
Defect-based local error estimators for high-order splitting

methods involving three linear operators

Winfried Auzinger · Othmar Koch ·
Mechthild Thalhammer

The �nal publication is available at Springer via http://dx.doi.org/10.1007/s11075-015-0032-4.

Abstract Prior work on high-order exponential operator splitting methods is extended

to evolution equations de�ned by three linear operators. A posteriori local error esti-

mators are constructed via a suitable integral representation of the local error involv-

ing the defect associated with the splitting solution and quadrature approximation

via Hermite interpolation. In order to prove asymptotical correctness, a multiple in-

tegral representation involving iterated defects is deduced by repeated application of

the variation-of-constant formula. The error analysis within the framework of abstract

evolution equations provides the basis for concrete applications. Numerical examples

for initial-boundary value problems of Schrödinger and of parabolic type con�rm the

asymptotical correctness of the proposed a posteriori error estimators.
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1 Introduction

Evolution equations with the right-hand side composed of three vector �elds natu-

rally suggest splitting into three operators. Relevant examples are for instance given

by reaction�di�usion�advection equations. Applications �elds where this type of prob-

lems appears are, for instance, chemical reactor theory [1], �shery [2], or population dy-

namics [3]. Furthermore, dimensional splitting into three operators may promise com-

putational advantages in the numerical solution of nonlinear Schrödinger equations.
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For a recent overview on related numerical methods for (rotating) multi-component

Bose�Einstein condensates we refer to [8], see also earlier work [4�7].

The generalization of the simplest splitting schemes (�rst-order Lie�Trotter split-

ting, second-order Strang splitting) to more than two operators is straightforward.

Higher-order schemes can be constructed via composition. The construction of opti-

mized higher-order schemes requires the solution of a nonlinear system of order condi-

tions as for instance described in [9].

Given a splitting scheme involving three operators, our objective is to construct a

practical local error estimator and to prove its asymptotical correctness. To this end the

defect-based approach developed in [9,11�13] is extended to the case of three operators.

This idea is rather universally applicable to one-step schemes, and it is of particular

interest in the present context because other ways of estimating the error, for example

using pairs of embedded formulas as proposed in [10], are di�cult to realize and tend

to be ine�cient whenever three sub-operators are involved and higher-order schemes,

e.g. of order p = 4, are considered.

The motivation for our investigations is attributed to the fact that robust strategies

for step-size adaptation according to the local error estimators are vital for the e�cient

time integration of evolution equations. To this end, reliable estimation and control of

the local splitting error is necessary. The practical issues of adaptive time-stepping will

not be addressed here, however.

To create a framework for this nontrivial extension of our prior approach [9,11�13],

we consider an abstract linear evolution equation where the operator on the right-hand

side is split into three parts,{
u′(t) = Hu(t) = Au(t) +Bu(t) + Cu(t) , t ≥ 0 ,

u(0) given,
(1.1)

and where the exact �ow

EH(t)u = etHu (1.2)

is approximated, over a time increment t > 0, by an s - stage exponential splitting

method of the form

S(t)u = Ss(t)Ss−1(t) · · · S1(t)u, (1.3a)

with sub�ows

Sj(t) = ECj
(t)EBj

(t)EAj
(t) = etCj etBj etAj . (1.3b)

Here, we denote

Aj = ajA, Bj = bjB, Cj = cjC , (1.3c)

with appropriate real or complex coe�cients
(
aj , bj , cj

)s
j=1

.

As a �rst step, we deduce an exact representation of the local error operator

L(t) = S(t)− EH(t) , (1.4)

which subsequently serves as the basis for the construction and analysis of a posteriori

local error estimators in particular application cases. For this purpose we extend our

investigations from [13] (particularly Section 6) where the case of splitting into two

suboperators was considered. In [13] the rich combinatorial structure of the local error

was studied, and estimates for the local error have been obtained in a recursive way.

For the case of three operators, an even more complex combinatorial structure emerges

which we describe in detail. As this structure cannot be reduced to the case of two
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operators, an extended framework for the analysis needs to be created. We provide

a complete analysis for linear problems; the general ideas related to the local error

structure and a posteriori error estimation are the same in the nonlinear case, but

technicalities abound, see for instance the discussion of splitting into two operators

in [11].

Within our abstract setting we are not speci�c about the underlying function

spaces. We tacitly assume that all occurring operations are well-de�ned. The notation

O(·) is to be understood in the sense that the stated order holds assuming boundedness

of the quantities appearing in the error constants.

The paper is organized as follows: In Section 2 we describe the general setting and

give some remarks on order conditions. In Section 3 we list examples of lower order

schemes and their properties. Section 4 is devoted to a representation of the local er-

ror for the �rst-order Lie�Trotter splitting method and serves to indicate the general

approach. In Section 5 we give a detailed analysis of the recursive combinatorial struc-

ture of the local error for general higher-order multi-composition methods. A related

a posteriori error estimator is studied in Section 6; in particular it is demonstrated that

this estimator is asymptotically correct under natural regularity requirements. Com-

ments on the practical realization and the extension to nonlinear evolution equations

are included in Section 7. Numerical examples for initial-boundary value problems of

Schrödinger and of parabolic type con�rming asymptotical correctness of the a poste-

riori local error estimators are �nally given in Section 8.

2 Problem setting and notation; the order of a splitting method

2.1 Notation and preliminaries

For the sake of brevity we often omit the argument t if the context allows. We write

Sj = S
[0]
j , S = S[0] . (2.1)

Let

Vj = V
[0]
j := EAj

, Wj =W
[0]
j := ECj

EBj
, (2.2)

such that S[0]j =W [0]
j V

[0]
j .

Introducing the defect operator

δ(X ) = d
dtX −HX , (2.3)

the exact evolution operator EH(t) satis�es δ(EH) = 0. For j = 1 . . . s, let

δj(Xj) := d
dt Xj − (Aj +Bj + Cj)Xj , (2.4a)

ρj(Xj) := d
dt Xj −AjXj , (2.4b)

σj(Xj) := d
dt Xj −XjBj − CjXj . (2.4c)

We denote
H0 := 0 ,

Hj := Aj +Bj + Cj , j ∈ {1, . . . , s} .
(2.5)
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Since Aj +Bj and A+B often occur, we write

Dj = Aj +Bj , D = A+B . (2.6)

Furthermore, let

Hj := H1 + . . .+Hj−1 , j ∈ {1, . . . , s} . (2.7)

We also de�ne a family of iterated commutators by

A
[0]
j := Aj , B

[0]
j := Bj , C

[0]
j := Cj , (2.8a)

and recursively for k ≥ 1,

A
[k]
j := [A

[k−1]
j , Hj ] , B

[k]
j := [B

[k−1]
j , Hj+Aj ] , C

[k]
j := [C

[k−1]
j , Hj+Hj ] . (2.8b)

2.2 Order of the local error, order conditions

Via Taylor expansion of the local error operator L(t), asymptotic order p is character-

ized by
d
dt L(0) =

d2

dt2
L(0) = . . . = dp

dtp L(0) = 0 , (2.9a)

and for a scheme of order p the leading term of the local error is given by

L0(t) := tp+1

(p+1)!
dp+1

dtp+1 L(0) = O(tp+1) , (2.9b)

such that L(t) = L0(t) + O(tp+2). According to [9], for a general splitting method of

order p the leading term L0(t) has a special structure, namely

L0(t) = linear combination of p - th iterated commutators of A,B,C , (2.10)

with coe�cients independent of the given problem. As described in [9], this can be used

to set up a recursive algorithm for the generation of order conditions. Furthermore, for

a given scheme of order p, the coe�cients in the linear combination (2.10) can then be

computed from the conditions for order p+ 1.

In the following, we do not discuss order conditions or the construction of higher-

order schemes in detail. In the next section we list some particular schemes as illustra-

tive examples.

