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1. Introduction

Numerous contributions confirm the favorable behavior of exponential
operator splitting methods for evolution equations of Schrédinger type, both
linear and nonlinear; as a small selection, we mention [1, 2, 3] and refer to
literature given therein. In the present work, we introduce and analyze a
posteriori local error estimators serving as a reliable basis for adaptive time
stepsize control. For this purpose, we extend techniques previously devel-
oped for linear evolution equations [5, 6] to the significantly more complex
nonlinear case within a general setting of evolution equations on Banach
spaces.

In order to construct a defect-based local error estimator associated with
a splitting method, we determine the defect of the splitting solution and
approximate a corresponding integral representation for the local error by
means of a quadrature formula involving a single evaluation of the defect.
We prove that the obtained local error estimator is asymptotically correct
and confirm this theoretical result by a numerical experiment for the focusing
cubic nonlinear Schrodinger equation. A further numerical example for the
two-dimensional time-dependent Gross—Pitaevskii equation with additional
rotation term illustrates the performance of adaptive time stepsize control
based on a posteriori local error estimation. Compared to the approach ex-
ploited in [5, 6| for linear evolution equations, the treatment of the nonlinear
case involves considerably more technicalities. For this reason, we include
detailed calculations for the first-order Lie—Trotter method and describe the
extension to the second-order Strang splitting method using automatic sym-
bolic manipulations. The generalization to higher-order splitting methods is
briefly indicated. As the a posteriori local error analysis requires a detailed
investigation of the underlying error structures, we refrain from resorting to
the formal calculus of Lie derivatives as this would imply the need to translate
back to explicit representations anyway.

The manuscript is organized as follows. In Section 2, employing a frame-
work of abstract nonlinear evolution equations, we state the defect-based lo-
cal error estimators associated with a general splitting method. Section 3 is
devoted to a detailed local error analysis of the Lie-Trotter splitting method
in a general nonlinear setting. The extension to the Strang splitting method is
described in Section 4. The specialization of our approach to time-dependent
nonlinear Schrédinger equations is given in Section 5. Basic prerequisites and
additional auxiliary results for the Strang splitting method are collected in



the appendix.

2. Defect-based local error estimators

2.1. Problem selting
We consider the initial value problem

Lu(t) = H(u(t)) = A(u(t)) + B(u(t)),  te€ (0,77, (2.1a)
u(0) = ug given, (2.1b)

where H: D(H) — B, A: D(A) — B, and B: D(B) — B denote generally
unbounded nonlinear operators on the underlying Banach space B such that
D(A)ND(B) =D(H) C B. The exact flow associated with (2.1) is denoted
by

u(t) = En(t, ug), tel0,7]. (2.1¢)

By 2-&n(t,ug) and 0, Ep(t,ug) we denote the Fréchet derivatives of
Er(t,ug) with respect to t and wug, respectively. By 05Ex(t,ug) we denote
the k-th Fréchet derivative with respect to ug. The same denotation is used
for the flows Ea(t, ug) and Ep(t, up).

Remark 1. Our theoretical considerations are valid under appropriate
smoothness assumptions. This means that all relevant nonlinear operators
and flows are assumed to be well-defined and sufficiently often continuously
Fréchet differentiable. Then, all occurring higher Fréchet derivatives are sym-
metric functions of their arguments, and this is tacitly assumed in all formal
calculations.

Since we are mainly interested in evolution equations of Schrodinger type,
we restrict our general considerations to the time-reversible case. In partic-
ular, we use the variation-of-constants formula (A.2c) where reversibility in
time is assumed. The extension to the non-reversible case requires suitable
modifications, see for instance [7].

2.2. Splitting methods
For the time integration of (2.1) we study exponential operator splitting
methods, see [8, 9] for detailed information. A single step of a splitting
method is of the form
S(t,u) = Ss(t,Ss_1(t, ..., S1(t,u)) =~ Eg(t,u),
Sj(t, U) = EB(bj t, 5,4(&]‘ t7 U)) 5



with time increment ¢, initial state u, and coefficients (a;,b;)3_; evidently,
the relation S(0,u) = w is satisfied. In particular, a three-stage splitting
method is given by

U1 :SA(alt,u), w1 :gB(bl t,Ul),
(%) :8A(a2t,w1), Wo :SB(bgt,’Ug), (2 3)
V3 = gA(CI,g t, ’LUQ) s Wws = (S'B(bg t,"Ug) s '

S(t, U) = Sg(t,Sg(t,81<t,U))) = Ws .

