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Abstract

This paper presents a successful application of operations research techniques in guiding
the decision making process to achieve a superior operational efficiency in core activities. We
focus on a rich vehicle routing problem faced by a Portuguese food distribution company on
a daily basis. This problem can be described as a heterogeneous fleet site dependent vehicle
routing problem with multiple time windows. We use the adaptative large neighbourhood
search framework, which has proven to be effective to solve a variety of different vehicle
routing problems. Our plans are compared against those of the company and the impact
that the proposed decision support tool may have in terms of cost savings is shown. The
algorithm converges quickly giving the planner considerably more time to focus on value-
added tasks, rather than manually correct the routing schedule. Moreover, contrarily to
the necessary adaptation time of the planner, the tool is quite flexible in following market
changes, such as the introduction of new customers or new products.

Keywords Vehicle Routing Problem, Adaptative Large Neighbourhood Search, OR in
Industry, Decision Support Systems

1 Introduction

In Portugal, the farm-to-fork associated food industries generate a total sales value of over e10.6
billion and a total services value of e150 million, corresponding to 7.2 percent of the national
gross domestic product (Instituto Nacional de Estat́ıtica, 2011). Within this value chain, half
of the amount comes from the production and the other half from the distribution activities.
Distribution companies face several typical problems, at different hierarchical decision levels.
For example, on a tactical level, the set of logistics providers to select and with which kind of
contract, or on which days the clients should be visited, which is stipulated upon a distribution
calendar contract; on a more operational level, there is the daily problem of designing the
routes to serve customers previously assigned to that day based on their demand orders. This
last problem is the focus of this case-study.

This work studies a real-life problem faced by a Portuguese food distribution company that
supplies a wide range of food solutions for a diverse range of clients. A food solution is defined
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Figure 1: Geographical location of customers in the north filial

as a service that provides a quick response to customer orders for a set of food products. The
vision of the company is to be the best operating in the business in terms of quality and it
wants to achieve high operational efficiency. The company has two distribution platforms with
decentralized operations management and more than 50 multi-temperature vehicles that travel
more than 3 million kilometres per year. With around 15 thousand references of products, it
moves more than 45 thousand tons per year. These food products may be of various types
and in many different quantities. They vary from pallets of beer to small baskets with rice,
milk and potatoes. Despite having more than 200 people working for them and the fact that
the distribution is their core activity, only four people are responsible for the routings as they
heavily rely on the scheduling software. The north filial (the one we are working with) has
in their portfolio around 1570 active clients spread in the north of Portugal (Figure 1). Their
market ranges from primary schools, to prisons, banks and wholesalers.

The distribution business of this company is affected by high seasonality throughout the
year. This situation could demand significant fixed and maintenance costs related to the fleet
management. These costs would be hardly diluted in the operational efficiency, since the com-
pany would need to have a fleet dimensioned for the peak season that would result in a low
return on assets. To overcome such scenario and increase the operational flexibility, the com-
pany decided to contract with a pool of third party logistics providers upper and lower levels
on the number of vehicles of various kinds (in size and compartments) that have to be available
to the company within a twelve hour window. In practice, this means that having customer
orders fixed the day before, the company is able to create the routing plan and know precisely
how many and which type of vehicles are needed from the providers.

By looking at the descriptions of the company and of the main problem under consideration,
it is clear that an optimized daily routing yields a considerable impact in a company that has
as core activity the distribution of food. In fact, a reduction of only 5% in the total distance
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travelled corresponds to 150 thousand fewer kilometers travelled each year. With ever rising
petrol prices the decision made for such an operational tool has certainly strategic impacts.
Through a set of meetings with the company’s employees and executives, five main practical
motivations to carry out this work are found. First, planned routes are almost fixed from day to
day and only small adjustments are performed as the planner sees post-processing opportunities,
resulting in sub-optimal solutions. Second, whenever the senior planner is not at work, the
company plans suffer a considerable quality decrease. Third, this planner has other functions
in the company that are seriously jeopardized by the tremendous amount of time (4 hours per
day on average) that he spends improving the generated plans. Fourth, whenever there is a
disruptive happening in the amount of clients to be dealt with, the planner needs some weeks
to adapt to the new situation and, meanwhile, the plans are not of the same quality. Fifth,
there is a willing to cut distribution costs.

The operational routing problem, which the planner has to deal with, can be seen as an
extension of the vehicle routing problem (VRP). The VRP is a problem in which a set of vehicles
with the same capacity (homogeneous fleet) is initially located at a depot. These vehicles shall
visit a set of customers exactly once and both their locations and demands are known. The
objective is to minimize the total travel costs and/or vehicles used to visit all customers. The
demand fulfilled in each route can not exceed the capacity of the vehicle and all routes have to
end at the depot. The VRP is a NP-hard problem (Savelsbergh, 1985) and to solve real-world
instances approximate solution methods, such as metaheuristics have to be used. The routing
problem faced by the company relaxes several of the assumptions imposed by the traditional
VRP and includes some specific characteristics, making the overall problem more demanding.