2.3 Integral representation of the local error via the defect of the splitting

approximation

With the defect1

D = S[1] = δ(S[0]) = d
dt S

[0] −H S[0] (2.11)

of the splitting operator S[0] with respect to the given evolution equation, we obtain

a �rst, basic integral representation of the local error via the variation-of-constant

formula,

L(t) =
∫ t

0

EH(t− τ)D(τ)dτ . (2.12)

In Section 5, the integral (2.12) will be expanded into a multiple integral over higher-

order defect terms, re�ecting the precise order of the scheme.

1 Similarly as S = S[0], D = S[1] is a natural and consistent notation for the defect D.
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3 Schemes of orders 1, 2, and 4

We list some basic facts about lower-order schemes and their local error structure.

These results have been obtained by means of an implementation (in Maple 182) of

the algorithm described in [9].

3.1 First-order Lie�Trotter splitting method

For s = p = 1 we have

S = EC EB EA , (3.1)

and the leading term of the local error is

L0(t) = t2

2

(
[B,A] + [C,A] + [C,B]

)
.

3.2 Second-order Strang splitting method

Formally, the standard second-order splitting method involves three compositions com-

prising 5 evaluations of exponentials: For s = 3, i.e.,

S = S3 S2 S1 = EC3
EB3
EA3
· EC2

EB2
EA2
· EC1

EB1
EA1

, (3.2)

and p = 2, the choice of coe�cients according to

a1 b1 c1 a2 b2 c2 a3 b3 c3

0 0 1
2 0 1

2 0 1 1
2

1
2

yields the symmetric Strang splitting method in the form

S = EC/2 EB/2 EA EB/2 EC/2 (3.3a)

= EC/2 EB/2 EA/2 · EA/2 EB/2 EC/2 . (3.3b)

The leading term of the local error reads

L0(t) = t3

6

(
λ1 [A, [A,B]] + λ2 [A, [A,C]] + λ3 [B, [A,B]] + λ4 [C, [A,B]]

+ λ5 [B, [A,C]] + λ6 [C, [A,C]] + λ7 [B, [B,C]] + λ8 [C, [B,C]]
)
,

with the following coe�cients:

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8
1
2

1
2

1
4 − 1

2 1 1
4

1
2

1
4

2 Maple is a trademark of Maplesoft, Inc.
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3.3 Second-order splitting method, complex coe�cients with positive real parts

For s = 2, i.e.,

S = S2 · S1 = EC2
EB2
EA2
· EC1

EB1
EA1

, (3.4)

and p = 2 we obtain a pair of complex solutions with positive real parts,

a1 = b1 = c1 = 1
2

(
1− i

)
, a2 = b2 = c2 = 1

2

(
1 + i

)
, (3.5a)

and

a1 = b1 = c1 = 1
2

(
1 + i

)
, a2 = b2 = c2 = 1

2

(
1− i

)
. (3.5b)

The leading term of the local error for (3.5a) reads

L0(t) = t3

6

(
λ1 [A, [A,B]] + λ2 [A, [A,C]] + λ3 [B, [A,B]] + λ4 [C, [A,B]]

+ λ5 [B, [A,C]] + λ6 [C, [A,C]] + λ7 [B, [B,C]] + λ8 [C, [B,C]]
)
,

with the following coe�cients:

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8
1
4 (−1+3i) 1

4 (−1+3i) 1
4 (1+3i) 1 1

2 (−1+3i) 1
4 (1+3i) 1

4 (−1+3i) 1
4 (1+3i)

3.4 Higher-order splitting methods

Construction by composition A straightforward approach for the construction of higher-

order splitting methods relies on composition. For instance, a fourth-order scheme can

be constructed by symmetric composition of three steps with S = S(t) from (3.3), i.e.,

Scomp(t) = S(γ3 t)S(γ2 t)S(γ1 t) , (3.6a)

and with the `triple jump' coe�cients (see [14])

γ1 = γ3 =
1

2− 21/3
≈ 1.351207191959658 ,

γ2 = − 21/3

2− 21/3
≈ −1.702414383919315 .

(3.6b)

This results in a symmetric method with 9 compositions and coe�cients according to

a1 b1 c1 a2 b2 c2 a3 b3 c3

0 0 γ1
2 0 γ1

2 0 γ1
γ1
2

γ1
2

a4 b4 c4 a5 b5 c5 a6 b6 c6

0 0 γ2
2 0 γ2

2 0 γ2
γ2
2

γ2
2

a7 b7 c7 a8 b8 c8 a9 b9 c9

0 0 γ1
2 0 γ1

2 0 γ1
γ1
2

γ1
2
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Since the sub�ows involving c3, c4 and c6, c7 can be combined into single sub�ows

involving c3 + c4 and c6 + c7, this method requires 13 evaluations of sub�ows.

For certain applications, in particular parabolic problems, we require (complex)

coe�cients with positive real parts. This is accomplished by choosing the composition

coe�cients γj in (3.6a) as complex with real parts, see [15].

For a method of order p = 4, the leading term of the local error reads

L0(t) = t5

120

48∑
k=1

λkKk , (3.7)

with computable coe�cients λk and 48 di�erent fourth iterated commutators Kk of

the given operators A, B, C.

Solution of order conditions An alternative strategy to construct higher-order schemes

without resorting to composition is based on the solution of the algebraic system of

the order conditions, see also [9]. Often the resulting splitting methods turns out to

have a smaller error constant than composition schemes. Finding optimized solutions,

e.g., by minimizing
∑
k λ

2
k in (3.7), is a topic currently under investigation.

4 Lie�Trotter splitting: Representation of the local error

In this section we consider the Lie�Trotter scheme and illustrate our strategy for the

representation the local error. The (much more intricate) general case is considered in

Section 5. We use the notation introduced in Section 2 and make use of some technical

results which are collected in A.

Approach We proceed from the local error integral (2.12) involving the defect D = S[1],
and S[1] in turn is represented by an integral which is derived from a di�erential

equation of Sylvester type.

For the Lie�Trotter splitting operator (3.1) we write

S[0] = EC EB · EA =W [0] · V [0] .

From
d
dtW

[0] =W [0]B + CW [0] (4.1)

we obtain

d
dt S

[0] = d
dtW

[0] · V [0] +W [0] · d
dtV

[0] =
(
CW [0] +W [0]B

)
V [0] +W [0]AV [0] ,

and thus,
d
dt S

[0] =
(
W [0]D + CW [0])V [0] . (4.2)

With (4.2), the defect (2.11) can be recast as

S[1] =W [0]DV [0] + CW [0]V [0] − (D + C)W [0]V [0] = [W [0], D]V [0] , (4.3)

with S[1](0) = 0. Introducing another shorthand notation,

S[1] =W [1]V [0] , with W [1] := [W [0], D] , (4.4)
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where we seek a suitable representation for W [1]. Due to (4.1) and Lemma 5 (A), W [1]

satis�es the inhomogeneous Sylvester equation

d
dtW

[1] =W [1]B + CW [1] + σ(W [1]) , (4.5a)

with W [1](0) = 0, and

σ(W [1]) =W [0] [B,D] + [C,D]W [0]

=W [0] [B,A] + [C,H]W [0] .
(4.5b)

From (4.5a), by using Lemma A.5(i) we infer the integral representation

W [1](t) =

∫ t

0

EC(t− τ)σ(W [1])(τ)EB(t− τ)dτ . (4.5c)

With (4.5b) and W [0] = EC EB this yields

S[1](t) =W [1](t)V [0](t) = EC(t)
∫ t

0

EB(t− τ) [B,A]EB(τ)dτ · EA(t) (4.6)

+

∫ t

0

EC(t− τ) [C,H]EC(τ)dτ · EB(t) EA(t) .

Altogether,

L(t)u =

∫ t

0

EH(t− τ)S[1](τ)dτ · u. (4.7)

Note that S[1](t)u = O(t) and L(t)u = O(t2).