In view of the high amount of technicalities in the a posteriori local error
analysis, we focus on the first-order Lie-Trotter and the second-order Strang
splitting methods, defined by

p=1: S(t,u) =Ep(t,Ealt,u)) =~ Ex(t,u), (2.4)
p=2: S(t,u)=Ea(%,E(t,Ea(5, 1)) = Exlt,u). (2.5)

Generally, for an approximation to the exact flow associated with the
nonlinear evolution equation (2.1),

SOt u) =S(t,u) ~ Eu(t,u), S(0,u) =u, (2.6a)
we define its defect by
SW(t,u) = Z8(t,u) — H(S(t,u). (2.6b)
Higher-order defects such as the second- and third-order defects
SO(t,u) = 28W(t,u) — H'(S(t,u)) - SY(t, ), (2.6¢)
SO(t,u) = %8(2) (t,u) — H'(S(t,u)) - SP(t,u) (2.6d)

— H"(S(t,))(SW(t,u), SV (t,u)),

occur in the local error analysis, see Lemma 1 below.
The local error of the approximation (2.6a) is denoted by

L(t,u) =S8(t,u) —Ex(t,u). (2.7a)

By means of the nonlinear variation-of-constants formula (A.3), the integral
representation

L(t,u) = / Flrtou) dr) (2.7b)
F(r,t,u) = 0oy (t —1,8(T,u)) - 8(1)(7, u), (2.7¢)

involving the defect (2.6b) is obtained.
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2.8. Error estimators

In order to construct a defect-based local error estimator associated with
a splitting method of order p > 1, we approximate the local error on the
basis of the following idea. Validity of the p-th order conditions ensures

2L(0,u) = g—;ﬁ(o,u) == 2L0,u) =0, a{niil due to (2.7b,c) this is
equivalent to SM(0,u) = 28W(0,u) = ... = 2=58W(0,u) = 0. Thus,
O L(0,u) = 2.8W(0,u), which implies

L(t,u) = £ 5 SW(0,u) + 6(7). (2.8)

Here, 42 SMW(0, u) is a linear combination of iterated commutators of A and
B (see (3.8),(4.5), and [4]) which would be rather cumbersome to evalu-
ate, in particular for higher-order schemes. However, combining (2.8) with
SW(t,u) = o L8W(0,u) + O(t'') we see that

P(t,u) = ZﬁtS(l)(t,u) ~ L(t,u) (2.9a)

is expected to be an asymptotically correct local error estimator, i.e.,
P(t,u) — L(t,u) = O(t"?). (2.9b)

One of our main issues is to deduce a suitable representation for the defect
and to give a rigorous proof of (2.9b), i.e., a precise estimate for the &(tP2)
term, for the schemes (2.4) and (2.5).

The estimator P(¢,u) may also be interpreted as the evaluation of a
Hermite quadrature formula for the local error integral (2.7b,c) (exploiting
SW(0,u) = 28W(0,u) = ... = Z=8M(0,u) = 0, see [5, 6]). Our analysis
will be based on a representation of the corresponding quadrature error.

In Section 3, we show that an explicit representation for the defect asso-

ciated with the first-order Lie—Trotter splitting method is given by

SO (t,u) = Ep(t, Ealt,u)) - A(Ea(t,w)) — A(Ep(t, Ealt, n))),

and deduce a representation implying (2.9b) with p = 1. As the analogous
analysis for the second-order Strang splitting method, with defect SM (¢, u)
represented by (C.1), involves a significantly higher amount of technicalities,
we utilize automatic symbolic manipulations for verification of the results
stated in Section 4, see also Appendix B and Appendix C.



For general multi-stage schemes, an explicit representation of the de-
fect (2.6b) looks as follows. For a three-stage scheme we have

S(l)<t, U) == 8263(63 t, Ug) . 825A(a3 t, wg) . {ag A(wg) + b2 B(wg)
+ 5253(62 t, UQ) . 02€A(a2 t, wl) . |:a2 A(wl) =+ bl B(wl)

4 uEp(bit, 1) - Dealart,u) - (an A(u))] }
— A(ws) — (1 = bs) B(ws), (2.10)

with the internal stages v; and w; from (2.3). Again, this does not contain
explicit derivatives w.r.t. ¢t and can be practically evaluated in typical applica-
tions, see Section 5. The proof of (2.10) is a routine calculation, where (2.6b)
is rewritten by differentiating S(¢) and making repeated use of the funda-
mental identity (A.7). The extension to the general case is now also obvious;
however a rigorous analysis of P(t,u) based on (2.10) for the general case is
out of the scope of this paper. For the linear case, see [6].