The company needs to fulfil customers demand on a daily basis for an assortment of products
of different temperature requirements, categories and quantities. In perishable food distribution
(Amorim et al, 2011), products have different temperature requirements to avoid spoilage during
routing and to conserve the organoleptic proprieties of the products. Basically, the products
can be split into three categories: dry, cold (fresh) and frozen. Therefore, vehicles equipped
with compartments that can be set to different temperatures are employed. Consequently,
the first generalization of the traditional VRP concerns the homogeneity of the fleet. In our
problem, trucks can be divided according to their different temperature compartments in dry
and refrigerated. On one hand, refrigerated trucks are able to carry dry, fresh and frozen
foods (as no problem arises from transporting dry products at lower temperatures) and they
are more expensive to operate. On the other hand, dry trucks can only transport food that
has a stable behaviour at an ambient temperature. For the sake of competitiveness, food
distribution companies, such as the one under study are able to choose upon different types of
vehicles regarding their temperature capabilities. However, this is not the only factor inducing
a heterogeneous fleet. Since customers are not only very heterogeneous in terms of business
activities but also in terms of their accessibility conditions, there is a need for vehicles with
different sizes. There are customers located on the side of the motorway, but others are in the
very inner city center or in rural areas difficult to access. This means that large trucks may
be forbidden to service a certain customer due to the impossibility of accessing the delivery
site. Therefore, the company’s fleet may be catalogued according to the respective temperature
compartments and to the size of the trucks.

The different product categories yielding different temperature requirements enforce an extra
relaxation of the traditional VRP regarding the imposition that each customer may only be
visited exactly once, by one truck (no split-deliveries). In our case study, if a customer demands
both dry and fresh/frozen products, then he may be serviced either by a sole refrigerated truck
carrying all products or by a combination of two trucks where one carries the fresh/frozen
products and the other the dry demand.

There is one more characteristic worth of mention that distinguishes our case study problem
from the traditional VRP. Customers serviced during the day have multiple hard time windows
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to be serviced. Most of the times either customers demand to be serviced early in the morning
(for example, hospitals) or they demand not to be serviced at lunch time (hence, a time window
in the morning and another in the afternoon). There are also customers that demand to be
serviced only at night. In practice the routing for such customers may be done independently
from the day customers, since for servicing the night customers the trucks need to go back to
the warehouse.

According to the proper literature nomenclature, this problem corresponds to a heteroge-
neous fleet site dependent vehicle routing problem with multiple time windows (HF-SD-VRP-
MTW).

Our paper has a threefold contribution. First, a state-of-the-art metaheuristic (the adapta-
tive large neighboorhod search) is adapted to solve a problem that, to the best of our knowledge,
has never been solved in an integrated manner. Second, we show the impact of efficient opera-
tions research techniques in considerably lowering operational costs for business core activities.
Third, we assess and understand the vehicle routing business practice of our case study and
disclose other opportunities to integrate such operational research techniques in similar envi-
ronments.

The remainder of our paper is as follows. In the next section the literature about related
problems is reviewed. In Section 3, a formal mathematical description of the problem at hands
is given and in Section 4 we describe the algorithm used. Thereafter, in Section 5 our results
are compared with the ones obtained by the company’s software. Finally, some conclusions are
drawn in Section 6.

2 Literature Review

In this section we review the literature on food distribution and on VRPs that share common
features with our HF-SD-VRP-MTW.

