626 0.04 3.889
Christofides 6 5 0.7 0.19 0.071 0.23 0.111 0.20 0.116 0.19 0.114 0.19 0.118
Christofides 7 5 0.7 0.15 0.297 0.31 0.526 0.24 0.526 0.22 0.544 0.09 0.582
Christofides 8 5 0.7 0.16 0.536 0.26 0.827 0.22 0.836 0.20 0.834 0.16 0.827
Christofides 9 5 0.7 0.07 1.743 0.39 2.662 0.29 2.938 0.20 2.909 0.05 2.946
Christofides 10 5 0.7 0.10 2.655 0.48 4.263 0.20 4.526 0.17 4.554 0.05 4.886
Christofides 11 5 0.7 0.05 0.550 0.32 0.808 0.30 0.824 0.23 0.855 0.10 0.854
Christofides 12 5 0.7 0.12 0.381 0.24 0.627 0.23 0.612 0.26 0.623 0.15 0.650

Average 0.12 0.903 0.32 1.388 0.25 1.444 0.21 1.460 0.11 1.528

Table 5: Analysis of repair sub-heuristics (AF , denotes the application frequency of the respec-
tive sub-heuristic)

In a next step we compare the results of different TALNS configurations: the TALNS as
described in Section 3, the TALNS without using the truncated 2-opt operator from Section 3.4,
and the TALNS with the exact repair mechanism (TALNS+ER) and the heuristic repair mech-
anism (TALNS+HR).

We also examine a variant of the TALNS that allows a partial violation of the driver con-
sistency. More precisely, we perform a post processing step on the final solution found by the
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TALNS (TALNS+PP). In this step a small subset of the customers may be assigned to a second
driver to avoid extremely expensive insertion positions. We sort all customers in decreasing or-
der of the saving that could be obtained by temporarily removing them on the day he causes the
highest insertion cost (equation (29)). The customers are then reassigned, one after another, to
their cheapest position in a different driver’s route. The insertion is performed by the greedy
heuristic described in Section 3.2. The procedure stops when 5% of the customers are served
by two drivers or if the solution cannot be improved by further reassignments.

In Table 6 we report the total travel times plus the aggregated service times, TT , and the
computation times, CPU , for the mentioned TALNS configurations on the 12 benchmark in-
stances from data set A. The table shows the benefit of the truncated 2-opt operator that comes
with a small increase in the average computation time. As expected, the variants that integrate
a method to repair infeasible solutions perform better than the pure TALNS. Nevertheless,
there is little difference between the average results of the TALNS and the TALNS+ER. This
is because the wide maximum arrival time difference of the instances allows good results even
without adjusting the departure times. Noticeable is the comparison between TALNS+ER and
TALNS+HR since for some instances the heuristic repair achieves better results than the exact
repair approach. There are several reasons for this observation. First, due to the wide maximum
arrival time differences the repair approaches play only a minor role. Second, the randomization
of the TALNS causes the repair methods to face different solutions with different opportunities
to adjust the departure times. Furthermore, the repair methods themselves generate different
current maximum arrival time differences, lmax. Since lmax is considered in the acceptance
criterion (equation (26)), it also effects the score ψdr that can be earned by the destroy and
repair sub-heuristics.

The application of a post processing phase that allows a partial violation of the driver
consistency (TALNS+PP) improves the TALNS solutions by 0.34% on average. The degree of
this improvement indicates the ability of the TALNS to avoid extremely inconvenient insertion
positions despite the strict driver consistency requirement.

TALNS wo. 2-opt TALNS TALNS+ER TALNS+HR TALNS+PP
Instances TT CPU(s) TT CPU(s) TT CPU(s) TT CPU(s) TT CPU(s)

Christofides 1 5 0.7 2136.20 4.93 2194.93 5.45 2130.99 40.50 2128.76 5.50 2186.05 5.45
Christofides 2 5 0.7 3605.04 14.65 3605.03 14.69 3589.88 30.04 3584.70 15.12 3580.13 14.69
Christofides 3 5 0.7 3361.24 24.26 3338.03 25.58 3324.94 81.86 3330.32 26.23 3332.53 25.58
Christofides 4 5 0.7 4617.69 80.97 4598.78 84.31 4600.26 132.90 4575.78 86.86 4584.61 84.31
Christofides 5 5 0.7 5695.15 125.54 5685.55 122.24 5706.27 161.86 5739.10 132.15 5662.88 122.24
Christofides 6 5 0.7 4064.34 5.79 4051.50 6.63 4051.48 20.57 4051.48 6.65 4050.86 6.63
Christofides 7 5 0.7 6828.52 18.61 6805.99 18.33 6779.03 26.53 6779.03 19.74 6756.08 18.33
Christofides 8 5 0.7 7234.34 30.28 7192.45 32.24 7199.34 49.38 7207.18 32.63 7173.27 32.24
Christofides 9 5 0.7 10524.83 94.83 10450.04 97.39 10488.87 110.40 10488.87 97.97 10411.60 97.39
Christofides 10 5 0.7 13273.72 148.74 13238.57 146.32 13193.79 207.79 13185.10 144.05 13200.49 146.32
Christofides 11 5 0.7 4531.70 34.65 4506.59 35.96 4481.99 130.18 4481.91 37.66 4499.16 35.96
Christofides 12 5 0.7 3545.98 23.65 3530.16 25.60 3543.34 63.50 3532.73 25.87 3519.06 25.60

Average 5784.90 50.57 5766.47 51.23 5757.52 87.96 5757.08 52.53 5746.39 51.23

Table 6: Comparison of TALNS variants

To test the performance of the developed algorithm, we compare it to the template based
record-to-record travel algorithm for the ConVRP (ConRTR) [7] and to the tabu search algo-
rithm (TTS) [22] that is also template based. The results of the ConRTR and the TTS are
taken from the respective papers.