In view of our a posteriori local error analysis for the Lie-Trotter and
Strang splitting methods, we next determine the first and second derivatives
of the integrand in the local error representation (2.7) and express them in
terms of defects.

Lemma 1 (Derivatives of F). The first and second derivatives of the
function F defined in (2.7c) satisfy

L F(r,t,u) = 0uEu(t — 7,8(r,u)) - S (r,u) (2.11a)
+ 03Ey(t — 7,8(1,u))(S 1)(7' u), 8(1)(7, w)),
2 F(r,t,u) = 0:Eu(t — 7, 8(1,u)) - SO (7, u) (2.11D)

)(SW(7,u), 8P (7, u))
1)(7 u),S st )(7', u),S(l)(T, u)) .

\]

, U

+ 3058 (t — 7,5(,u)
+ 03E(t — 1,S(1,u))(S
PRrROOF. For notational simplicity, we meanwhile omit the arguments of F
as well as S, SU) and write £y = Ex(t — 7, S(7,u)) for short.



(i) Differentiation and an application of formula (A.13) proves (2.11a),
LF = 2 (065 -SV)
= (Z0hEn) - SN + 0p&y - 2 SW
= — &y - H'(S) SY — 03 Ex(H(S),8W) + 05 En(LS,8W)
+ 0y - aa—TS(l)
= 0pp - (28— H'(S) - SW) + 05 En(L£S — H(S),8V)
= 0yEp - SW + 02 E5(SW, SW)
(ii) We separately consider the contributions in
L F = 2 (0:Ep - SP) + L (026(SW,SW)).
For the first term we obtain
2 (0sEp - SP) = (Z0uEp) - 8P + 0uEp - SP (2.12a)
= — &y -H'(S)-SY —2&4(H(S),S?)
+ 02 SH(is S@) + 828H - 2S@

= & - (8P - H'(S)-8?)
+825H( H(S), 3<2>)
= o€y - (£8Y — H'(S) - SP) + 05 Ey(SW,8P).
Applying (A.14) yields
2 (95Ew(SW,8W)) (2.12b)
= (L03Em)(SW, 8<1>) + 2a§5H(3<1>, 2 sy
= — &y - H"(S)(SW,8W) — 2024 (H'(S) - SV, 8W)
— O3 (H(S),8W,8W) + 95k (2L-5,8M,8W)
+2028(SW, aism)
= — %Ey - H'(S)(SW,8W) + 2055 (28Y — H'(S) - SW, 8W)

+ € (58 — H(S), 5. 8)
= — 0 - H'(S)(SW,8W) + 2055 (2-8W — H'(S) - SV, 8W)
+ 03E(SW, 8W sW)y.



Adding (2.12a) and (2.12b) leads to
L F(r tu) = 0oEp - (8P — H'(S) - SP) + 02(SM, 8@
— 0sEyy - H”(S)(S(l), 5(1))
+205E(2SY — H'(S) - SW,8W)
+ 038 (SW, SW s
= 05E0 - S® +30265(SW, 8P + 9364 (SW, SW, SW) |
which proves (2.11b). O

3. Lie—Trotter splitting method

In this section, we provide a local error analysis for the Lie-Trotter split-
ting method (2.4). In particular, we construct a defect-based local error
estimator and prove asymptotical correctness. Our approach relies on the
derivation of suitable evolution equations for the splitting operator and re-
lated quantities such as the defect and resulting integral representations.
We note that the formal calculations are valid in a rigorous sense whenever
the arising compositions of flows and Lie commutators are well-defined on
the underlying Banach space. The specialization to a nonlinear Schrédinger
equation is studied in Section 5.

3.1. Splitting operator and defect
We first state a nonlinear evolution equation satisfied by the splitting
operator associated with the Lie-Trotter splitting method (2.4).

Lemma 2 (Evolution equation, Lie-Trotter splitting). The splitting
operator S(t,u) = Ep(t,Ea(t,u)) satisfies the nonlinear Sylvester equation

g—tS(t, u) = 0oS(t,u) - A(u) + B(S(t,u)), (3.1)
where S (t,u) = 02ER(t, Ea(t,u)) - 02€A(L, u).