In Jansen et al (1998) the authors investigate the importance of multi-compartment dis-
tribution for catering companies through simulation. The profile of the customers demand is
very close to our case with a split in dry, fresh and frozen products. However, routing is not
part of their research. The authors conclude that multi-compartment distribution gets more
economical as the number of customers serviced decrease. Mullaseril et al (1997) deal with the
problem of distributing food in a cattle ranch. The problem is formulated with a set of split
delivery capacitated rural postman problems with time windows since different feeds have to
be distributed in different trucks because no compartments exist to separate them. Tarantilis
and Kiranoudis (2001), concentrating on the distribution of fresh milk, formulate the problem
as a heterogeneous fixed fleet VRP. In Tarantilis and Kiranoudis (2002) a real-world distribu-
tion problem of fresh meat is solved as a multi-depot VRP. Faulin (2003) implements a hybrid
method that uses a combination of heuristics and exact algorithms to find a solution of a VRP
with constraints enforcing narrow time windows and strict delivery quantities. According to the
authors, these delivery scenarios are usually the case in the agribusiness industry. Osvald and
Stirn (2008) extend a heuristic proposed in a previous work to solve the problem of distributing
fresh vegetables in which perishability represents a critical factor. The problem was formulated
as a vehicle routing problem with time windows (VRP-TW) and time-dependent travel times.
The objective function minimizes the distance and time travelled, the delay costs for servicing
late a customer and the costs related with perishability. Hsu et al (2007) consider the ran-
domness of the perishable food delivery process and present a stochastic VRP-TW model that
is further extended to consider time-dependent travel times. The problem is then solved by a
heuristic procedure. Chen et al (2009) integrate production scheduling with the VRP-TW for
perishable food products. The price paid by the retailer to the transporter varies as the product
more or less spoils. Afterwards, the integrated model is solved with an iterative scheme in which
the production part is solved using the Nelder-Mead method and the distribution part is solved
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by a constructive heuristic followed by an improvement one. Ambrosino and Sciomachen (2006)
describe a case-study that is rather similar to ours. The company that the authors study is a
food company that has to deliver perishable food through the national highway. Their fleet is
homogeneous and able to carry dry, fresh and frozen products. They formulate the problem
as an asymmetric capacitated vehicle routing problem with split deliveries and use a cluster
first-route second heuristic to solve it.

Through the review on the food distribution literature it is noticeable that most of the
features of our problem were tackled, although in a separated manner. However, the site
dependent and the multiple time windows extensions are yet to be tackled.

Nag et al (1998) are the first to study the site dependent vehicle routing problem (SD-VRP).
In this work several simple heuristics are developed. Chao et al (1999) continue the work on
the SD-VRP by proposing a new heuristic that is both tested on previous and new instances.
Cordeau and Laporte (2001) show that the SD-VRP can be converted into a periodic vehicle
routing problem (P-VRP) and they provide results obtained using a tabu search heuristic for
the P-VRP presented in a previous paper. The vehicle routing problem with multiple time
windows (VRP-MTW) appears to be one of the VRP extensions with less work devoted to it.
Doerner et al (2008) develop exact and approximate algorithms for the pickup of perishable
goods (blood) motivated by a real case of the Austrian Red Cross. In this problem customers
have multiple interdependent time windows. More recently, Bitao and Fei (2010) develop an
ant colony algorithm coupled with local search to solve a problem with the same features.

Summarizing, although most of the current research on the VRP focuses on extensions to
it, there is no single work portraying all together the characteristics of our problem.

3 Problem Statement and Mathematical Formulations

The notation and formulations used in this section are based on the VRP-TW formulation
proposed by Cordeau and Laporte (2001).

In our company’s problem, a set K of different fixed capacity vehicles k = 1, ...,m, initially
located at a depot, are available to deliver perishable food goods to a set N of customers
i, j = 1, ..., n through a set of arcs A. The problem is defined on a directed graph G = (V,A),
with V = N ∪ {0, n + 1}, where the depot is simultaneously represented by the two vertices 0
and n+ 1 and, therefore, |V | = n+ 2. Hence, we use the word vertices to refer to all nodes in
the network and customers when we are excluding the vertices related with the depot. Each
possible arc (i, j) has an associated time and distance. Since we have as input real data for time
and distance (see Section 5) based on the Portuguese road network (differentiating between
highways and national roads and prioritizing time over distance when finding the path between
two vertices), the triangular inequality does not hold in terms of distance, however, it holds in
terms of time. Hence, although travelling from i to j is always faster, than passing by customer
c in between. It is not true that travelling from i to j is necessarily shorter, than passing
intermediately through customer c. Each customer has a demand that needs to be satisfied for
a certain number of products that may be dry, fresh or frozen. Moreover, customers want their
requests available within hard time windows that can be more than one throughout the day
and they need a certain time to be served that is dependent on the demand.

A feasible solution for this problem implies a collection of routes that correspond to paths
starting at vertex 0 and ending at vertex n+1. These routes have to ensure that each customer
is visited exactly once by one of the vehicles allowed for the service, satisfying simultaneously
its demand and time windows. Furthermore, the cumulative demand of all customers that each
vehicle serves can not exceed its capacity.