The performance of the three algorithms for the 12 benchmark instances is listed in Table 7.
The first column gives the names of the test instances. In the following columns, TT and
the obtained maximum arrival time difference, lmax, are listed for all algorithms. The TTS is
stochastic and the reported results are the best of five runs (TTmin). The ConRTR algorithm
is deterministic. For the TALNS, we report the average results over 10 runs (TTavg) and the
best of five randomly chosen runs (TTmin). The computation time of the best of five runs is
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given for TTS (CPUmin) and the average computation time is given for the TALNS (CPUavg).
The computation times of the ConRTR are not available. The last two columns show the gap
of the results produced by our TALNS to those of the ConRTR (with respect to TTavg) and the
TTS (with respect to TTmin). In the last row, the average results over all instances are given.

Since the results reported for the ConRTR approach were obtained without bounding the
maximum arrival time differences, the L values for the TTS and the TALNS are set to the lmax

values produced by the ConRTR method.
The authors of the ConRTR pointed out that their aim was to develop a simple algorithm

that relies on the template concept. The structure of the TALNS is more complex. Yet, it
generates solutions that are on average 5.84% better than those of the ConRTR. Furthermore,
all results obtained by the ConRTR are improved.

When comparing the TALNS to the TTS approach the difference between the results is
smaller. The TALNS performs on average 1.89% better than the TTS. Additionally, on a
similar processor the TTS requires an average computation time of 408 seconds while the TALNS
requires only 51.

The master and daily scheduler heuristic for the courier delivery problem [21] was also
applied to solve the ConVRP benchmark instances. As the authors do not bound the maximum
arrival time difference only instances in which TALNS obtains smaller or equal lmax values are
compared. This is the case in 9 out of 12 instances. Here, TALNS improves the total travel
time by 6.5% on average and it decreases lmax by 28.7%.

These comparisons indicate that the TALNS is a competitive solution method for the Con-
VRP.

ConRTR [7] TTS [22] TALNS
Gap (%) Gap (%)

Instances TT lmax TTmin lmax CPUmin(s)
1 TTavg TTmin lmax CPUavg(s)

2 to ConRTR3 to TTS4

Christofides 1 5 0.7 2282.14 24.38 2210.56 21.99 80.00 2194.93 2124.21 23.72 5.45 -3.82 -3.91
Christofides 2 5 0.7 3872.86 34.26 3622.71 27.75 93.00 3605.03 3600.41 31.86 14.69 -6.92 -0.62
Christofides 3 5 0.7 3628.22 22.87 3451.10 21.92 369.00 3338.03 3326.12 22.21 25.58 -8.00 -3.62
Christofides 4 5 0.7 4952.91 27.53 4572.00 25.15 388.00 4598.78 4556.33 24.19 84.31 -7.15 -0.34
Christofides 5 5 0.7 6416.77 26.93 5732.62 19.99 550.00 5685.55 5664.06 22.69 122.24 -11.40 -1.20
Christofides 6 5 0.7 4084.24 63.47 4096.87 55.38 70.00 4051.50 4051.48 63.26 6.63 -0.80 -1.11
Christofides 7 5 0.7 7126.07 83.96 6752.36 63.28 161.00 6805.99 6770.49 76.62 18.33 -4.49 0.27
Christofides 8 5 0.7 7456.19 73.04 7279.39 62.01 539.00 7192.45 7129.79 65.97 32.24 -3.54 -2.06
Christofides 9 5 0.7 11033.54 106.43 10585.10 84.76 947.00 10450.04 10381.9 88.85 97.39 -5.29 -1.92
Christofides 10 5 0.7 13916.80 60.17 13120.40 57.17 1052.00 13238.57 13102.7 57.95 146.32 -4.87 -0.13
Christofides 11 5 0.7 4753.89 16.10 4721.09 15.68 480.00 4506.59 4485.37 15.33 35.96 -5.20 -4.99
Christofides 12 5 0.7 3861.35 17.58 3607.88 16.91 172.00 3530.16 3497.93 16.50 25.60 -8.58 -3.05

Average 6115.42 46.39 5812.67 39.33 408.42 5766.47 5724.23 42.43 51.23 -5.84 -1.89

1 Running times in seconds on a 2.8 GHz Intel Xeon CPU
2 Running times in seconds on a 2.67 GHz Intel Xeon CPU
3 With respect to TTavg
4 With respect to TTmin

Table 7: Comparison to existing approaches on data set A

5.4 Results for new instances (data set B)

In this section we show the effect of decreasing maximum arrival time differences on the results
obtained by the pure TALNS and the TALNS with the integrated repair mechanisms. Therefore,
we use the newly generated instances with varying visit frequencies and maximum arrival time
differences (data set B).

Tables 8, 9 and 10 contain the average results of the TALNS variants over all modified
benchmark instances with service frequencies 0.5, 0.7 and 0.9, respectively.2 The first column
gives the L vectors (Section 5.1) that are applied on the corresponding instances. In the fol-
lowing columns, the average results achieved by the TALNS with the exact repair mechanism

2Detailed results for data set B are reported in Appendix A.2.
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Gap (%) to Gap (%) to
TALNS+ER CPU(s) TALNS+HR CPU(s) TALNS+ER TALNS CPU(s) TALNS+ER

L1 4192.47 34.01 4192.47 34.01 0.00 4192.47 34.01 0.00
L0.8 4204.81 115.21 4207.88 35.73 0.07 4215.56 35.15 0.26
L0.6 4222.67 132.13 4218.23 34.97 -0.11 5176.83 47.52 22.60
L0.4 4260.50 134.23 4421.42 39.80 3.78 10085.78 92.92 136.73

Average 4220.11 103.90 4260.00 36.13 0.94 5917.66 52.40 39.89

Gap (%) L1 − L0.4 1.62 5.46 140.57

Table 8: Comparison of TALNS variants on data set B with service frequency=0.5

(TALNS+ER), with the heuristic repair mechanism (TALNS+HR) and without any repair
mechanism are presented with the corresponding computation times, CPU . The gaps to the
results obtained by the TALNS+ER are given for the TALNS+HR and the pure TALNS. In the
last but one row the average results over all L vectors are shown. The last row gives the gaps
between the results obtained with L1 and L0.4 constraints for the three solution approaches.