PROOF. Straightforward differentiation and an application of the fundamen-
tal identity (A.7) yields

5-8(t,u) = Z-Ep(t, Ealt, u))
= B(Ep(t,Ealt,u)) + 0:EB(t, Ealt,u)) - A(Ea(t, u))
= B(S(t,u)) + 0:p(t, Ea(t, u)) - A(Ea(t, u))
= B(S(t,u)) + 0:Ep(t, Ea(t,u)) - 2EA(t,u) - A(u),



which proves (3.1).

O

The following auxiliary result provides a representation of the de-

fect (2.6D).
Lemma 3 (Defect SV)(t,u), Lie-Trotter splitting).
(i) The defect is given by
SW(t,u) = SW(t, Ea(t,u)),
SW(t,v) = 0a€p(L,v) - A(v) — A(Ep(t,v)).
(ii) The operator SU satisfies the initial value problem
2.80(t,0) = B'(Ep(t,)) - SV(1,0) + [B, A(En(r,0))
SW(0,v) =0.
(iii) The integral representations
S(l)(t, U) = anB(t, U) .
t
| 2sEa(=r.ealr.0) - (B AER(r. ) .
0
SW(t,u) = 0aEp(t, Ea(t,u)) -

(3.4D)

/o Ep(—T1,E(T,EA(t,u)) - [B, Al(Ep(T, Ea(t,u))) dT,

are valid.

PROOF.
(i) From (3.1) we obtain

S(l)(t,U) =2 5 S(t,u) — H(S(t,u))

_Q&@&(M)AQMWD+M@@&MWD

H(S(t,u)
= 02Ep(t, Ea(t, u)) - A(Ea(t, u)) — A(S(t, u)),

which proves (3.2).
(ii) Equation (3.3a) follows by differentiation, see (A.8a).
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(iii) The integral representation (3.4a) for SM follows from (A.2). Sub-
stituting v = £4(¢, u) yields the integral representation (3.4b) for the
defect S, O

Remark 2. In view of Lemma 4 below, we next deduce a representation for
9,8, Using (3.2b), we obtain

HSV(t,v) = B2Ep(t,v)(A(v), ) (3.5a)
+ (0:€p(t,v) - A'(v) — A'(Ep(L,v)) - DEp(t,v)), (3.5b)
where 9,81 (0,v) = 0. Differentiating (3.5a) and inserting (3.3a) yields
99,8V (t,v)) = 0s(2-SV(t,v))
= 8y(B'(Ep(t,v)) - SV(t,v) + [B, Al(Ep(t,v)))
= B'(Ep(t,v)) - SW(t,v) (3.5¢)

+ B"(Ep(t, v))(SW(t,v), %Ex(t,v) -)
+ [B, A" (Ep(t,v)) - D2EB(t,v) .

By means of (A.2) the integral representation

t
RhSW(t,v) = DEp(t,v) - / Ep(—7,Ep(T,v) - (3.5d)

0

{B’/(sB(T, NED (1, v), BEx(7,) -)
B, Al(Ep(T,0)) - :Ex(T, v)} dr

follows.

3.2. A priori local error analysis

Inserting the integral representation (3.4b) for the defect into (2.7) leads
to a representation for the local error which implies

L(t,u) = 0Ot?), (3.6)

provided that the integrand remains bounded on the underlying Banach
space. The resulting local error representation corresponds to the integral
representation deduced in [10].

10



Theorem 1 (Local error, Lie—Trotter splitting). The local error of the
Lie—Trotter splitting method satisfies

ﬁ(t’u) = /0 /07—1 825H(t — T1,S<7'1,u)> . (37)
8283(71,5A(7'1,u)) . 8283(—72,5B(T2,5A(T1,U)) .
(B, A|(Ep(12, Ea(T1,u))) dradry .

Remark 3. The leading term after Taylor expansion of L(t,u) is given by

S L0,u) =5 §800,u) = 5 8P(0,u) = 5 [B, Al(u), (3.8)

2 de? 2 dt

which exactly corresponds with the linear case, see [5].

3.8. Second-order defect

The following considerations serve as a preparation for the analysis of the
a posteriori local error estimator provided in Section 3.4.