5 General high-order s - stage splitting method: Representation of the

local error

We assume that the conditions (2.9a) for order p are satis�ed. Then,

L(t)u = tp+1

(p+1)!
dp+1

dtp+1 L(0) + O(tp+2) ,

where the leading coe�cient dp+1

dtp+1 L(0) is a linear combination of iterated commutators

of the data A, B, C, see (2.10). Instead of estimating the O(tp+2) remainder, we follow

a di�erent approach, namely we aim at an exact representation of L(t)u in the form

of a (multiple) integral expansion, generalizing (4.6), (4.7).

In the following we use the notation introduced in Section 2 and make use of some

technical results which are collected in A.
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5.1 Representation of of the local error via multiple variation-of-constant

We proceed via generalization of the approach from [13]. Consider the splitting operator

S[0] = S[0]s · · · S
[0]
1 ,

with

S[0]j =
(
ECj
EBj

)
EAj

=W [0]
j V

[0]
j ,

where V [0]j and W [0]
j satisfy the initial value problems

d
dt V

[0]
j = Aj V

[0]
j , V [0]j (0) = I , (5.1a)

d
dtW

[0]
j =W [0]

j Bj + CjW
[0]
j , W [0]

j (0) = I . (5.1b)

With the linear di�erential operator de�ned by (2.3), we recursively de�ne the

higher-order defect operators S[q] by

S[q] := δ(S[q−1]) = d
dt S

[q−1] −H S[q−1] , q ≥ 1 . (5.2)

By successive di�erentiation of (2.12) and evaluation at t = 0 it can be seen that the

order conditions (2.9a) are equivalent to

S[1](0) = d
dt S

[1](0) = . . . = dp−1

dtp−1 S[1](0) = 0 , (5.3a)

which in turn is equivalent to

S[1](0) = S[2](0) = · · · = S[p](0) = 0 . (5.3b)

Hence the local error operator L = S[0]−EH can be expanded via a multiple variation-

of-constant representation,

L(t) =
∫ t

0

EH(t− τ1)S[1](τ1)dτ1

=

∫ t

0

∫ τ1

0

EH(t− τ2)S[2](τ2)dτ2dτ1

= . . .

=

∫ t

0

∫ τ1

0

· · ·
∫ τp

0

EH(t− τp+1)S[p+1](τp+1)dτp+1 · · · dτ1 . (5.4)

A slightly di�erent integral representation will be used in Section 5.3 in order to esti-

mate the local error.
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5.2 Recursion for higher-order defect terms

For a rigorous local error analysis, a representation of the higher-order defect operator

S[p+1] appearing in (5.4) is required. This will be obtained by means of a recursion for

S[q], q = 1, 2, . . .. Let us illustrate the �rst step of this procedure for the case s = 3:

S[1] = δ(S[0]) = d
dt S

[0] −H S[0]

= d
dt S

[0]
3 · S

[0]
2 · S

[0]
1 + S[0]3 ·

d
dt S

[0]
2 · S

[0]
1 + S[0]3 · S

[0]
2 ·

d
dt S

[0]
1

− (H3 +H2 +H1)S
[0]
3 S

[0]
2 S

[0]
1

=
(

d
dt S

[0]
3 −H3S

[0]
3

)
S[0]2 S

[0]
1

+ S[0]3 ·
d
dt S

[0]
2 · S

[0]
1 + S[0]3 · S

[0]
2 ·

d
dt S

[0]
1

− (H2 +H1)S
[0]
3 S

[0]
2 S

[0]
1

=
(

d
dt S

[0]
3 −H3S

[0]
3

)
S[0]2 S

[0]
1 + [S[0]3 , H1 +H2]S

[0]
2 S

[0]
1

+ S[0]3

(
d
dt S

[0]
2 · S

[0]
1 + S[0]2 ·

d
dt S

[0]
1 − (H2 +H1)S

[0]
2 S

[0]
1

)
=
((

d
dt S

[0]
3 −H3S

[0]
3

)
+ [S[0]3 , H1 +H2]

)
S[0]2 S

[0]
1

+ S[0]3

((
d
dt S

[0]
2 −H2S

[0]
2

)
+ [S[0]2 , H1]

)
S[0]1

+ S[0]3 S
[0]
2

(
d
dt S

[0]
1 −H1S

[0]
1

)
=
(
[S[0]3 , H3] + δ3(S

[0]
3 )
)
S[0]2 S

[0]
1

+ S[0]3

(
[S[0]2 , H2] + δ2(S

[0]
2 )
)
S[0]1

+ S[0]3 S
[0]
2

(
[S[0]1 , H1] + δ1(S

[0]
1 )
)

=: S[1]3 S
[0]
2 S

[0]
1 + S[0]3 S

[1]
2 S

[0]
1 + S[0]3 S

[0]
2 S

[1]
1 ,

with δj(·) from (2.4a) and Hj from (2.7). This representation is independent of the

particular structure of S[0]j , and the general pattern is clearly visible. Moreover, with

the recursive de�nition3

S[k+1]
j := [S[k]j , Hj ] + δj(S

[k]
j ) , k ≥ 0 , (5.5)

this generalizes in the same way as in [13] in form of the following Leibniz-type formula.

Lemma 1 The higher-order defect operators S[q] de�ned by (5.2) admit a representa-

tion in the form of a multinomial expansion,

S[q] =
∑

k∈Ns
0, |k|=q

(
q

k

)
S[ks]s · · · S[k1]1 , q ≥ 0 , (5.6)

where the S[k]j are recursively de�ned by (5.5).

Proof Analogously to [13, Lemma 5]. ut

3 Note that the mapping S[q]j 7→ S
[q+1]
j is linear. For A = 0, the de�nition of S[q+1]

j in (5.5)

is equivalent to that from [13].
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With ρj(·), σj(·) from (2.4) and from (5.1) we have ρj(V [j]) = 0 and σj(W [j]) = 0.

Furthermore, we recursively de�ne

V [k+1]
j := [V [k]j , Hj ] + ρj(V

[k]
j ) , k ≥ 0 , (5.7a)

W [k+1]
j := [W [k]

j , Hj +Dj ] + σj(W
[k]
j ) , k ≥ 0 , (5.7b)

with Dj from (2.6) and Hj from (2.7). V [k]j and W [k]
j are building blocks for S[k]j :

Lemma 2 The higher-order defect terms S[k]j de�ned by (5.5) admit a representation

in form of a binomial expansion,

S[k]j =

k∑
`=0

(
k

`

)
W [k−`]
j V [`]j , k ≥ 0 , j ∈ {1, . . . , s} , (5.8)

with V [`]j and W [`]
j de�ned by (5.7).

Proof See Appendix B. ut

Finally, we provide recursive representations for the V [k]j and W [k]
j .

Lemma 3

(i) The operators V [k]j de�ned by (5.7a) satisfy

ρj(V
[k]
j ) =

k∑
`=1

(
k

`

)
A
[`]
j V

[k−`]
j , k ≥ 0 , j ∈ {1, . . . , s} , (5.9a)

with A
[`]
j de�ned in (2.8) and ρj(·) from (2.4b). That is, V [k]j satisfy the (recur-

sively de�ned) evolution equations

d
dt V

[k]
j = Aj V

[k]
j +

k∑
`=1

(
k

`

)
A
[`]
j V

[k−`]
j . (5.9b)

Thus,

V [k]j (t) = EAj
(t)V [k]j (0) +

∫ t

0

EAj
(t− τ)ρj(V

[k]
j )(τ)dτ

=: V [k]j,0(t) + V
[k]
j,1(t) ,

(5.9c)

with initial value4 V [k]j (0) = [V [k−1]j (0), Hj ]+ρj(V
[k−1]
j )(0), and ρj(V

[k]
j ) from (5.9a).