A comparison between the different solution approaches reveals large differences in the re-
sults and highlights interesting saving potentials for companies that are facing similar problems.

The pure TALNS is able to provide good solutions for wide L constraints. However, when
the constraint gets tighter it is more difficult to obtain low travel time solutions. In the worst
case, a 60% decrease in L leads to a 186.16% increase in the total travel time (see Table 9).
The substantial increase in the objective values as well as in the computation times is due to
the high number of vehicles needed to cope with the tighter arrival time difference constraints.

The possibility to shift the vehicles’ arrival times enables the generation of solutions that
are almost independent of the maximum allowed arrival time difference. With small differences,
this is true for the exact and the heuristic adjustment of the departure times. The total travel
time only increased on average between 0.63% and 1.62% with the TALNS+ER method and
between 1.55% and 5.46% with the TALNS+HR method, while the L values decreased by 60%.
As explained above, the results obtained by the TALNS+HR method might be better than
those of TALNS+ER due to the randomization of the TALNS and the effect of the maximum
arrival time difference on the scores that can be earned by the repair and destroy sub-heuristics.

The effect of decreased interdependence between the total travel time and the maximum
arrival time difference seems to increase with the service frequency. Test instances with high
service frequency have a larger number of frequent customers. Therefore, the corresponding
template contains more customers and is not altered much during the resolution. A high service
frequency enables the generation of a template that gives a more accurate reflection of the daily
schedules and produces better results.

To obtain good solutions for instances with lower service frequencies, interdependencies
during the insertion of non-frequent customers must be considered. One can think of interde-
pendencies when the insertion of a customer would lead to a violation of the time consistency,
but the next insertion on another day could repair the previous infeasibility. The TALNS con-
siders this difficulty only indirectly by randomizing the insertion through the noise term and
applying a truncated 2-opt operator (Section 3.4). The tabu search algorithm by Tarantilis
et al. [22] integrates a post optimization phase in which exclusively non-frequent customers
are moved to different insertion positions. Unfortunately, it is not possible to compare these
two approaches on the basis of the existing benchmark instances: the service frequency of 70%
results in instances with only 3% non-frequent customers on average. Problem instances with a
higher number of non-frequent customers would be more adequate for a meaningful comparison.

5.5 Results for large instances (data set C)

We showed that the TALNS performs well when solving short planning horizon problems. This
approach, however, is not appropriate when considering a dynamic long-term environment in
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Gap (%) to Gap (%) to
TALNS+ER CPU(s) TALNS+HR CPU(s) TALNS+ER TALNS CPU(s) TALNS+ER

L1 5752.85 52.01 5752.85 52.01 0.00 5752.85 52.01 0.00
L0.8 5760.89 121.58 5756.37 53.28 -0.08 5770.88 50.70 0.17
L0.6 5773.59 149.36 5763.57 52.70 -0.17 6266.31 61.51 8.53
L0.4 5811.67 147.40 5894.96 52.35 1.43 16462.33 133.28 183.26

Average 5774.75 117.59 5791.94 52.59 0.30 8563.09 74.38 47.99

Gap (%) L1 − L0.4 1.02 2.47 186.16

Table 9: Comparison of TALNS variants on data set B with service frequency=0.7

Gap (%) to Gap (%) to
TALNS+ER CPU(s) TALNS+HR CPU(s) TALNS+ER TALNS CPU(s) TALNS+ER

L1 6729.94 55.75 6729.94 55.75 0.00 6729.94 55.75 0.00
L0.8 6730.55 120.92 6735.30 60.00 0.07 6757.17 54.70 0.40
L0.6 6734.61 170.40 6743.22 56.42 0.13 7047.31 62.80 4.64
L0.4 6772.21 180.96 6833.95 58.19 0.91 15113.41 149.77 123.17

Average 6741.83 132.01 6760.60 57.59 0.28 8911.96 80.76 32.05

Gap (%) L1 − L0.4 0.63 1.55 124.57

Table 10: Comparison of TALNS variants on data set B with service frequency=0.9

which we have to create routing plans for consecutive planning periods. Solving each period
separately would disregard both, long-term time and driver consistency. Figure 6 shows an
example in which customers are serviced over several planning periods. The service requirements
and the customers are changing over time. As a consequence, the solution algorithm is rerun for
each planning period (1-7). The changing input data leads to different templates and therefore
to inconsistent solutions.

We follow Groër et al. [7] to cope with this issue and design a template based on historical
data and apply it to derive the solutions for future planning periods. This approach is illustrated
in Figure 7. A template is generated by using customer data from the past periods 1 to 4. The
template is then used to produce solutions in periods 5, 6, and 7.

By using the same template for several periods it is guaranteed that all customers who are
represented in the template obtain a consistent service. However, the service consistency of
new customers who are not represented in the template is not considered. The same is true
for customers who have to be removed from the template to make it feasible. We are talking
about an infeasible template if its resolution produces routes that do not satisfy the capacity or
tour length constraints. All frequent customers that are not part of the template are inserted
at their best insertion positions only with regard to the total travel time.

planning periods

separate template for each period

1 2 3 4 5 6 7

Figure 6: Solving each period separately results in inconsistent long-term solutions

In this section, we investigate the algorithm’s behavior when the maximum arrival time
difference, L, cannot be fixed to a reasonable value in advance. Typically, this is the case in
long-term planning environments with changing customer requests. We perform experiments on
the large instances (data set C) without bounding L and examine the consistency of the resulting
solutions. Additionally, we compare the solutions obtained by using the historic template with
those obtained by using a template based on current data.