In order to have such a definition for a feasible solution and to decrease the complexity of
the mathematical formulation, three preprocessing steps are performed. Firstly, service times
are assumed to be function of the demand of each client. Hence, for each 100 kg that have to be
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delivered at a customer, 5 minutes are needed. As the demand is known before performing the
routing, all service times can be calculated beforehand. Secondly, regarding the site dependency
characteristic of the problem some adjustments may also be performed. Let Kti denote the set
of vehicles that are able to serve i regarding its demand temperature requirements and Kli
denote the set of vehicles that are able to serve i regarding its accessibility conditions. In the
preprocessing it is possible then to find Ki = Kti ∩ Kli as the set of vehicles able to serve i.
Thirdly, because vehicles can either transport only dry products or products of all temperature
requirements, the company is able to gain some extra flexibility in the search space and, thus, a
potential improvement in the objective function, by allowing a customer to be serviced by two
vehicles if he requires dry and fresh and/or frozen products. This is a particular case of split
delivery where one allows a client to be serviced by different trucks depending on the demanded
temperature requirements. However, each delivery has to contain all the demand for a certain
temperature requirement. Our procedure to tackle this situation in the preprocessing is as
follows: if customer i has demand for both dry and either fresh and/or frozen products, then
this customer is split into i′ and i′′. These two new dummy customers have the same location as
i. The demand of i′ adds up for all dry products and the demand of i′′ aggregates the demand
for fresh and frozen products. Service times for these dummy customers are calculated based
on the split demand. Customer i′ has no special requirements regarding vehicle temperature
compartments, i.e. Ki′ = Kli. However, for i′′ we have Ki′′ = Kti′′ ∩Kloci. Thus, i′ and i′′

can be serviced at the same time by the same vehicle if it carries the dry products along with
the fresh and frozen ones. Alternatively, it may be serviced by different trucks: one carrying
the dry products and the other the remaining products.

The goal of the company is to minimize total costs. These costs correspond to variable
travel costs, renting vehicle costs and driver costs. Regarding driver costs these are calculated
based on the route duration. The logistic provider delivers each vehicle with a driver that can
drive up to the regulated 8 hours. If the total time of a route surpasses such legal limit, a new
driver has to accompany the main one yielding an extra cost.

We are now able to define the mathematical formulations for the HF-SD-VRP-MTW. We
use the following indices, parameters, and decision variables.

Indices

k vehicles
i, j vertices after preprocessing
v time windows

Sets and Parameters

Ki set of vehicles able to serve vertex i
TWi set of time-windows on vertex i

Ck Capacity of vehicle k
si service time of customer i
tdij(ttij) travel distance (time) from customer i to customer j
vck variable travel cost associated with vehicle k
fck daily fixed cost for subcontracting vehicle k
avi starting time of time window v at customer i
bvi finishing time of time window v at customer i
di demand of customer i
dd cost of having two drivers for the same vehicle k
ah allowed hours for each driver to work
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Decision Variables

xkij takes on 1, if arc (i, j) is used by vehicle k (0 otherwise)

wki time at which the vehicle k starts servicing vertex i
uvi takes on 1, if customer i is visited in time-window v (0 otherwise)
ek takes on 1, if vehicle k requires an extra driver (0 otherwise)

Let δ+(i) = {j : (i, j) ∈ A} and δ−(j) = {i : (i, j) ∈ A} denote the set of successors and pre-
decessors of i and j, respectively. The model Fday for finding the optimal routes for customers
serviced during the day is as follows:

Fday = min
∑

(i,j)∈A

∑
k∈Ki∩Kj

vck tdij x
k
ij +

∑
k∈K

fck(1− xk0,n+1) +
∑
k∈K

dd ek (1)

subject to:

wkn+1 − wk0 ≤ ah(ek + 1) ∀k ∈ K (2)

∑
k∈Ki

∑
j∈δ+(i)

xkij = 1 ∀i ∈ N (3)

∑
j∈δ+(0)

xk0j = 1 ∀k ∈ K (4)

∑
i∈δ−(j)

xkij −
∑

i∈δ+(j)

xkji = 0 ∀j ∈ N, k ∈ Kj (5)

∑
i∈δ−(n+1)

xki,n+1 = 1 ∀k ∈ K (6)

wki + si + ttij − wkj ≤ b00(1− xkij) ∀(i, j) ∈ A, k ∈ Ki ∩Kj (7)

∑
v∈TWi

uvi a
v
i ≤ wki ≤

∑
v∈TWi

uvi b
v
i ∀i ∈ V, k ∈ Ki (8)

∑
v∈TWi

uvi = 1 ∀i ∈ V (9)

∑
i∈N

∑
j∈δ+(i)

dix
k
ij ≤ Ck ∀k ∈ K (10)

xkij , u
v
i , e

k ∈ {0, 1}; wki ≥ 0. (11)

Objective function (1) minimizes the total cost involved in the daily routing. Since the
fleet is completely outsourced it is possible to measure accurately the cost of the routing plan.
Depending on the vehicle there is a variable cost related with the distance travelled, a fixed
cost related with each vehicle used and, finally, a cost for having trips that are long enough to
require two drivers.