(ii) The W [k]
j de�ned by (5.7b) satisfy

σj(W
[k]
j ) =

k∑
`=1

(
k

`

)(
W [k−`]
j B

[`]
j + C

[`]
j W

[k−`]
j

)
, k ≥ 0 , j ∈ {1, . . . , s} ,

(5.10a)

4 Special case k = 0: V [0]
j (0) = I.
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with B
[`]
j and C

[`]
j de�ned in (2.8) and with σj(·) from (2.4c). That is, W [k]

j
satisfy the (recursively de�ned) evolution equations of Sylvester type,

d
dtW

[k]
j =W [k]

j Bj + CjW
[k]
j +

k∑
`=1

(
k

`

)(
W [k−`]
j B

[`]
j + C

[`]
j W

[k−`]
j

)
. (5.10b)

Thus, due to (A.6),

W [k]
j (t) = ECj

(t)W [k]
j (0)EBj

(t) +

∫ t

0

ECj
(t− τ)σj(W

[k]
j )(τ)EBj

(t− τ)dτ

=:W [k]
j,0(t) + W

[k]
j,1(t) ,

(5.10c)

with initial value5 W [k]
j (0) = [W [k−1]

j (0), Hj+Dj ]+σj(W
[k−1]
j )(0), and σj(W

[k]
j )

from (5.10a).

Proof See Appendix B. ut

5.3 Expansion and estimation of the local error

Assuming the conditions (2.9a) for order p to be satis�ed, which are equivalent to (5.3b),

the local error can now be expanded, in a way analogous to [13]. Assume �rst that the

conditions S[1](0) = . . . = S[p−1](0) = 0 for order p − 1 are satis�ed. Then the local

error can be represented in the form

L(t) =
∫ t

0

· · ·
∫ τp−1

0

EH(t− τp)S[p](τp)dτp · · · dτ1 .

From Lemma 1 and Lemma 2 we have

S[p] =
∑

k∈Ns
0, |k|=p

(
p

k

)
S[ks]s · · · S[k1]1 ,

with

S[k]j =

k∑
`=0

(
k

`

)
W [k−`]
j V [`]j , j ∈ {1, . . . , s} .

V [k]j = V [k]j,0 + V [k]j,1 and W [k]
j = W [k]

j,0 +W [k]
j,1 satisfy recursively de�ned integral rep-

resentations as speci�ed in Lemma 3, (5.9c) and (5.10c). Note that V [k]j,0(t) = O(1),

5 Special case k = 0: W [0]
j (0) = I.
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W [k]
j,0(t) = O(1), and V [k]j,1(t) = O(t), V [k]j,1(t) = O(t). We now write S[p] in the form

S[p] =
∑

k∈Ns
0, |k|=p

(
p

k

)
s∏
j=1

kj∑
`j=0

(
kj
`j

)
W [kj−`j ]
j V [`j ]j

=
∑

k∈Ns
0, |k|=p

(
p

k

)
s∏
j=1

kj∑
`j=0

(
kj
`j

)
W [kj−`j ]
j,0 V [`j ]j,0 (5.11a)

+
∑

k∈Ns
0, |k|=p

(
p

k

)
s∏
j=1

kj∑
`j=0

(
kj
`j

)
· (5.11b)

·
(
W [kj−`j ]
j,0 V [`j ]j,1 +W [kj−`j ]

j,1 V [`j ]j,0 +W [kj−`j ]
j,1 V [`j ]j,1

)
.

Here, the �rst sum (5.11a) equals Q = Q(t), where

Q(t) =
∑

k∈Ns
0, |k|=p

(
p

k

)
s∏
j=1

kj∑
`j=0

(
kj
`j

)
ECj

(t)W [kj−`j ]
j (0) EBj

(t)EAj
(t)V [`j ]j (0) ,

and the second sum (5.11b) is O(t). Now assuming that the p - th order condition

S[p](0) = 0 is also satis�ed, we obtain

S[p](0) = Q(0) =
∑

k∈Ns
0, |k|=p

(
p

k

)
s∏
j=1

kj∑
`j=0

(
kj
`j

)
W [kj−`j ]
j (0)V [`j ]j (0) = 0 .

Thus,

Q(t) = Q(t)−Q(0) =
∑

k∈Ns
0, |k|=p

(
p

k

)
s∏
j=1

kj∑
`j=0

(
kj
`j

)
Rkj ,`j (t)

with

Rkj ,`j (t) = ECj
(t)W [kj−`j ]

j (0) EBj
(t)EAj

(t)V [`j ]j (0)−W [kj−`j ]
j (0)V [`j ]j (0)

=
(
ECj

(t)− I
)
W [kj−`j ]
j (0) EBj

(t)EAj
(t)V [`j ]j (0)

+W [kj−`j ]
j (0)

(
EBj

(t)EAj
(t)− I

)
V [`j ]j (0) .

Here,

ECj
(t)− I = O(t) ,

EBj
(t)EAj

(t)− I =
(
EBj

(t)EAj
(t)− EAj+Bj

(t)
)
+
(
EAj+Bj

(t)− I
)
= O(t) .

Altogether, this shows S[p](t) = O(t). The resulting representation for the local error

cannot be expressed in an explicit way, but rather it is de�ned algorithmically by the

process described above. We conclude:
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Proposition 1 For a scheme of asymptotic order p, i.e., under assumption (2.9a),

the local error L(t)u = S(t)u− EH(t)u satis�es

L(t)u = O(tp+1) ,

Here O(tp+1) means C(t) · tp+1, where C(t) is well-de�ned and bounded provided that

all expressions occurring in the recursive representation of L(t) are well-de�ned and

bounded when L(t) is applied to u.

In practical applications this implies certain regularity requirements on u, in par-

ticular due to the presence of the iterated commutators (2.8b) in the representation

for L(t); see in particular Lemma 3.

Remark 1 For the case of splitting into two operators (with A = 0), we have S[k]j ≡

W [k]
j , and the results from [13] are obtained as a special case. For B = 0 or C = 0, an

alternative local error representation, di�erent from [13], is obtained.

The considered above suggest itself that the case of splitting into more that three

operators can be treated in s similar way, e.g., for H = HI +HII +HIII +HIV , with

Vj = EHII,j
EHI,j

and Wj = EHIV,j
EHIII,j

, and an appropriately richer combinato-

rial structure. However, we refrain from going into more details to avoid abounding

technicalities in this paper.

6 Defect-based a posteriori error estimators

For practical purposes, according to [13], we aim for an estimate of the local error L(t)u
by a practically computable local error estimator P(t)u. In principle, one may use the

computable leading term in the Taylor expansion of L(t)u,

P(t)u = L0(t)u = tp+1

(p+1)!
dp+1

dtp+1 L(0)u,

see (2.9b). However, this complex object (see for instance (3.7)) and can only be evalu-

ated at a high e�ort. Therefore we follow the alternative approach which has been pro-

moted in [13]. Consider the local error integral (2.12) and denote the integrand by f(τ)

(for �xed t). For a scheme of order p we have f (0)(0) = f (1)(0) = . . . = f (p−1)(0) = 0.

Via Taylor expansion, this suggests the approximation∫ t

0

f(τ)dτ ≈
∫ t

0

τp

p! f
(p)(0)dτ = tp+1

(p+1)!
f (p)(0) ≈ t

p+1 f(t) , (6.1a)

with an expected approximation error of order O(tp+2). This can also be interpreted

as an Hermite quadrature approximation to the integral over f , see [13].

Thus we consider the local error estimator

P(t)u = t
p+1 D(t)u = t

p+1 (
d
dt S(t)−H S(t))u. (6.1b)

We refer to Section 7 for the practical, t-derivative-free evaluation of D(t)u.
In the following we show that this estimator is indeed asymptotically correct, i.e.,

the deviation P(t)u−L(t)u is one order higher than L(t)u, see Proposition 2. To this

end, a detailed representation of the deviation is deduced in several steps, where we

suppress the argument u for brevity.
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Peano representation of the quadrature error We consider the local error integral (2.12),

employing the notation from (4.7),

L(t) =
∫ t

0

F(τ ; t)dτ , with integrand F(τ ; t) = EH(t− τ)S[1](τ) .