Tables 11 and 12 show the average results of five runs for week five of the large instances.
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planning periods

historic template

1 2 3 4 5 6 7

Figure 7: Consistent long-term solutions can be generated by using the same historic template

Like Groër et al. [7] we rely on the template’s precedence principle to obtain time consistent
routing plans even when the maximum arrival time difference is not bounded explicitly.

The results in Table 11 were obtained without using the 2-opt operator and those in Table 12
with using it. The first columns of both tables indicate the instance names and the corresponding
maximum shift length, T . T can be interpreted as a trivial upper bound for the maximum arrival
time difference. In columns 2 and 3 we give the total travel time plus service times, TT , and
the number of vehicles, NV. Columns 4-7 show the average arrival time difference, lavg , the
maximum arrival time difference, lmax, the ratio of lmax and T , and the computation time in
minutes, CPU , when depot departure times are fixed to 0 (TALNS). Columns 8-11 show the
same items but with variable depot departure times (TALNS+ER). We have no explicit bound
on the arrival time differences to adhere to, so we apply the exact repair approach described in
Section 4.1 to the final solution only. Accordingly, the adjustment of departure times hardly
effects the total computation time.

The results highlight the tradeoff between total travel time and the maximum arrival time
differences. The application of the truncated 2-opt operator (reverse at the maximum three
customers) can decrease the total travel time at the expense of increased arrival time differences:
TT decreases by 0.75% on average while the average ratio of lmax and T increases from 19%
to 23%. A preference to use one of the two approaches depends on the decision makers, so no
evaluation can be made here. What can be evaluated is that the possibility to shift the vehicles’
departure times can almost halve the maximum arrival time difference and should be considered
whenever possible.

To investigate the TALNS’ ability to produce templates for future planning periods we
solve the ConVRP for week 1 - 4 (planning horizon |D| = 20 days) and apply the obtained
template to solve week 5. Our aim is to provide long-term consistency for the most frequent
customers. Therefore, all customers with an average of at least two visits per week are included
into the template. To resolve the template for week 5, all customers that are represented in
the template but have no service request on a specific day are removed. If the capacity or tour
length constraints are exceeded despite of these removals, further customers are deleted from
the solution. We repeatedly remove the customer with the lowest service frequency (in week 5)
until all routes become feasible. Finally, we insert all customers that have been removed or are
not represented in the template but require service by using the greedy heuristic (Section 3.2).
This insertion happens without considering consistency.

Columns 2 and 3 of Table 13 show the number of customers considered in the template
derived from week 1-4 and the computation time in minutes, CPU . The remaining columns
show the number of frequent customers |Nf | in week 5 and the number of frequent customers
that are not represented in the template.

Tables 14 and 15 give the results of week 5 produced from the historic template. The results
in Table 14 are obtained by resolving the template as described above. The results in Table 15
are obtained by additionally performing a post-optimization with the truncated 2-opt operator.
The structure of the tables is similar to Tables 11 and 12. The only exceptions are that the
computation times refer to the time needed for the template resolution in seconds and that the
number of customers who have been removed to make routes feasible is also indicated.
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TALNS TALNS+ER
Instances (T ) TT NV lavg lmax lmax/T CPU(min) lavg lmax lmax/T CPU(min)

R1 10 1 week 5 (1925) 325789.00 66.80 42.89 432.74 0.22 25.22 42.68 205.18 0.11 25.22
R2 10 1 week 5 (7697) 95627.32 10.40 68.54 331.22 0.04 36.26 55.76 168.97 0.02 36.26
C1 10 1 week 5 (1824) 551133.60 90.20 128.44 674.08 0.37 28.82 117.82 327.01 0.18 28.82
C2 10 1 week 5 (3914) 319889.60 18.20 232.81 1166.82 0.30 36.46 205.17 639.34 0.16 36.46
RC1 10 1 week 5 (1821) 322549.40 66.20 43.01 343.06 0.19 27.72 41.78 163.98 0.09 27.72
RC2 10 1 week 5 (7284) 94075.44 10.40 58.70 306.72 0.04 31.87 52.64 157.62 0.02 31.87

Average 284844.06 43.70 95.73 542.44 0.19 31.06 85.97 277.02 0.10 31.06

Table 11: Results for week 5 of the large instances without 2-opt

TALNS TALNS+ER
Instances (T ) TT NV lavg lmax lmax/T CPU(min) lavg lmax lmax/T CPU(min)

R1 10 1 week 5 (1925) 323128.60 68.20 49.93 473.47 0.25 30.08 51.18 281.09 0.15 30.08
R2 10 1 week 5 (7697) 95599.68 10.20 65.70 320.73 0.04 32.62 57.18 170.76 0.02 32.62
C1 10 1 week 5 (1824) 544885.20 88.60 138.49 810.66 0.44 34.67 149.39 521.22 0.29 34.68
C2 10 1 week 5 (3914) 319547.80 18.00 240.59 1290.64 0.33 36.09 217.57 673.77 0.17 36.09
RC1 10 1 week 5 (1821) 319051.80 65.00 49.04 509.51 0.28 28.08 50.16 294.19 0.16 28.08
RC2 10 1 week 5 (7284) 94053.22 10.20 53.46 259.77 0.04 31.67 47.00 133.65 0.02 31.67

Average 282711.05 43.37 99.54 610.80 0.23 32.20 95.41 345.78 0.13 32.20

Table 12: Results for week 5 of the large instances with 2-opt

When comparing the solutions from Tables 14 and 15 to those in Tables 11 and 12 one must
pay attention to two antagonistic factors that affect the results. On the one hand, the solutions
in Tables 14 and 15 are derived from a template based exclusively on historical data. This is
obviously suboptimal in terms of total travel time even though it enables long-term consistency.
On the other hand, there is a higher degree of freedom because almost 70 customers (on average)
do not adhere to any consistency requirement. These customers are placed at their best positions
regarding only total travel time. Therefore, one must keep in mind that a low total travel time
is always associated with low consistency at least for some customers.