In equation (2) the need for the extra driver is assessed through the allowed hours ah
that each driver can work. Constraints (3) ensure that each customer is visited exactly once.
Equations (4)-(6) establish the flow of each vehicle. Hence, every vehicle has to leave the depot
and return to it by passing through the customers it is designed to serve. A vehicle can only
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start servicing a customer after having finished servicing the previous customer and after the
time spent on traveling from the previous to the current customer (7). In equation (8) the start
of the customer service is forced to be in between one of the multiple customer time windows.
However, at each customer only one of the possible time windows may be used (9). Constraints
(10) ensure that the different vehicle capacities are respected. To be more accurate both weight
and volume constraints should exist in such model. However, due to the lack of reliable data,
only weight requirements are considered (a practice also done by the company).

In order to model the problem of serving the night customers, a new parameter nc to ac-
count for the extra-cost of having a driver at night has to be defined. In terms of the solution
space, this problem is rather the same as the one for the day customers except for the fact that
the night customers do not have multiple time windows and trips require no extra drivers. The
night model (Fnight) is formulated as:

Fnight = min
∑

(i,j)∈A

∑
k∈Ki∩Kf

vcktdijx
k
ij +

∑
k∈K

nc(1− xk0,n+1) (12)

subject to:

(3) - (7), (10)

ai ≤ wki ≤ bi ∀i ∈ V, k ∈ Ki (13)

xkij ∈ {0, 1}; wki ≥ 0. (14)

The objective function of Fnight differs considerably from the one of Fday. In (12) we aim at
minimizing the travel costs for the different vehicles, but the fixed costs are no longer dependent
on the vehicle (since it was already paid for in the day shift) but just upon the night usage.

One could have opted for a single model to tackle the complete routing problem involving day
and night customers. However, through the splitting of the models we achieve a considerable
reduction in the problem size without jeopardizing optimality. Only in the case where Fday
does not contain the best trucks to be used at night, the decoupled models would not guarantee
the same optimal solution as an integrated approach. However, due to the reasonably low
heterogeneity of the fleet and the difference of magnitude between the number of day and night
customers (day >> night) this situation will never occur.

4 Solution Method

In order to solve various types of vehicle routing problems, a wide variety of solution methods
have been developed. In our case, we want a flexible metaheuristic that is able to incorporate all
the specificities of our problem and delivers reasonable results in short computation time. Gen-
dreau and Potvin (2010) acknowledge that the adaptative large neighbourhood search (ALNS)
framework introduced in Ropke and Pisinger (2006b) is able to obtain equal or better results
for a wide variety of routing problems compared to existing algorithms. In Pisinger and Ropke
(2007) very good results are reported for different classes of the VRP. Within the extensions
tested some characteristics are coincident with features of our problem. The relevant problems
are the VRP, the VRP-TW, and the SD-VRP.

Our algorithm is based on the ALNS developed by Kovacs et al (2012) for service technician
routing and scheduling problems, incorporating site-dependent aspects due to skills and skill
level requirements of the tasks. For specific details the readers are referred to this manuscript.
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For the sake of self-containedness we present here only the key blocks and ideas and the modi-
fications we made with respect to the original algorithm.

Algorithm 1 outlines the ALNS framework. First, a feasible solution s is generated. This
solution may easily be generated because we allow some customers not to be serviced (unassigned
customers included in set N0) at a given penalty cost. In every iteration, a destroy-repair
heuristic pair (d, r) is chosen based on its respective score and weight obtained in previous
iterations. Second, the destroy operator of the chosen pair is used to remove customers of the
incumbent solution and places them into the set of unassigned customers. Third, the repair
operator r takes unassigned customers and inserts them into the routes. If the new solution s′

meets the acceptance criteria, then it replaces s. If it is better than the best solution found
so far, it replaces s∗. Finally, scores and weights (ψdr and ρdr) are updated and the algorithm
proceeds to the next iteration. This is repeated until the stopping criterion is met.

Algorithm 1 Pseudo-code of the ALNS framework

generate a feasible solution s
set s∗ := s
repeat

choose a destroy-repair heuristic pair (d, r) based on adaptative weights ρdr
generate s′ from s applying (d, r)
if s′ better than s∗ then

set s∗ := s′

set s := s′

else if s′ complies with the acceptance criteria then
set s := s′

end if
update scores ψdr and weights ρdr

until stopping criterion is met
return s∗

In the next subsections, the different destroy and repair operators, the used acceptance
criteria, and how a destroy-repair heuristic pair is chosen are briefly presented.

4.1 Destroy Operators

Kovacs et al (2012) use four destroy operators, namely a random removal, a worst removal, a
related removal, and a cluster removal operator. They are all based on operators introduced
by Ropke and Pisinger (2006b) and Pisinger and Ropke (2007). In every iteration the number
of customers u to be removed from the different routes is chosen randomly from the interval[
0.1|N −N0|, 0.4|N −N0|

]
.