The (p+ 1) - st order Peano representation for the quadrature error reads

P(t)− L(t) =
∫ t

0

Kp+1(τ ; t)
∂p+1

∂τp+1 F(τ ; t)dτ , (6.2a)

with kernel

Kp+1(τ ; t) =
τ(t− τ)p

(p+ 1)!
. (6.2b)

Integrating by parts we obtain the p - th order Peano representation

P(t)− L(t) =
∫ t

0

Kp(τ ; t)
∂p

∂τp F(τ ; t)dτ , (6.3a)

with kernel

Kp(τ ; t) =

(
t− (p+ 1)τ

)
(t− τ)p−1

(p+ 1)!
,

∫ t

0

Kp(τ ; t)dτ = 0 . (6.3b)

Estimation of the quadrature error The analysis comprises three steps.

(i) Making use of (5.3b) yields

P(t)− L(t) =
∫ t

0

Kp(τ ; t)EH(t− τ)S[p+1](τ)dτ , (6.4a)

which can be rewritten as (see (6.3b))

P(t)− L(t) =
∫ t

0

Kp(τ ; t)dτ︸ ︷︷ ︸
=0

· EH(t)S[p+1](0)

+

∫ t

0

Kp(τ ; t)EH(t− τ)
(
S[p+1](τ)− EH(τ)S[p+1](0)

)
dτ .

(6.4b)

Since Kp(τ ; t) = O(τp) for 0 ≤ τ ≤ t, it remains to be shown that

S[p+1](t)− EH(t)S[p+1](0) = O(t) . (6.5)

(ii) For a method of order p, S[p+1](0) is a linear combination of iterated commutators

involving the operators A,B,C (see [9]). It also satis�es

S[p+1](0) =
∑

k∈Ns
0, |k|=p+1

(
p+ 1

k

)
S[ks]s (0) · · · S[k1]1 (0) , (6.6a)

where

S[k]j (0) =

k∑
`=0

(
k

`

)
W [k−`]
j (0)V [`]j (0) , k ≥ 0 , j ∈ {1, . . . , s} , (6.6b)
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with V [`]j and W [`]
j de�ned by (5.7); see Lemma 1 and Lemma 2.

Consider the auxiliary quantity

S̃[p+1](t) =
∑

k∈Ns
0, |k|=p+1

(
p+ 1

k

)
S̃[ks]s (t) · · · S̃[k1]1 (t) , (6.7a)

with

S̃[k]j =

k∑
`=0

(
k

`

)
W̃ [k−`]
j Ṽ [`]j , k ≥ 0 , j ∈ {1, . . . , s} , (6.7b)

where Ṽ [k]j and W̃ [k−`]
j are the O(1) contributions to V [k]j and W [k−`]

j , respectively

(see (5.9c)(5.10c)), i.e.,

Ṽ [k]j (t) = V [k]j,0(t) = EAj
(t)V [k]j (0) ,

W̃ [k]
j (t) =W [k]

j,0(t) = ECj
(t)W [k]

j (0)EBj
(t) ,

(6.7c)

satisfying
d
dt Ṽ

[k]
j = Aj Ṽ

[k]
j , i.e., ρj(Ṽ

[k]
j ) = 0 ,

d
dt W̃

[k]
j = W̃ [k]

j Bj + Cj W̃
[k]
j , i.e., σj(W̃

[k]
j ) = 0 .

(6.7d)

In the current step (ii) the aim is to estimate the di�erence S̃[p+1](t)−EH(t)S[p+1](0).

To this end we note that the S̃[k]j from (6.7b) have a structure identical to the

S[k]j (see Lemma 2), with V [k]j W
[k−`]
j replaced by Ṽ [k]j W̃

[k−`]
j . The terms in the

sum (6.7a),

S̃[ks]s (t) · · · S̃[k1]1 (t) , (6.8a)

are splitting analogues of

EH(t)S[ks]s (0) · · · S[k1]1 (0) , (6.8b)

and (6.8a),(6.8b) have identical initial values S[ks]s (0) · · · S[k1]1 (0). In order to esti-

mate the di�erence between (6.8a) and (6.8b) for t > 0 we compute, analogously

as in Section 5.2,

δ(S̃[ks]s · · · S̃[k1]1 ) = d
dt (S̃

[ks]
s · · · S̃[k1]1 )−H · S̃[ks]s · · · S̃[k1]1

=
∑

`∈Ns
0, |`|=1

S̃[ks;`s]s · · · S̃[k1;`1]1 ,

with S̃[k;0]j = S̃[k]j from (6.7b) and where, by a routine calculation as in the proof

of Lemma 2,

S̃[k;1]j = [S̃[k]j , Hj ] + δj(S̃
[k]
j )

=

k∑
`=0

(
k

`

)(
W̃ [k−`]
j [Ṽ [`]j , Hj ] + [W̃ [k−`]

j , Hj +Dj ] Ṽ
[`]
j

)
.
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Due to Lemma 4 and Lemma 5 (A), the terms [Ṽ [`]j , Hj ] and [W̃ [k−`]
j , Hj +Dj ] are

solutions to the evolution equations{
d
dt [Ṽ

[`]
j , Hj ] = Aj [Ṽ

[`]
j , Hj ] +A

[1]
j Ṽ

[`]
j ,

Ṽ [`]j (0) = V [`]j (0) ,

and
d
dt [W̃

[k−`]
j , Hj +Dj ] = [W̃ [k−`]

j , Hj +Dj ]Bj + Cj [W̃
[k−`]
j , Hj +Dj ]

+ W̃ [k−`]
j B

[1]
j + C

[1]
j W̃

[k−`]
j ,

W̃ [`]
j (0) =W [`]

j (0) ,

with corresponding integral representations. Collecting all these preliminary con-

siderations we obtain

δ
(
S̃[ks]s · · · S̃[k1]1 )− EH(t)S[ks]s (0) · · · S[k1]1 (0)

)
= O(1) ,

with homogeneous initial condition. Consequently, the di�erence between (6.8a)

and (6.8b) satis�es

S̃[ks]s (t) · · · S̃[k1]1 (t)− EH(t)S[ks]s (0) · · · S[k1]1 (0) = O(t) ,

and summing up we obtain

S̃[p+1](t)− EH(t)S[p+1](0) = O(t) . (6.9a)

(iii) Splitting the term (6.5) to be estimated into

S[p+1](t)−EH(t)S[p+1](0) =
(
S[p+1](t)−S̃[p+1](t)

)
+
(
S̃[p+1](t)−EH(t)S[p+1](0)

)
,

it remains to study

S[p+1] − S̃[p+1] =
∑

k∈Ns
0, |k|=p+1

(
p+ 1

k

) (
S[ks]s · · · S[k1]1 − S̃[ks]s · · · S̃[k1]1

)
.

The terms (di�erences of products) under the sum can be written as

S[ks]s · · · S[k1]1 − S̃[ks]s · · · S̃[k1]1 =
(
S[ks]s − S̃[ks]s

)
S[ks−1]
s−1 · · · S[k1]1

+ S̃[ks]s

(
S[ks−1]
s−1 − S̃[ks−1]

s−1
)
S[ks−2]
s−2 · · · S[k1]1

+ · · ·

+ S̃[ks]s · · · S̃[k1]1

(
S[k1]1 − S̃[k1]1

)
.

From Lemma 2,

S[k]j =

k∑
`=0

(
k

`

)
W [k−`]
j V [`]j = O(1) ,

and from (6.7b),

S̃[k]j =

k∑
`=0

(
k

`

)
W̃ [k−`]
j Ṽ [`]j = O(1) .
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Furthermore,

S[k]j − S̃
[k]
j =

k∑
`=0

(
k

`

)(
W [k−`]
j V [`]j − W̃

[k−`]
j Ṽ [`]j

)
,

with

W [k−`]
j V [`]j − W̃

[k−`]
j Ṽ [`]j

=W [k−`]
j

(
V [`]j − Ṽ

[`]
j

)
+
(
W [k−`]
j − W̃ [k−`]

j

)
Ṽ [`]j = O(t) ,

because

V [`]j (t)− Ṽ [`]j (t) =

∫ t

0

EAj
(t− τ)ρj(V

[k]
j )(τ)dτ = O(t)

(see (5.9c), (6.7c)), and

W [k−`]
j (t)− W̃ [k−`]

j (t) =

∫ t

0

ECj
(t− τ)σj(W

[k]
j )(τ)EBj

(t− τ)dτ = O(t)

(see (5.10c), (6.7c)).