If a decision maker is willing to make this compromise, TALNS is applicable. It produces
historic templates that can be applied to future planning periods with approximately 1.3%
increase in the total travel times compared to solutions produced from a specially built template.
With respect to time consistency both templates, historic and current, lead to comparable
average arrival time differences. The repair mechanism to adjust the starting times can again
almost halve the maximum arrival time differences. The minimization of lmax, however, can
cause the average maximum arrival time difference to increase in some cases (see, e.g., instances
R2 and RC2 in Table 15). Furthermore, driver consistency is not guaranteed for approximately
7% of the customers.

template (week 1-4) week 5
Instances # customers CPU(min) |Nf | |Nf | not in template

R1 10 1 864 73.85 821 52
R2 10 1 876 142.71 810 58
C1 10 1 850 160.96 820 72
C2 10 1 875 123.92 806 65
RC1 10 1 860 69.39 819 75
RC2 10 1 856 182.35 816 74

Average 863.50 125.53 815.33 66.00

Table 13: Properties of historic templates and week 5 of the large instances
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TALNS TALNS+ER
Instances (T ) TT NV removed lavg lmax lmax/T CPU(s) lavg lmax lmax/T CPU(s)

R1 10 1 week 5 (1925) 344930.80 75.80 7.20 39.93 368.61 0.19 0.00 38.63 179.71 0.09 0.05
R2 10 1 week 5 (7697) 99239.68 11.00 1.00 75.74 1684.64 0.22 0.10 226.76 924.34 0.12 0.15
C1 10 1 week 5 (1824) 552262.20 105.00 4.20 102.83 707.77 0.39 0.00 94.85 297.05 0.16 0.05
C2 10 1 week 5 (3914) 294020.40 19.60 1.20 223.38 1335.50 0.34 0.01 196.34 639.31 0.16 0.05
RC1 10 1 week 5 (1821) 343862.00 75.40 5.80 34.16 369.22 0.20 0.00 31.77 153.73 0.08 0.06
RC2 10 1 week 5 (7284) 91613.80 10.40 1.80 62.03 700.25 0.10 0.06 90.39 389.83 0.05 0.11

Average 287654.81 49.53 3.53 89.68 861.00 0.24 0.03 113.12 430.66 0.11 0.08

Table 14: Results for week 5 of the large instances produced from historic template without
2-opt

TALNS TALNS+ER
Instances (T ) TT NV removed lavg lmax lmax/T CPU(s) lavg lmax lmax/T CPU(s)

R1 10 1 week 5 (1925) 342652.00 75.80 7.20 44.91 406.60 0.21 0.02 44.23 235.33 0.12 0.08
R2 10 1 week 5 (7697) 98945.14 11.00 1.00 76.31 1685.97 0.22 0.11 243.57 928.88 0.12 0.17
C1 10 1 week 5 (1824) 551463.80 105.00 4.20 114.15 798.11 0.44 0.01 116.49 433.91 0.24 0.06
C2 10 1 week 5 (3914) 293263.80 19.60 1.20 227.95 1337.25 0.34 0.01 199.78 656.41 0.17 0.05
RC1 10 1 week 5 (1821) 342081.60 75.40 5.80 38.09 445.65 0.24 0.01 37.88 261.42 0.14 0.06
RC2 10 1 week 5 (7284) 91297.00 10.40 1.80 61.72 694.00 0.10 0.07 89.69 388.64 0.05 0.12

Average 286617.22 49.53 3.53 93.86 894.59 0.26 0.04 121.94 484.10 0.14 0.09

Table 15: Results for week 5 of the large instances produced from historic template with 2-opt

6 Conclusion

Consistency improves service quality, service quality increases customer satisfaction, and cus-
tomer satisfaction is one of the key factors of competitive advantage. The consistent vehicle
routing problem (ConVRP), in response to this real world challenge, combines traditional vehicle
routing constraints with the requirements for service consistency. In this article we first pre-
sented a solution approach called template based adaptive large neighborhood search (TALNS)
for the described problem. It embeds the principle of deriving a multi-day routing plan from
a set of template routes into the adaptive large neighborhood search framework. Experimental
comparisons with other algorithms proved the competitiveness of the TALNS in terms of solu-
tion quality and computation time. The algorithm provides slightly better results than the best
competitor while being about 8 times faster, thus representing a new state-of-the-art.

We construct and provide additional benchmark instances by varying customer service fre-
quencies and maximum arrival time differences. This is important, since the maximum arrival
time differences were determined by Groër et al. [7] by first ignoring any arrival time differences,
and then defining what was obtained as maximum arrival time differences. Consequently these
maximum arrival time differences are not really tight. Also, in the original benchmark instances
by Groër et al. [7], the service frequencies were rather high so that only very few (on average
3%) non-frequent customers occurred. By varying these model parameters more challenging
instances are obtained and interesting effects can be identified.

We used our TALNS to investigate the effect of different customer service frequencies and
varying maximum arrival time differences on the total travel times. The numerical experiments
showed that the TALNS is capable of generating very good solutions when the time consistency
is loose. With tight maximum arrival time difference constraints, however, the cost increases
sharply. We modified the original ConVRP model and allowed for a delay in the departure times
from the depot. This realistic relaxation nearly caused a decoupling of total travel time and
time consistency. In other words, while total cost increases sharply if the maximum arrival time
difference constraint becomes very tight, this effect can be almost completely neutralized by
appropriate adaption of the starting times of the routes. The important managerial implication
for a service provider is that such a relaxation can lead to much higher service quality at
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|Nf |
Instances n x = 0.5 x = 0.7 x = 0.9

Christofides 1 5 x 50 39 48 50
Christofides 2 5 x 75 59 74 75
Christofides 3 5 x 100 79 95 100
Christofides 4 5 x 150 116 149 150
Christofides 5 5 x 199 153 195 199
Christofides 6 5 x 50 40 48 50
Christofides 7 5 x 75 59 75 75
Christofides 8 5 x 100 79 98 100
Christofides 9 5 x 150 116 147 150
Christofides 10 5 x 199 153 193 199
Christofides 11 5 x 120 91 116 120
Christofides 12 5 x 100 79 97 100