Lemma 4 (Second-order defect S (¢,u), Lie-Trotter splitting).
(i) The second-order defect defined in (2.6¢) is given by
SO (t,u) = SO (t,Ex(t, u)), (3.9a)
SO (t,v) = 0,8V (t,v) - A(v) — A'(Eg(t,v)) - SW(t,v) (3.9b)
+ [B, A](Eg(t,v)).
(i) The operator 8@ satisfies the initial value problem
g—tS(Q) (t,v) = B'(Ex(t,v)) - SP(t,v) (3.10a)
+ B"(Ep(t,0)(SW(t,v), SV (t,0))
+ HB7 A]? A] (SB(ta U)) + HB7 A]? B] (SB(t7 U))
+ 2 [Ba A]/(gB(t7 U)) ’ S(l)(ta U) )
S®(0,v) = [B, A](v). (3.10b)

11



(iii) The representations

SOt v) = SEO(t,v) + SV (¢, v), (3.11a)
S@O (¢ v) = 9E5(t,v) - [B, Al(v), (3.11b)
SCV(t v) = 0,E5(t,v) - / t RER(—T,Ep(T,0)) - (3.11c)

{B"(€n(r.0)($V(r,0), 8V(r,v))
+[[B, A}, A|(Ep(T,v)) + [[B, A], Bl(Ex(7,v))
2B, AV (Ex(r,0)) - SV (7, )}df,
and
S (t,u) = SO (t,u) + S®V(t,u) (3.11d)
= SEO(t Ex(t, 1)) + SEV (L, Ea(t,u))
are valid.
PROOF.

(i) We recall that the second-order defect is defined in (2.6¢). From (3.2b)
and (3.3a) we have

2.8W(t,u) = ZSW(t,E4(t,u))
)

(
= B'(Ep(t, Ealt,w))) - SY(t, Ealt,u))
+[B, Al(€s(t, Ealt, u)))
+ 08U (t, Ealt,u)) - A(Eatw).

Consequently, this yields

SO(t,v) = B'(Ex(t,v)) - SV(t,v) + [B, Al(Ex(t, v))
+ SV (t,v) - A(v) — H'(Eg(t,v)) - SW(t,v)
= SV (t,v) - A(v) — A'(Ep(t,v)) - SV (t,v) + [B, Al(Ex(t,v)),

which proves (3.9b).
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(ii) Evaluation of (3.9b) at ¢ = 0 implies (3.10b). In the proof of (3.10a),
we meanwhile suppress the argument to simplify notation. Proceeding

from

S® = 0,8W - A(v) — A'(Ep) - S + [B, Al(E)

see (3.9b), differentiation yields

950 = (29,8M) . A(w) — L (A(E
(

o B)S
= (70:5%) - < > Alen) - 555"
— A"(Ep) (%€, SW) + (B,
= (&S - A(v) — A'(Ep) - 5:8V
— A"(&p)(B(Ep),8W) + [B, Al (€p) - B(Ex).

) 5-([B, Al(€p))

]( )'aa_th

From (3.5¢) we obtain
(%825’(1)) . A(’U) = B,((SB) : 823(1) : A(U) + B”(SB)(S(D’ 8253 . A(U))
+ [B, A]'(Eg) - 0:€p - A(v),

and from (3.3a) we have
A(Ep) - 28W = A'(&p) - B'(Ep) - SW + A'(Ep) - [B, Al(Ep).

In this manner, we determine the occurring time derivatives and obtain

9.8® = B'(€p) - 9,8W - A(v) + B"(Ep)(0:E5 - A(v), SW)
+ [B, A]/(SB) . 8253 . A(’U)
— A'(Ep) - B'(€p) - SV — A'(Ep) - [B, Al(€p)
— A"(EB)(B(Ep),SW) + [B, A'(€p) - B(EB) .

Recombination gives
280 = (SB) ). A(w) — B'(E) - A'(Ep) - SW
(53) [B,A] Ep
- A”(SB)(B Ep), SV ) A'(Ep) - B'(Ep) - SV
B'(&p) - A'(Eg) - SW + B"(ER)(0:E5 - A(v),SW)
+[B, A'(€p) - B(Ep) — A'(€s) - [B, Al(€)
+[B, Al'(€p) - 02&p - A(v) — B'(€p) - [B, Al(€),

13



where, due to (3.2b), we use
0Ep - Alv) = SV + A(ER).