From these preliminary considerations we obtain

S[p+1](t)− S̃[p+1](t) = O(t) . (6.9b)

Altogether, (6.9a) and (6.9b) imply (6.5). Thus we have established the following result:

Proposition 2

P(t)u− L(t)u = O(tp+2) ,

that is, the local error estimate (6.1b) is asymptotically correct.

7 Practical realization, extension to nonlinear equations

As before, it is convenient to consider the time interval [0, t] with stepsize t > 0.

The extension to an arbitrary integration step t 7→ t + ∆t with stepsize ∆t > 0 is

straightforward.

7.1 Practical evaluation of the defect

For the practical implementation of our error estimators, the defect can be evaluated

by a Horner-type scheme, which we illustrate for the case s = 3, using the notation

from Section 5 and recalling the de�nition of Vj ,Wj , see (2.2):

D := S[1] = d
dt

(
S3S2S1

)
−H S3S2S1

= d
dt S3 · S2 · S1 + S3 · d

dt S2 · S1 + S3 · S2 · d
dt S1 −H S3S2S1

=
(
W3D3V3 + C3S3)S2S1

+W3V3
((
W2D2V2 + C2S2

)
S1 +W2V2

(
W1D1V1 + C1S1

))
− (H − C3 + C3S3S2S1 ,
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resulting in

D =W3

{
D3V3S2S1 + V3

{
C2S2S1 +W2

{
D2V2S1 + V2

{
C1S1 +W1D1V1

}}}}
− (H − C3)S3S2S1 . (7.1)

Computationally it is advantageous to evaluate (7.1) in parallel to the evaluation of

S = S3S2S1. A closer investigation shows that for such an evaluation of S u and Du,
storage for 5 vectors is required (where each intermediate result which is not required

further is overwritten). The pattern is similar as for the AB case. The computational

cost is thus the following:

� Su requires evaluation of 3s exponentials.

� Du requires evaluation of ≈ 3s exponentials and ≈ 3s operators.

For practical schemes, in particular in the symmetric case, the number of evaluations

is signi�cantly lower due to a number of vanishing coe�cients.

7.2 The nonlinear case

Consider a nonlinear evolution equation{
u′ = H(u) = A(u) +B(u) + C(u) , t ≥ 0 ,

u(0) given,
(7.2)

and corresponding (sub-)�ows EH(t, u) and EA(t, u), EB(t, u), EC(t, u). For the case

s = 3, for instance, a step of an s - stage splitting method takes the form

u1 = EA(a1 t, u) , v1 = EB(b1 t, u1) , w1 = EC(c1 t, v1) = S1(t, u) ,
u2 = EA(a2 t, w1) , v2 = EB(b2 t, u2) , w2 = EC(c2 t, v2) = S2(t, w1) ,

u3 = EA(a3 t, w2) , v3 = EB(b3 t, u3) , w3 = EC(c3 t, v3) = S3(t, w2) ,

S(t, u) = w3 = S3(t,S2(t,S1(t, u))) , (7.3)

with local error

L(t, u) = S(t, u)− EH(t, u) . (7.4a)

The nonlinear analogue of the local error respresentation (2.12) is obtained via the

nonlinear variation-of-constants formula

L(t, u) =
∫ t

0

∂2EH(t− τ,S(τ, u)) · D(τ, u)dτ , (7.4b)

with the defect

D(t, u) = d
dt S(t, u)−H(S(t, u)) . (7.4c)

A defect-based local error estimate is de�ned in a way completely analogous to (6.1b),

P(t)u = t
p+1 D(t)u. (7.5)

For a detailed analysis for the nonlinear case in a simpler setting (splitting into two

operators and low order methods) we refer to [11]. Here we illustrate the algorithmic

evaluation of D(t, u) for the case s = 3, with obvious generalization to general s - stage

schemes. To this end, as for the linear case, we rewrite the defect in a way such no
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derivatives w.r.t. t appear. However, evaluation of the Fréchet derivatives of nonlinear

sub�ows with respect to initial values are required.

With uj = uj(t), vj = vj(t), wj = wj(t) we have

d
dt S(t, u) =

d
dt w3(t) =

d
dt EC(c3 t, v3(t))

= ∂
∂t EC(c3 t, v3(t)) + ∂2EC(c3 t, v3(t)) · d

dt v3(t)

= c3C(w3(t)) + ∂2EC(c3 t, v3(t)) · d
dt v3(t) .

We recall the fundamental identity6 [11]

∂2EF (t, v) · F (v) = F (EF (t, v)) . (7.6)

Resorting to (7.6) for F = B, we obtain

d
dt v3(t) =

d
dt EB(b3 t, u3(t))

= ∂
∂t EB(b3 t, u3(t)) + ∂2EB(b3u3(t)) · d

dt u3(t)

= b3B(u3(t)) + ∂2EB(b3 t, u3(t)) · d
dt u3(t)

= b3 ∂2EB(b3 t, u3(t)) ·B(u3(t)) + ∂2EB(b3 t, u3(t)) · d
dt u3(t)

= ∂2EB(b3 t, u3(t)) ·
{
b3B(u3(t)) +

d
dt u3(t)

}
,

and similarly for F = A,

d
dt u3(t) =

d
dt EA(a3 t, w2(t))

= ∂
∂t EA(a3 t, w2(t)) + ∂2EA(a3w2(t)) · d

dt w2(t)

= a3A(u3(t)) + ∂2EA(a3 t, w2(t)) · d
dt w2(t)

= a3 ∂2EA(a3 t, w2(t)) ·A(w2(t)) + ∂2EA(a3 t, w2(t)) · d
dt w2(t)

= ∂2EA(a3 t, w2(t)) ·
{
a3A(w2(t)) +

d
dt w2(t)

}
.

This implies

d
dt S(t, u) = c3C(w3(t))

+ ∂2EC(c3 t, v3(t)) · ∂2EB(b3 t, u3(t)) ·

·
{
b3B(u3(t)) + ∂2EA(a3 t, w2(t)) ·

{
a3A(w2(t)) +

d
dt w2(t)

}}
.

Systematically continuing this expansion leads to a Horner-type representation of
d
dt S(t, u), which eventually results into

D(t, u) = ∂2EC(c3 t, v3) · ∂2EB(b3 t, u3) · (7.7)

·
{
b3B(u3) + ∂2EA(a3 t, w2) ·

·
{
a3A(w2) + c2C(w2) +

+ ∂2EC(c2 t, v2) · ∂2EB(b2 t, u2) ·
· {b2B(u2) + ∂2EA(a2 t, w1) ·
·
{
a2A(w1) + c1C(w1) +

+ ∂2EC(c1 t, v1) · ∂2EB(b1 t, u1) ·
· {b1B(u1) + ∂2EA(a1 t, u) · a1A(u)

}}}}}
−A(w3)−B(w3)− (1− c3)C(w3) ,

6 For a linear operator F , (7.6) reduces to the identity EF (t) · F · v = F · EF (t) · v, with
EF (t) = etF .
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which is the nonlinear version of (7.1). For details on the concrete computational

realization, we refer to the numerical examples given next.