Average 114 88.58 111.25 114

Table 16: Number of customers (overall and frequent). Wildcards x in the instance names can
be replaced by the service frequencies 0.5, 0.7 and 0.9

practically no extra cost.
Future research in this field can be split into model-specific and solution method-specific

topics. Concerning the model, the monetary differentiation between high and low quality ser-
vices or extensions that balance the staff’s hours of labor seem to be reasonable. In terms of
solution methods, the template concept provides good solutions as long as the service frequency
is high and so is the number of frequent customers. As the number of non-frequent customers
increases, it becomes more important to find appropriate insertion approaches that are able to
consider interdependencies over the entire planning horizon.

Acknowledgments The authors would like to thank Marc Reimann and the two anonymous
referees for constructive comments and suggestions. The second author is supported by the
Austrian Science Fund (FWF): T514-N13. This support is gratefully acknowledged.

A Appendix

A.1 Data set details

Table 16 presents the number of customers, n, that have to be served in the benchmark instances.
Furthermore, the number of frequent customers, |Nf |, or customers who are considered in the
template, is presented for the new and the original instances with the corresponding service
frequencies, x ∈ {0.5, 0.7, 0.9}. The last row shows the average numbers of customers. The
maximum arrival time difference, L, for each instance is listed in Table 17. The names of the
instances are given in the first column. The following columns report the different L values for
the instances with 50%, 70% and 90% service frequencies.
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x=0.5 x=0.7 x=0.9
Instances L0.8 L0.6 L0.4 L0.8 L0.6 L0.4 L0.8 L0.6 L0.4

Christofides 1 5 x 54 41 27 34 26 17 32 24 16
Christofides 2 5 x 41 31 20 35 26 17 20 15 10
Christofides 3 5 x 46 34 23 30 22 15 23 17 11
Christofides 4 5 x 37 28 18 22 17 11 18 14 9
Christofides 5 5 x 31 23 15 28 21 14 10 7 5
Christofides 6 5 x 70 53 35 64 48 32 52 39 26
Christofides 7 5 x 61 46 30 67 50 33 56 42 28
Christofides 8 5 x 83 62 41 59 44 29 49 36 24
Christofides 9 5 x 78 59 39 71 53 35 43 32 21
Christofides 10 5 x 58 43 29 61 46 30 34 25 17
Christofides 11 5 x 38 29 19 15 11 7 16 12 8
Christofides 12 5 x 22 17 11 17 13 8 10 7 5

Table 17: Maximum arrival time differences. Wildcards x in the instance names can be replaced
by the service frequencies 0.5, 0.7 and 0.9

A.2 Detailed results for data set B

Detailed results for all instances in data set B with varying maximum arrival time differences
are given in Tables 18 - 26. The first three tables include the problem instances with a service
frequency of 50%, the next three the instances with 70% . The final three tables include the
instances with 90% service frequency. Tables 18, 21 and 24 show the results obtained by the
TALNS for the original ConVRP. Here, shifts in the departure times are not allowed. The
results given in Tables 19, 22 and 25 show the results for the TALNS+ER method where the
vehicles’ departure times are adjusted by an exact approach and Tables 20, 23 and 26 illustrate
the results obtained by the TALNS+HR method that integrates a heuristic shifting mechanism.
The mentioned tables are organized as follows. The first column gives the instance names and
the following column pairs give the total travel time plus the aggregated service times, TT , and
the obtained maximum arrival time difference, lmax, for the respective maximum arrival time
difference constraints, L. The last rows show the average results. The results for the instances
where the maximum arrival time difference is not bounded (L1) are only given for the TALNS
without repair mechanism, since the repair mechanism is only called when there is a violation
of L.
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L1 L0.8 L0.6 L0.4

Instances TT lmax TT lmax TT lmax TT lmax

Christofides 1 5 0.5 1651.19 70.70 1668.58 51.65 1754.54 37.92 1850.18 25.44
Christofides 2 5 0.5 2588.58 59.33 2602.12 33.41 2600.87 30.03 3585.00 18.39
Christofides 3 5 0.5 2689.36 52.46 2687.97 41.81 2712.04 32.93 4348.61 22.18
Christofides 4 5 0.5 3397.97 56.61 3399.87 34.34 3731.7 26.88 14136.58 16.52
Christofides 5 5 0.5 4045.53 37.53 4082.70 28.44 4150.04 22.40 20650.27 11.68
Christofides 6 5 0.5 2868.67 91.14 2883.88 64.41 2946.17 51.26 3820.50 31.37
Christofides 7 5 0.5 4701.86 89.57 4705.68 57.84 4819.25 44.22 8360.45 25.24
Christofides 8 5 0.5 5348.96 95.35 5353.45 76.18 5371.67 60.27 9908.53 39.10
Christofides 9 5 0.5 7461.90 100.23 7488.12 74.09 7739.97 57.00 15777.09 36.49
Christofides 10 5 0.5 9366.86 87.50 9403.01 57.02 19942.71 41.90 24670.81 28.03
Christofides 11 5 0.5 3293.99 75.69 3395.02 26.18 3423.62 24.38 3633.71 18.53
Christofides 12 5 0.5 2894.83 25.78 2916.31 18.76 2929.35 16.04 10287.67 8.47
Average 4192.47 70.16 4215.56 47.01 5176.83 37.10 10085.78 23.45