The random removal operator removes u customers randomly from their routes. The worst
removal operator removes u customers from the different routes biasing the selection towards
customers that are not well inserted in terms of their distances from their current direct prede-
cessor and successor customer locations. The related removal operator removes related requests.
Since we consider vehicle capacities, we do not resort to the same relatedness measure as Ko-
vacs et al (2012) but we use the relatedness measure of Pisinger and Ropke (2007), combining
distance, time and load terms,

Rij = αtdij + β|wi − wj |+ γ|di − dj |.

Their respective weights are set to α = 9, β = 3, γ = 4 (Pisinger and Ropke, 2007). Finally,
the cluster removal operator removes customers forming a cluster. Each selected route is split
into two clusters through the computation of a minimum spanning tree where the longest arc
is removed. Entire clusters are removed until the number of removed customers ≥ u.
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4.2 Repair Operators

Following Kovacs et al (2012), we use six different insertion heuristics in terms of repair oper-
ators: a greedy insertion heuristic, four regret heuristics, and a sequential insertion heuristic.
The greedy heuristic repeatedly inserts a customer from the set of unassigned customers at the
cheapest feasible position. This is repeated either until all customers have been inserted or no
more customers can be inserted maintaining feasibility. Regret heuristics improve the greedy
heuristic described above, by integrating look ahead information when selecting customers to
insert. Let ∆k

i denote the change in the objective value for inserting customer i at its best po-
sition in its k-cheapest route. In each iteration, the regret heuristic chooses the next customer
i to be insert as follows:

i := arg max
i∈N0
{
min(q,m)∑
k=2

(∆k
i −∆1

i )}

depending on the chosen value of q. We use q ∈ {2, 3, 4,m}. The parameter m denotes the
number of routes currently available for insertion. The sequential insertion heuristic corresponds
to the I1 heuristic of Solomon (1987). It estimates the benefit coming from servicing a customer
on the selected route rather than being serviced on a single customer tour.

Our objective function does not only incorporate distance based costs. The insertion of an
additional customer into an existing route may also increase the number of necessary drivers.
Therefore, we approximate the actual insertion costs by adding the costs for an additional driver
in the case where the current duration of the route plus the additional time needed to service
the respective customer exceeds the maximum duration of a single driver.

Furthermore, instead of a single time window at each customer location, we consider multiple
time windows. Therefore, in order to check the feasibility of an insertion, we sequentially check
time window feasibility at each customer that is serviced after the prospective insertion position
of the new customer with respect to all available time windows.

4.3 Acceptance Criteria

As in Ropke and Pisinger (2006a), the destroy and repair operators are embedded into a simu-
lated annealing framework. Hence, a solution s′ is accepted if it is better than s. If s′ is worse, s′

replaces s with a probability of e(f(s
′)−f(s))/t̂. The parameter t̂ denotes the current temperature.

4.4 Choosing a destroy-repair heuristic pair (d, r)

Instead of using separate scores and weights for each destroy and each repair operator, we use
scores and weights for pairs of operators as in Kovacs et al (2012). Every combination out of
the set of destroy and repair operators is used. The probability for choosing an operator pair
is proportional to ρdr for each destroy-repair pair (d, r). To understand the computation of the
weights, let us consider nd and nr as the respective number of destroy and repair heuristics
implemented. First, the probability φdr of choosing a given pair is calculated as follows:

φdr =
ρdr∑nd

d′=1

∑nr
r′=1 ρd′r′

.

One pair is chosen in every iteration of the ALNS algorithm using roulette wheel selection.
Based on the scores obtained, the weights are adjusted dynamically during the search. In the
beginning, the weights ρdr of all heuristic pairs are set to one and the scores ψdr are set to zero.
At the end of every iteration the scores ψdr of the employed heuristic pair (d, r) are updated as
follows: ψdr + σ1, if the destroy-repair heuristic pair gives a solution that improved the global
best solution s∗; ψdr + σ2, if the destroy-repair heuristic pair gives a solution that was not
visited before and improved the incumbent solution s; ψdr + σ3, if the destroy-repair heuristic
pair gives a solution that was not visited before and was accepted as the new incumbent solution
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s, although it was worse; otherwise the value stays the same. Following Ropke and Pisinger
(2006b) and Kovacs et al (2012), the parameters are set to σ1 = 33, σ2 = 9, and σ3 = 13. Every
100 iterations, the weights are updated based on the current scores and the scores are reset to
zero.

5 Experimental Analysis and Comparison with Company’s Prac-
tice

The company of our case study relies on a routing software to partially obtain their routes. This
routing software is connected to the company’s Enterprise Resource Planning (ERP) system
and it receives all orders for the next day. It disposes of a database which contains the fixed
customer data, such as geographical location, vehicle typologies and allowed time windows. To
obtain a routing plan for the next day, the software is run for about 10 minutes and retrieves a
solution that is then refined by the company’s dispatching expert. The software uses as main
optimization input a set of predefined routes defined by the planner based on his expertise.