8 Numerical examples

In the following, we con�rm asymptotical correctness of our a posteriori local error

estimators based on (7.5) associated with di�erent splitting methods of when applied

to nonlinear evolution equations. We consider test problems of Schrödinger and of

parabolic type, where splitting into three operators permits a considerable reduction

in the complexity of the subproblems to be solved, which results from freezing ei-

ther the time variable or a solution component. Evaluation of the defect D(t, u) is

performed according to (7.7). Furthermore, for non-autonomous problems as (8.1),

employing a standard reformulation as an autonomous system allows to apply the gen-

eral framework. We note that qualitatively the same numerical results are obtained for

appropriately simpli�ed linear test problems.

Schrödinger equation We consider the Gross�Pitaevskii equation [16,17] in one space

dimension under a harmonic potential with ϑ = 1,

i∂tψ(x, t) = − 1
2 ∂xxψ(x, t) +

1
2 x

2ψ(x, t)

+ ϑ
∣∣ψ(x, t)∣∣2ψ(x, t) + r(x, t) , (x, t) ∈ (−8, 8)× (0, 1) ;

(8.1)

the additional inhomogeneity r is chosen such that the true solution is given by the

ground state solution of the linear Schrödinger equation (ϑ = 0). The structure of this

partial di�erential equation suggests a splitting into three parts. In view of (7.7), we

specify the subproblems and indicate the computation of the corresponding Fréchet

derivatives of the evolution operators with respect to initial values.

Part A. The �rst part is given by the Laplace operator. Due to the linearity of the

subproblem, the evolution operator EA and the Fréchet derivative ∂2EA coincide.

Part B. The second part is de�ned by potential and the nonlinearity. The exact solution

to this subproblem is given by(
EB(t, u)

)
(x) = e−it(

1
2 x

2+ϑ |u(x)|2)u(x) , (8.2)

which also allows a straightforward computation of the Fréchet derivative ∂2EB .
Part C. The third part involves the inhomogeneity r(x, t). In order to cast this subprob-

lem into our general framework, we use a standard reformulation as autonomous

system

∂t

(
ψ(x, t)

t

)
=

(
r(x, t)

1

)
. (8.3)

In this example, the integration can be performed exactly. For each substep of

length ∆t, starting at time t, evalutation of the associated Fréchet derivative ∂2EC
amounts to multiplication by(

1 r(x, t+∆t)− r(x, t)
0 1

)
. (8.4)
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For space discretization, we use Fast Fourier techniques with M = 100 grid points.

For time discretization, we apply the �rst-order Lie�Trotter splitting method (p = 1),

the second-order Strang splitting method (p = 2), a three-stage third-order splitting

method involving real coe�cients (p = 3), and a fourth-order splitting method (p = 4)

obtained by composition according to Yoshida [14].

Di�usion-reaction system We study the Gray�Scott equations [18,19] in a single space

dimension {
∂tu(x, t) = (du ∂xx − cu)u(x, t) + cu − u(x, t)

(
v(x, t)

)2
,

∂tv(x, t) = (dv ∂xx − cv)v(x, t) + u(x, t)
(
v(x, t)

)2
,

du = 0.001 , dv = 0.0001 , cu = 0.04 , cv = 0.1 ,

u(x, 0) = e−2x
2

, v(x, 0) = 0.1 + e−4x2

, (x, t) ∈ (−1.5π, 1.5π)× (0, 1) ,

(8.5)

subject to periodic boundary conditions. We make use of the fact that a splitting of the

nonlinear part, acting pointwise in the spatial variable, into a pair of simple nonlinear

ordinary di�erential equations{
∂tu(x, t) = −u(x, t)

(
v(x, t)

)2
,

∂tv(x, t) = 0 ,

{
∂tu(x, t) = 0 ,

∂tv(x, t) = u(x, t)
(
v(x, t)

)2
,

(8.6)

permits to determine the exact solutions to these subproblems as well as their Fréchet

derivatives with respect to initial values in an easy manner. For space discretization,

we use a Fourier spectral method at M = 512 grid points. For time discretization, we

apply the �rst-order Lie�Trotter splitting method (p = 1), the second-order Strang

splitting method (p = 2), a four-stage third-order splitting methods involving complex

coe�cients (p = 3), and a fourth-order splitting method involving complex coe�cients,

obtained in analogy to Yoshida's scheme (p = 4).

In Figures 1 and 2 the global errors versus the constant time stepsizes are displayed.

In addition, the global errors of the numerical approximations obtained through a

correction of S according to

S − P

in each time step are included; as usual, S denotes the splitting approximation of

order p and P the a posteriori local error estimator. The numerical results show that

the improved approximation is of global order p + 1, which con�rms asymptotical

correctness of the a posteriori local error estimator.
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Fig. 1 Time integration of Gross�Pitaevskii equation (8.1). Global errors versus time stepsizes
of di�erent splitting methods (left) and associated corrected approximations (right).
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Fig. 2 Time integration of Gray�Scott equations (8.5). Global errors versus time stepsizes of
di�erent splitting methods (left) and associated corrected approximations (right). First (�rst
row) and second (second row) component of the solution.
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A Auxiliary identities and results

The commutator
[X,Y ] = XY − Y X (A.1)

satis�es the following fundamental identities:

[XY,Z] = X [Y, Z] + [X,Z]Y , (A.2a)

0 = [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] (Jacobi identity). (A.2b)

Lemma 4 Let A,K denote operators not depending on t and G = G(t) a time-dependent
inhomogeneity. Assume that X is the solution of the initial value problem{

d
dt
X = AX + G ,

X (0) given .
(A.3)

Then the commutator Y := [X ,K] satis�es the initial value problem{
d
dt
Y = AY + [A,K]X + [G,K] ,

Y(0) = [X (0),K] .
(A.4)

Proof We di�erentiate using identity (A.2a):

d
dt

[X ,K] = [ d
dt
X ,K] = [AX ,K] + [G,K]

= A [X ,K] + [A,K]X + [G,K] ,

which completes the proof. ut

Lemma 5 [13, Lemma 1]. Let B,C,K denote operators not depending on t and G = G(t) a
time-dependent inhomogeneity. Consider the inhomogeneous Sylvester equation{

d
dt
X = X B + CX + G ,

X (0) given .
(A.5)

(i) The initial value problem (A.5) admits the solution representation

X (t) = EC(t)X (0)EB(t) +

∫ t

0
EC(t− τ)G(τ)EB(t− τ) dτ . (A.6)

(ii) Provided that X satis�es the Sylvester equation (A.5), the time-dependent operators Y
and Z, de�ned by

Y(t) = X (t)K , Z(t) = KX (t) , (A.7a)

are solutions to the Sylvester equations{
d
dt
Y = YB + C Y + X [B,K] + GK ,

Y(0) = X (0)K ,
(A.7b)

and {
d
dt
Z = ZB + C Z + [K,C]X +KG ,

Z(0) = KX (0) ,
(A.7c)

respectively.
(iii) Provided that X satis�es the Sylvester equation (A.5), the commutator Y = [X ,K] is

the solution of the Sylvester equation{
d
dt
Y = YB + CY + X [B,K] + [C,K]X + [G,K] ,

Y(0) = [X (0),K] .
(A.8)

Proof See [13]. ut
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B Proofs of Lemmas 2 and 3

In the following, we prove statements about the quantities Hj , S
[k]
j . . ., etc. However, for

convenience of notation we suppress the index j. In particular, δ(·), ρ(·), σ(·) are to be identi�ed
with δj(·), ρj(·), σj(·) de�ned in (2.4).

With (cf. (2.4b),(2.4c))

ρ(X ) = d
dt
X −AX ,

σ(X ) = d
dt
X − X B − CX ,

the identities (A.4) and (A.8) take the form

ρ([X ,K]) = [A,K]X + [ρ(X ),K] ,

σ([X ,K]) = X [B,K] + [C,K]X + [σ(X ),K] .

We will make repeated use of these identities in the proof of Lemma 3 below. Furthermore,
(A.2a) is used several times.