As a consequence, we obtain

— A'(€p) - B )
_ B(Es) - [B, Al(Ep)
= B'(Ep) - S@ 4 B”(SB)(S(l),S(l))
+[B, Al'(€p) - B(Ep) — A'(Ep) - [B, Al(€p)
+[B, A'(€g) - A(Eg) — B'(Es) - [B, Al(Ep)
+1{ —A"(&)(B(Ep), A'(Eg) - B'(E) + B'(Ep) - A'(EB)

This expression simplifies to (3.10a).
(iii) The integral representations (3.11) for S and S® follow from an
application of the variation-of-constants formula (A.2). O

3.4. A posteriori local error analysis
For the construction of a defect-based local error estimator we approx-
imate the integral representation (2.7b) by the trapezoidal rule. Applying
F(0,t,u) = S (0,u) = 0, see also (2.7¢) and (3.4b), and the representation
of the defect provided by Lemma 3, we obtain
P(t,u) = =1 =1

t (0uEp(t, Ealt,u)) - A(Ea(t,u)) — A(Ep(t, Ealt,n)) . (3.12a)

t (F(0,t,u) + F(t,t,u)) = 2t F(t,t,u) =1tSW(t,u)

1
2
1
2

Practical evaluation of the a posteriori local error estimator is discussed in
Section 5.

Our aim is to show that the local error estimator is asymptotically correct,
that is, its deviation satisfies

P(t,u) — L(t,u) = Ot%). (3.13)

14



For this purpose, we analyze the quadrature error employing the first- and
second-order Peano kernels

K1<7_7 t) =T—5t= ﬁ(ﬂ? K2<7_7 t) = %T(t o 7—) = ﬁ(t2);

(note that Ki(7,t) = — 2 K>(7,t)). Recalling the representations for the
first- and second-order defect terms provided by Lemma 3 and Lemma 4, the
following result implies (3.13), provided that the integrand remains bounded.

Theorem 2 (Deviation, Lie-Trotter splitting). For the deviation of
the a posteriori local error estimator, the integral representation

Pt,u) — L(tu) = /0 (Ki(7,) Gy (7, t,u) — Kao(7,t) Ga(r, t,u)) dr ) (3.14a)

Gi(7,t,u) = 0uEp(t — 7,S(1,u)) - S®V (¢, u) (3.14b)
4 O2E5(t — 7, S(m ) (SD (7, u), SV (1, 1)),

Go(r,t,u) = {825,{@—7,53(7, V) - SN (t,v) - [B, Al(v) (3.14c)
+822€H(t_7753(7—av))( (7, 0),3:Ep(r,0) - [B, Al(v))
Ot =7 Eplr) - Bfp(r) - (BALAW |

holds.

PROOF. We start from the first-order Peano representation
P(t,u) — L(t,u) /Kth F(r,t,u) dr.

From (2.11a) in Lemma 1 we have

L F(r,t,u) = 0:En(t — 7.8(7,w)) - SP(7,u)
+ B2t —7,8(1,u)(SY(r,u), SV (r,u)).

Lemma 3 implies S (7, u) = €(7), which results in an &(72) contribution
to 2 F(7,t,u). Furthermore, due to Lemma 4, S® splits into

SO (r,u) =SV (1, u) + S®V(r,u) = O(1) + O(1) .
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Consequently, we have
88—7_./—"(7', tou) = Gi(r, t,u) + %Ep(t —7,8(t,u)) - SEV (1, u),

with Gi from (3.14b), which gives an €(72) contribution to -F. The re-
maining contribution to the quadrature error influenced by S (1) = &(1)
is now analyzed in detail. Using integration by parts, we convert it into
second-order Peano form

t
/ Ki(7,t) €5 (t — 7,8(1,1)) - S®V (7, u) dr
0

¢
:/ Ky (T, t)(_%(@zé’H(t—T,S(T, w)) -8(2’0)(7', u)) dr,
0

involving
W€yt —1,8(1,u)) - S20) (1, u)
= €yt —7,8(1,1)) - 0EB(T,Ea(T, ) - [B, Al(Ea(T, 1)),
see (3.11). The derivatives of these three factors evaluate to
8%3251{@ —7,8(T,u))
= —0sEy(t —7,8(1,u)) - H'(S(1,u))
— 05 Ey(t — 7, 8(1,u)(H(S(7,u)),")
+ 0 Eu(t — 7,8(7,u))(=S(1, u), )
= —0Eu(t —7,8(1,u)) - H'(S(7,u))
+ 8228H(t - T, 8(7—7 u))(8(1)<7', U), )