Regarding our solution method, a main data problem regarding the travel times and dis-
tances was found. Since the routing software only had Cartesian coordinates for the customers
and, unfortunately, we could not access its distance matrix, we recurred to Google Maps in
order to calculate both travel times and distances. In that sense, a C++ program that uses
the Google Maps API was created in order to build the complete distance matrix. To feed the
program the actual addresses of each client are used and we adopted as preference prioritizing
motorways over small streets. The remaining data was simply compiled, because the company
has the distribution operation completely outsourced and, therefore, vehicle costs, extra drivers,
etc. were easily obtained and left no gap for subjective interpretations of the final results. This
together with the use of real distances was very important in convincing the company of the
validity of the generated plans.

Our decision support system is to replace the software used to determine the routing. The
inputs are loosely the same as it is connected to the ERP to get all orders for each customer
and it has an internal database, configurable through Excel, to feed static data, such as allowed
customer time windows, customer addresses and vehicles availability. The planner has no op-
tions to configure and as the algorithm is run, he gets as output the generated routes with its
operational and cost indicators. After a validation, this output data is fed back to the ERP so
it can handle the next steps.

In order to compare the impact of our automatically generated solutions with the plans of
the company we used two peak days from the high season. The first instance contains 350
customers to be serviced (see Figure 2) and the second one 366 (see Figure 3).

In Tables 1 and 2, the detailed results for the first instance according to the company’s plans
and to the plans generated by the ALNS (in about 10 minutes) are presented, respectively. Three
key operational indicators are worth of notice. Firstly, the average capacity utilization rises in
the generated plans from 74% to 86%. Secondly, although each route takes more time to be
completed in our plan, the average distance travelled per route decreases. Finally, a better
utilization of the drivers’ 8-hour working windows is notorious. In Figure 4 a graph plotting
the different costs for both plans is given. The cost advantage that the automated routing
generates is clear from the graph. From the three costs adding to the total cost: fixed vehicle
costs, variable vehicle cost and extra driver cost, it is the variable vehicle cost that contributes
the most to the obtained cost reduction. This fact relates very much to the gain of operational
efficiency already mentioned regarding the decrease on the kilometres travelled by each truck.

In Figure 5 the total costs for both instances and both plans are plotted. Within these two
instances the cost relation between the generated and the company’s plans is stable. Overall, the
ALNS plans were able to raise the vehicle utilization from 75% to 89% allowing for a decrease
in the number of vehicles used. Since the company’s plans were based on loosely fixed routes,
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Figure 2: Geographical location of customers in the first instance

Figure 3: Geographical location of customers in the second instance
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Table 1: Detailed company’s plan aggregated by route for the first instance.
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1 22 8700 6821 78% 6:23 183 138 93 0
2 12 6500 5131 79% 16:05 503 167 317 78
3 14 6500 6051 93% 12:54 403 167 254 78
4 15 6500 5208 80% 11:21 327 167 206 78
5 9 6500 3721 57% 7:18 286 178 109 0
6 12 6500 5012 77% 9:28 224 138 114 78
7 12 6500 5241 81% 8:28 204 167 129 78
8 17 6500 5201 80% 9:08 241 167 152 78
9 18 6500 5464 84% 9:11 222 167 140 78
10 20 6500 4666 72% 9:14 145 167 91 78
11 15 6500 3129 48% 9:02 122 178 47 78
12 12 3950 3706 94% 17:11 704 135 422 78
13 13 3900 1587 41% 10:20 442 135 265 78
14 19 3900 2939 75% 5:37 69 135 42 0
15 23 3900 3560 91% 6:46 61 135 37 0
16 25 3950 3063 78% 6:11 163 135 98 0
17 23 4200 3200 76% 7:21 151 165 83 0
18 29 5450 3361 62% 8:22 177 165 97 78
19 26 3950 2472 63% 6:31 107 135 64 0
20 12 3950 3489 88% 6:43 215 135 129 0
21 2 2500 487 19% 2:14 47 135 28 0