Table 18: TALNS, departure times=0, service frequency=0.5

L0.8 L0.6 L0.4

Instances TT lmax TT lmax TT lmax

Christofides 1 5 0.5 1661.55 35.53 1653.01 32.65 1685.19 25.80
Christofides 2 5 0.5 2605.23 28.62 2623.90 22.11 2619.03 16.01
Christofides 3 5 0.5 2692.92 43.48 2703.48 21.00 2705.88 20.93
Christofides 4 5 0.5 3399.49 25.45 3403.92 22.11 3543.11 16.83
Christofides 5 5 0.5 4072.17 28.38 4093.25 15.45 4090.38 13.17
Christofides 6 5 0.5 2873.02 43.15 2870.30 43.13 2878.42 34.71
Christofides 7 5 0.5 4702.95 58.02 4745.82 36.22 4764.38 24.84
Christofides 8 5 0.5 5349.66 75.80 5357.24 38.85 5355.78 36.71
Christofides 9 5 0.5 7478.44 60.67 7489.27 47.52 7493.43 36.53
Christofides 10 5 0.5 9387.27 41.42 9388.77 39.14 9628.98 28.19
Christofides 11 5 0.5 3330.48 29.58 3433.58 21.93 3456.14 16.01
Christofides 12 5 0.5 2904.55 18.26 2909.46 12.39 2905.22 9.32
Average 4204.81 40.70 4222.67 29.38 4260.50 23.25

Table 19: TALNS+ER, departure times are shiftable, service frequency=0.5

L0.8 L0.6 L0.4

Instances TT lmax TT lmax TT lmax

Christofides 1 5 0.5 1654.75 54.00 1654.95 41.00 1679.40 27.00
Christofides 2 5 0.5 2602.80 35.12 2606.07 30.67 2598.77 20.00
Christofides 3 5 0.5 2693.32 43.26 2708.02 33.83 2713.47 23.00
Christofides 4 5 0.5 3399.12 36.18 3401.60 28.00 3698.60 18.00
Christofides 5 5 0.5 4086.47 28.03 4093.06 22.92 4107.91 15.00
Christofides 6 5 0.5 2871.14 70.00 2870.68 53.00 2923.31 35.00
Christofides 7 5 0.5 4703.34 59.22 4731.01 45.99 4758.82 30.00
Christofides 8 5 0.5 5353.49 78.62 5363.67 62.00 5370.33 41.00
Christofides 9 5 0.5 7486.77 75.69 7459.19 58.59 7528.82 39.00
Christofides 10 5 0.5 9393.91 57.42 9385.69 43.00 11363.27 29.00
Christofides 11 5 0.5 3339.07 32.81 3418.82 24.55 3397.00 18.87
Christofides 12 5 0.5 2910.37 19.95 2925.99 16.42 2917.28 11.00
Average 4207.88 49.19 4218.23 38.33 4421.42 25.57

Table 20: TALNS+HR, departure times are shiftable, service frequency=0.5
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L1 L0.8 L0.6 L0.4

Instances TT lmax TT lmax TT lmax TT lmax

Christofides 1 5 0.7 2119.84 40.41 2123.50 31.44 2143.64 24.66 3075.78 15.68
Christofides 2 5 0.7 3575.76 44.25 3568.94 33.85 3661.66 25.49 7968.27 16.01
Christofides 3 5 0.7 3306.11 35.91 3320.43 28.17 3339.36 21.41 10198.49 13.80
Christofides 4 5 0.7 4561.01 31.56 4663.42 21.27 6129.96 16.01 26084.59 6.96
Christofides 5 5 0.7 5720.26 28.87 5703.62 23.60 5726.60 19.46 6604.87 13.47
Christofides 6 5 0.7 4051.12 77.34 4051.57 63.24 4063.18 47.23 4376.52 31.11
Christofides 7 5 0.7 6785.91 77.35 6832.47 58.54 6914.61 48.16 10354.65 31.85
Christofides 8 5 0.7 7208.72 67.66 7210.89 54.80 7774.82 43.10 16546.28 28.07
Christofides 9 5 0.7 10507.94 108.20 10511.70 66.15 10691.63 52.00 20072.92 33.62
Christofides 10 5 0.7 13194.36 79.32 13234.58 58.86 15795.68 45.70 33655.92 28.50
Christofides 11 5 0.7 4477.14 20.56 4500.79 14.67 5386.16 10.65 40213.56 4.96
Christofides 12 5 0.7 3526.07 20.44 3528.65 15.84 3568.47 12.62 18396.13 7.06
Average 5752.85 52.66 5770.88 39.20 6266.31 30.54 16462.33 19.26

Table 21: TALNS, departure times=0, service frequency=0.7

L0.8 L0.6 L0.4

Instances TT lmax TT lmax TT lmax

Christofides 1 5 0.7 2123.81 29.64 2127.49 17.88 2131.91 15.00
Christofides 2 5 0.7 3579.36 25.77 3585.74 20.32 3615.43 15.43
Christofides 3 5 0.7 3313.12 27.58 3331.35 17.43 3343.10 14.28
Christofides 4 5 0.7 4632.09 15.84 4589.22 15.19 4691.71 10.50
Christofides 5 5 0.7 5707.10 23.12 5718.77 17.56 5716.18 10.67
Christofides 6 5 0.7 4051.48 63.30 4063.18 47.23 4064.34 31.73
Christofides 7 5 0.7 6794.35 47.10 6815.14 38.95 6833.13 28.76
Christofides 8 5 0.7 7234.27 48.92 7236.82 34.06 7225.29 27.39
Christofides 9 5 0.7 10465.20 55.72 10578.57 40.86 10579.78 29.98
Christofides 10 5 0.7 13210.41 42.46 13215.13 32.15 13217.64 28.71
Christofides 11 5 0.7 4486.11 10.11 4485.92 9.62 4772.98 6.40
Christofides 12 5 0.7 3533.38 16.57 3535.76 8.21 3548.52 6.31
Average 5760.89 33.84 5773.59 24.96 5811.67 18.76