_ { 0t — 7, Ep(T,0)) - H'(Ep(r,v))
FRE(t — 7, Ex(T, 0))(SD (1, 0), -)}

v=E4(T,u) ’

and
L 0oEp(1,Ea(7, 1))
= &p(1,Ea(T,u)) - B'(Ea(t,u))
+ 02Ep(1, EA(T, u))(aa—TEA(T, w) + B(Ea(T,u)),-)
= 0Ep(1,E4(T, 1)) - B'(Ea(t,w)) + 02E5(T, Ea(T,w)) (H(Ea(T, 1)), -)

)
= {aup(r0) B0) + B3E(r ) (H). )}

v=E4 (Tvu) ’
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and

Altogether,
L 0oEn(t — 7,Ep(1,Ea(T, 1)) - 0uER(T, Ea(T, 1)) - [B, Al(Ea(T, 1))
= { — 0oy (t — 7,Ep(T,v)) - H(Ep(T,v)) - EB(T,v) - [B, A](v)

)

+ 02Eg(t — T, ER(T, U))(S(l)(T v), 0:Ep(T,v) - [B, A](v))

+ 0oy (t — 7,E(T,v)) - EB(T,v) - B'(v) - [B, A](v)

+ 0hEu(t — 7,Ep(T,v)) - 03E(T,v)(H(v), [B, Al(v))
( (1,0)) -

+ oE(t — 7, E5(T,0)) - DoE(r,v) - [B, Al'(v) - A(v)}

v=E4(T,u) ’

which can be rewritten as

{ Doy (t —1,Ep(T,v)) - H'(Ep(T,v)) - €p(T,v) - [B, Al(v)
+ 0y (t — 7,Ep(T,v)) - RER(T,v) - H'(v) - [B, A](v)
+ 0yt — 7,Ep(T,v)) - REp(T,v) - (—A'(v)) - [B, A](v)
+ 0t — 7,Ep(T,v)) - RER(T,v) - [B, A (v) - A(v)
+ 0hEu(t — 7,E5(T,v)) - 03E(T,v)(H(v), [B, Al(v))
+ 0B (t — 7. En(7,0))/(SV (7, 0), En(r,v) - [B, Al(v) | .

Now we recombine terms. Consider

O5Ep(T,v)(H(v),-) + 0sEp(7,v) - H'(v) — H'(Ep(7,v)) - 02€p(7,v)
= 9Ep(1,0)(A(v), -) + 0aEp(7,v) - A'(v) — A'(Ep(T,0)) - DaEp(T,v)
+ 02Ep(1,v)(B(v), ) + %Ex(T,v) - B'(v) — B'(Ep(T,v)) - :E5(T,v).

Here, the term in the first line equals 9,S™ (t,v), see (3.5a), and the other
term vanishes because it is the Fréchet derivative with respect to v of
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02ER(t,v) - B(v) — B(Ep(t,v)) = 0, see (A.7). With this observation we
finally obtain

%(8281{(15 — 7, Ep(1,Ea(T,1))) - OuEp(T, Ea(T, 1)) - [B, Al(Ea(T, 1))
- {GQSH(t 7, Ep(r,0)) - 8D (8, v) - [B, Al(v)
4 O2Eu(t — 7, E5(r, 0))(SD (1, v), BEs(r, v) - [B, Al(v))
-+ 82€H(t -7, gB(T, 'U)) . 8253(7', U) .
(—A'-[B, A+ [B,A] - A)(v) }

v=E4 (Tvu) ’

which is identical to Go(7,t,u) from (3.14c). This completes the proof of
Theorem 2. a

4. Strang splitting method

In this section, we construct a defect-based local error estimator for the
Strang splitting method (2.5) and prove its asymptotical correctness. Com-
pared to the local error analysis for the Lie—Trotter splitting method, the
calculations are significantly more involved. Suitable representations for the
defects S, S?) SO defined in (2.6) are provided by Lemmas 5-7 in Ap-
pendix C. These have been verified by automatic symbolic manipulations,
see Appendix B. The specialization to a nonlinear Schrédinger equation is
described in Section 5.

4.1. A priori local error analysis
Inserting the integral representation (3.4b) for the defect into (2.7) yields
a representation for the local error. The proof of the following theorem is
based on a further expansion leading to an integral representation which
implies
L(t,u) =0(t), (4.1)
provided that the integrand remains bounded.