Average 17 5398 3977 74% 8:50 238 153 139 44
TOTAL COST e7050
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Table 2: Detailed plan generated by the metaheuristic aggregated by route for the first instance.
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1 8 6500 4996.88 77% 7:11 58 167 37 0
2 19 6500 6316.22 97% 11:06 206 167 130 78
3 19 6500 6298.05 97% 12:22 349 167 220 78
4 17 6500 5236.53 81% 14:19 418 167 263 78
5 7 6500 5629.71 87% 7:57 191 167 120 0
6 14 6500 6310 97% 12:09 276 167 174 78
7 24 3950 3478.43 88% 7:55 113 135 68 0
8 21 3950 3125.56 79% 7:57 76 135 46 0
9 19 3950 3436.37 87% 7:38 143 135 86 0
10 25 3950 3713 94% 7:40 77 135 46 0
11 23 3950 3836 97% 7:50 258 135 155 0
12 29 3950 2686 68% 7:54 97 135 58 0
13 18 3950 3857.22 98% 7:58 127 135 76 0
14 15 3950 3603.98 91% 6:43 53 135 32 0
15 20 3950 3389.69 86% 7:45 100 135 60 0
16 11 800 723.09 90% 3:57 115 103 48 0
17 15 5400 4576.97 85% 10:17 217 165 119 78
18 12 4200 3391.43 81% 5:44 61 165 34 0
19 17 6500 4382.13 67% 19:29 430 178 163 78
20 17 6500 5589.07 86% 16:19 651 178 247 78

Average 18 4898 4229 86% 9:30 201 150 109 27
TOTAL COST e5722
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Figure 4: Comparison of both plans for all cost factors in the first instance.

demand consolidation in order to augment vehicle capacity utilization was harder to perform.
The total distance travelled per day is reduced considerably in the order of 1200 kilometres.
This is a very important achievement since variable vehicle costs account for most of the bill.
Furthermore, with the increasing prices of oil derivatives the tendency is to see these costs
rising in new contracts. Finally, we can expect that in the peak season the daily out-of-pocket
savings can ascent to 1200 euros. By the end of the year these savings may have an interesting
impact on the company’s operating income, considering also the fact that the south filial of
the company faces the same problem with a similar number of customers and a similar routing
methodology.

Overall, the ALNS plans are able to reduce the consolidated costs per vehicle, which is a
very important indicator for the company’s top management, by almost 20% (from 350 to 286).
Most of the cost reduction is achieved through a much better routing that consolidates more
demand and delivers every product in a lower total distance. This kind of plan is hard to grasp
and unveil by using common sense analysis.

The new plans have spillover effects that go beyond the cost reduction. Firstly, this method-
ology enforces every hard requirement to be met. From multiple time windows to site dependent
vehicles, there are no operational constraints that are not respected. Previously, with the heavy
manual planning some hard constraints were softened. This exigency and the extra flexibility
achieved that allows an adaptation to increasingly changing market conditions, leverage cus-
tomer satisfaction and, ultimately, customer loyalty. Secondly, the reduction on the amount
of kilometres travelled per day may yield a better relationship with the third party logistics
providers. The wear of the vehicles is to be reduced with this methodology and this may result
in overall better results for these providers.

6 Conclusions

In this work we present a real world vehicle routing problem faced by a food distribution
company in Portugal. The literature is rich in tackling sparse characteristics of these problems
and, therefore, some of the extensions already addressed were gathered in order to formally
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Figure 5: Comparison of both plans for the two instances.

identify the problem as a heterogeneous fleet site dependent vehicle routing problem with multiple
time windows. Vehicle routing problems are known to be NP-hard and to solve real-world
instances, metaheuristics are recommended. Since this specific problem has never been solved
we chose to use a very general search procedure that has proven to deliver very good results for
different vehicle routing related problems – the ALNS framework.

The direct impact of this tool is an average cost reduction for the company of about 17%
in the distribution task at peak seasons. These savings are mainly achieved through a bet-
ter capacity utilization of the vehicles and a reduction on the distance travelled to visit all
customers. However, the advantages of the introduction of this decision support system go
beyond the optimized routes. Hence, the related gains can be aligned in three axes: human
resources optimization, improved reactivity of the company, stakeholders’ satisfaction increase.
The automatic decision support system provides a much better starting point for the planner’s
adjustments and reduces drastically the daily amount of time that this employee had allocated
to such task. The tool is able to react to any new major development, such as the introduction of
more customers. This ability is independent of the expertise of the user and may also allow the
administration to simulate the operational impact of a major change, such as accepting to serve
a client that is usually out of its acceptance range. Moreover, as every customer requirement is
satisfied with certainty and the vehicles will be subject to less wear, an increase in stakeholder
satisfaction is expected.

Since the tool is able to handle diverse routing extensions, it should be easy to roll-out to
other companies facing similar real-world problems. Of course, the most straightforward step
would be to go to other companies having a similar business model. Catering companies seem
also a natural extension as they also handle different types of vehicles and exigent customers
with several requirements. Nevertheless, the potential savings are of a lower magnitude as the
amount and intensity of the deliveries is not the same. Other companies to which this approach
could be rolled-out may be found in the waste collection business or big food producers that
have their distribution process internalized.
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