Proof of Lemma 2. For k = 0, identity (5.8) is the same as S[0] =W [0]V [0]. For the general
induction step k 7→ k + 1, by (5.5) and the inductive assumption (5.8) we have

S[k+1] = [S[k], H] + δ(S[k])

=

k∑
`=0

(k
`

)(
[W [k−`]V [`], H] + δ(W [k−`]V [`])

)
,

with (using (A.2a))

[W [k−`]V [`], H] + δ(W [k−`]V [`])

=W [k−`] [V [`], H] + [W [k−`], H]V [`]

+ d
dt

(
W [k−`]V [`])−HW [k−`]V [`]

=W [k−`] [V [`], H] + [W [k−`], H]V [`]

+ d
dt
W [k−`] · V [`] +W [k−`] · d

dt
V [`] −HW [k−`]V [`]

=W [k−`] [V [`], H] + [W [k−`], H]V [`]

+
(
W [k−`]B + CW [k−`] + σ(W [k−`])

)
V [`]

+W [k−`]
(
AV [`] + ρ(V [`])

)
−HW [k−`]V [`]

=W [k−`]
(
[V [`], H] + ρ(V [`])

)
+
(
[W [k−`], H] + σ(W [k−`])

)
V [`]

+W [k−`]DV [`] + CW [k−`]V [`] −HW [k−`]V [`]

=W [k−`]
(
[V [`], H] + ρ(V [`])

)
+
(
[W [k−`], H +D] + σ(W [k−`])

)
V [`]

+W [k−`]DV [`] + CW [k−`]V [`] −W [k−`]DV [`] +DW [k−`]V [`] −HW [k−`]V [`]︸ ︷︷ ︸
=0

=W [k−`]V [`+1] +W [k+1−`]V [`] ,

by de�nition of V [`+1] and W [k+1−`]. Altogether,

S[k+1] =

k∑
`=0

(k
`

)
W [k−`]V [`+1] +

k∑
`=0

(k
`

)
W [k+1−`]V [`]

=

k+1∑
`=0

( k

`− 1

)
W [k+1−`]V [`] +

k+1∑
`=0

(k
`

)
W [k+1−`]V [`]

=

k+1∑
`=0

(k + 1

`

)
W [k+1−`]V [`+1] ,
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which completes the induction step. ut

Proof of Lemma 3.

(i) Proof of (5.9a):
For k = 0, identity (5.9a) follows from

d
dt
V [0] = A[0]V [0] , i.e., ρ(V [0]) = 0 .

For the general induction step k 7→ k+1, by the de�nition of V [k+1] and due to Lemma 4
(A) we have

ρ(V [k+1]) = ρ([V [k], H]) + ρ(ρ(V [k]))

= A[1]V [k] + [ρ(V [k]), H] +
(

d
dt
ρ(V [k])−Aρ(V [k])

)
.

Together with the inductive assumption (5.9a) this yields

ρ(V [k+1]) = A[1]V [k] +
(

d
dt
ρ(V [k])−Aρ(V [k]) + [ρ(V [k]), H]

)
= A[1]V [k] +

k∑
`=1

(k
`

)(
d
dt

(
A[`]V [k−`]

)
−AA[`]V [k−`] + [A[`]V [k−`], H]

)
,

with

d
dt

(
A[`]V [k−`]

)
−AA[`]V [k−`] + [A[`]V [k−`], H]

= A[`] d
dt
V [k−`] −AA[`]V [k−`] +A[`] [V [k−`], H] + [A[`], H]V [k−`]

= A[`]
(
AV [k−`] + ρ(V [k−`]

)
−AA[`]V [k−`] +A[`] [V [k−`], H] + [A[`], H]V [k−`]

= [A[`], A]V [k−`] +A[`] ρ(V [k−`]) +A[`] [V [k−`], H] + [A[`], H]V [k−`]

= [A[`], H +A]V [k−`] +A[`]
(
[V [k−`], H] + ρ(V [k−`])

)
= A[`+1]V [k−`] +A[`]V [k+1−`] ,

by the de�nitions of A[`+1] and V [k+1−`]. Altogether,

ρ(V [k+1]) = A[1]V [k] +

k∑
`=1

(k
`

)(
A[`+1]V [k−`] +A[`]V [k+1−`]

)
=

k∑
`=0

(k
`

)
A[`+1]V [k−`] +

k∑
`=1

(k
`

)
A[`]V [k+1−`]

=

k+1∑
`=1

( k

`− 1

)
A[`]V [k+1−`] +

k+1∑
`=1

(k
`

)
A[`]V [k+1−`]

=

k+1∑
`=1

(k + 1

`

)
A[`]V [k+1−`] ,

which completes the induction step.
(ii) Proof of (5.10a):

For k = 0, the identity (5.10a) follows from

d
dt
W [0] =W [0]B[0] + C[0]W [0] , i.e., σ(W [0]) = 0 .

For the general induction step k 7→ k+1, by the de�nition ofW [k+1] and due to Lemma 5
(A) we have

σ(W [k+1]) = σ([W [k], H +D]) + σ(σ(W [k]))

=W [k]B[1] + C[1]W [k] + [σ(W [k]), H +D]

+
(

d
dt
σ(W [k])− σ(W [k])B − Cσ(W [k])

)
.
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Together with the inductive assumption (5.10a) this yields

σ(W [k+1])

=
(
W [k]B[1] + C[1]W [k]

)
+
(

d
dt
σ(W [k])− σ(W [k])B − Cσ(W [k]) + [σ(W [k]), H +D]

)
=
(
W [k]B[1] + C[1]W [k]

)
+

k∑
`=1

(k
`

)(
d
dt

(
W [k−`]B[`] + C[`]W [k−`]

)
−
(
W [k−`]B[`] + C[`]W [k−`]

)
B

− C
(
W [k−`]B[`] + C[`]W [k−`]

)
+ [W [k−`]B[`] + C[`]W [k−`], H +D]

)
,

with

d
dt

(
W [k−`]B[`] + C[`]W [k−`]

)
−
(
W [k−`]B[`] + C[`]W [k−`]

)
B

− C
(
W [k−`]B[`] + C[`]W [k−`]

)
+ [W [k−`]B[`] + C[`]W [k−`], H +D]

= d
dt
W [k−`]B[`] + C[`] d

dt
W [k−`] −

(
W [k−`]B[`] + C[`]W [k−`]

)
B

− C
(
W [k−`]B[`] + C[`]W [k−`]

)
+ [W [k−`]B[`], H +D] + [C[`]W [k−`], H +D]

=
(
W [k−`]B + CW [k−`]σ(W [k−`])

)
B[`] + C[`]

(
W [k−`]BCW [k−`] + σ(W [k−`])

)
−
(
W [k−`]B[`] + C[`]W [k−`])B − C

(
W [k−`]`+ C[`]W [k−`]

)
+W [k−`] [B[`], H +D] + [W [k−`], H +D]B[`]

+ C[`] [W [k−`], H +D] + [C[`], H +D]W [k−`]

=
(
W [k−`] [B,B[`]] +W [k−`] [B[`], H +D]

)
+
(
[C[`], C]W [k−`] + [C[`], H +D]W [k−`]

)
+
(
[W [k−`], H +D] + σ(W [k−`])

)
B[`]

+ C[`]
(
[W [k−`], H +D] + σ(W [k−`])

)
=W [k−`] [B[`], H +A] + [C[`], H +H]W [k−`]

+
(
[W [k−`], H +D] + σ(W [k−`])

)
B[`] + C[`]

(
[W [k−`], H +D] + σ(W [k−`])

)
=
(
W [k−`]B[`+1] + C[`+1]W [k−`]

)
+
(
W [k+1−`]B[`] + C[`]W [k+1−`]

)
,

by the de�nitions of B[`+1], C[`+1] and W [k+1−`]. Altogether,

σ(W [k+1]) =

k+1∑
`=1

(k + 1

`

)(
W [k+1−`]B[`] + C[`]W [k+1−`]

)
follows in the same same way as in the proof of (5.9a) above, which completes the
induction step. ut
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