Table 22: TALNS+ER, departure times are shiftable, service frequency=0.7

L0.8 L0.6 L0.4

Instances TT lmax TT lmax TT lmax

Christofides 1 5 0.7 2122.48 31.41 2133.91 25.74 2134.52 17.00
Christofides 2 5 0.7 3584.01 33.32 3576.75 25.91 3604.38 17.00
Christofides 3 5 0.7 3318.44 27.88 3331.68 21.97 3352.33 15.00
Christofides 4 5 0.7 4576.47 21.75 4567.86 17.00 4843.61 11.00
Christofides 5 5 0.7 5724.67 22.81 5698.33 19.02 5727.61 14.00
Christofides 6 5 0.7 4051.48 63.33 4063.18 47.23 4064.34 32.00
Christofides 7 5 0.7 6800.61 66.82 6821.98 49.77 6841.60 33.00
Christofides 8 5 0.7 7227.17 54.30 7232.61 44.00 7246.52 29.00
Christofides 9 5 0.7 10489.90 67.84 10495.53 52.95 10540.45 35.00
Christofides 10 5 0.7 13172.06 60.07 13203.58 46.00 13428.93 30.00
Christofides 11 5 0.7 4484.17 14.93 4491.44 11.00 5373.77 7.00
Christofides 12 5 0.7 3524.95 16.79 3546.04 12.99 3581.51 8.00
Average 5756.37 40.10 5763.57 31.13 5894.96 20.67

Table 23: TALNS+HR, departure times are shiftable, service frequency=0.7
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L1 L0.8 L0.6 L0.4

Instances TT lmax TT lmax TT lmax TT lmax

Christofides 1 5 0.9 2489.82 41.98 2491.17 29.67 2498.73 22.26 3223.89 15.15
Christofides 2 5 0.9 4042.34 25.60 4036.93 19.04 4094.53 12.23 4459.08 8.47
Christofides 3 5 0.9 3998.96 29.22 4014.12 22.47 4045.57 16.27 4325.71 10.36
Christofides 4 5 0.9 5045.35 20.15 5033.98 16.02 5067.58 13.03 25656.10 7.00
Christofides 5 5 0.9 6466.02 17.79 6704.79 7.93 6977.31 6.73 27586.40 3.17
Christofides 6 5 0.9 4761.20 80.46 4764.94 42.97 4814.62 38.39 6049.26 24.68
Christofides 7 5 0.9 7748.61 82.94 7744.94 43.60 7730.79 36.88 7944.97 27.55
Christofides 8 5 0.9 8744.73 64.61 8742.17 46.58 8842.28 34.59 12515.23 22.58
Christofides 9 5 0.9 12477.58 56.59 12480.13 41.83 13477.05 30.91 30716.88 19.81
Christofides 10 5 0.9 15971.12 41.21 16018.11 32.32 17936.27 24.11 47915.45 15.70
Christofides 11 5 0.9 5000.61 22.01 5041.08 14.22 5051.55 11.39 6791.61 7.69
Christofides 12 5 0.9 4013.00 13.43 4013.63 9.13 4031.45 4.94 4176.3 4.62
Average 6729.94 41.33 6757.17 27.15 7047.31 20.98 15113.41 13.90

Table 24: TALNS, departure times=0, service frequency=0.9

L0.8 L0.6 L0.4

Instances TT lmax TT lmax TT lmax

Christofides 1 5 0.9 2491.14 29.40 2497.63 18.92 2499.17 11.71
Christofides 2 5 0.9 4037.79 18.14 4049.83 9.70 4045.92 9.07
Christofides 3 5 0.9 4018.52 19.97 4016.00 13.50 4018.88 9.49
Christofides 4 5 0.9 5042.75 16.43 5036.07 8.41 5027.71 7.97
Christofides 5 5 0.9 6473.41 6.71 6448.74 6.13 6623.67 3.88
Christofides 6 5 0.9 4764.65 43.36 4767.65 20.99 4767.65 20.99
Christofides 7 5 0.9 7749.79 48.19 7743.38 36.08 7741.18 15.93
Christofides 8 5 0.9 8737.30 46.40 8749.40 21.78 8758.24 21.95
Christofides 9 5 0.9 12472.95 34.16 12487.40 21.90 12648.34 19.09
Christofides 10 5 0.9 15908.79 28.64 15964.44 19.29 16076.38 16.14
Christofides 11 5 0.9 5055.98 14.13 5039.34 7.46 5043.93 7.46
Christofides 12 5 0.9 4013.50 8.94 4015.40 3.72 4015.40 3.72
Average 6730.55 26.21 6734.61 15.66 6772.21 12.28

Table 25: TALNS+ER, departure times are shiftable, service frequency=0.9

L0.8 L0.6 L0.4

Instances TT lmax TT lmax TT lmax

Christofides 1 5 0.9 2492.30 29.01 2496.89 23.56 2504.55 16.00
Christofides 2 5 0.9 4030.44 18.40 4043.58 15.00 4055.95 10.00
Christofides 3 5 0.9 4005.73 22.38 4007.55 16.81 4031.40 11.00
Christofides 4 5 0.9 5045.04 16.44 5030.51 13.90 5070.25 9.00
Christofides 5 5 0.9 6481.25 9.57 6445.75 7.00 6668.00 5.00
Christofides 6 5 0.9 4764.13 44.82 4767.65 39.00 4767.65 26.00
Christofides 7 5 0.9 7738.28 41.97 7751.14 36.38 7759.23 28.00
Christofides 8 5 0.9 8739.99 45.61 8751.64 36.00 8756.29 24.00
Christofides 9 5 0.9 12476.39 41.51 12510.38 32.00 12940.78 21.00
Christofides 10 5 0.9 15992.53 33.42 16020.62 25.00 16393.93 17.00
Christofides 11 5 0.9 5040.46 14.69 5077.50 11.84 5044.01 8.00
Christofides 12 5 0.9 4017.07 8.88 4015.46 7.00 4015.40 5.00
Average 6735.30 27.23 6743.22 21.96 6833.95 15.00

Table 26: TALNS+HR, departure times are shiftable, service frequency=0.9
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