Theorem 3 (Local error, Strang splitting). The local error of the
Strang splitting method satisfies

L(t,u) = /Ot /071 {825H(t2 —7,8(m9, 1)) - SP (13, ) (4.2)

+ BEn(t = 72, (2, )8V (72, w), 8V (7, w)) | dra
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with SN, 8@ given in Lemmas 5 and 6, see Appendiz C.

PROOF. We perform a twofold expansion of the local error integral (2.7b).
Due to F(0,t,u) = SM(0,u) = 0,

t t T1
E(t,U) = / .F(Tl,t,U) dT1 == / / %f(TQ,Tf,U) d7'2 d7'1, (43&)
0 o Jo
where, according to (2.11a) in Lemma 1,
%]—"(7, t,u) = 0o€y(t — 7,8(1,u)) - S® (T,u) (4.3b)
+ 05Ey(t — 7, 8(7, u))(S(l)(T, u), S(l)(T, u)) .

From Lemma 5 in Appendix C below we see that S®)(7,u) = €(r) holds
due to the homogeneous initial conditions (C.2b) and (C.2d), provided that
the respective integrands remain bounded. Furthermore, from Lemma 6 we
obtain with the help of the generalized fundamental identity (A.9):

8O(7,u) = {BaEa(ir.w) - SEV(7,0) + S22, w) }

v=E4 (%T,u)
w=ER (T,SA(%T,U,))

= {LopEa(ir.w) - (BaEp(r,v) - [B, Al(v) — [B, 4] (€(7,v)) }

v:EA(%T,u)
w=ER (T,SA(%T,’LL))

+ O(1)
- {% 0oEa(37, W) - DuEp(7,v)

/0 0E (7, E5(r,v)) - [B. B, Al)(Ep(r.0))

} U:(S‘A(%T,u) + ﬁ(T)

w=Ep(T,Ea(57,u))

= ﬁ(T) )
provided that all integrands involved remain bounded. a
Remark 4. We note that for 7 = 0 we have

S@(0,u)
= %825,4(0, u) . (8253(0, U) : [B, A](U) — [B, A] (gB(O, U))) ‘vng(O,u)

w=EpR(0,£4(0,u))
= 5B, Al(u) — 5B, AJ(u) = 0, (4.4)
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which corresponds with the second-order condition satisfied by the Strang
splitting method.
The leading term after Taylor expansion of L(¢,u) is given by

3 3 3 2 3 3
L L L0,u) =5 S8W(0,u) = £ 28D (0,u) = £ S®(0,u)

— £ (L[[A, B, A(u) + } [[A, B], B](u)),

which exactly corresponds with the linear case, see [5].

(4.5)

4.2. A posteriori local error analysis

The error estimator is defined as the approximation of the local er-
ror integral (2.7b) by a third-order Hermite quadrature formula, exploiting
F(0,t,u) = SW(0,u) = 0 (see (2.7c), Lemma 5), and ZF(0,t,u) = 0
(see (2.11a), (4.4)):

P(t,u) =t (3 F(0,t,u) + 5t Z=F(0,t,u) + § F(t,t,u))

=1t F(ttu) = 1tSV(tu). (4.6a)

By means of the representation of S(l)(t, u) provided by Lemma 5 we have
P(t, U) = % t {82(€A(%t, ’I,U) : 3(1’1) (t, U) + S(LQ) (t’ w)}‘v:é};(%t,u) ’ (46b)

w:f,‘B(t,EA(%t,u))
with

5’(171)(75, v) = %(6283(15, v) - A(v) — A(Eg(L, v))) , (4.6¢)
SA(t,w) = DEa(5t,w) - B(w) — B(Ea(5t,w)). (4.6d)

Our aim is to show that the local error estimator P(¢, u) is asymptotically
correct, i.e., that its deviation, the error of the Hermite quadrature rule
applied to (2.7b), satisfies

Plt,u) — L(t,u) = O(t). (4.7)

In the following, this quadrature error is analyzed on the basis of its Peano
representation, with the second- and third-order Peano kernels

Ky(m,t) = ¢ (3r = t)(t —7) = O(t?),
Ky(r,t)=¢7(t—7)* = O0(t)

(note that K(7,t) = —Z K3(7,t)). For the following theorem we recall the
representations for the first-, second-, and third-order defect terms provided
in Lemmas 5-7.
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Theorem 4 (Deviation, Strang splitting). The deviation P — L of the
a posteriort local error estimator admits an integral representation which im-
plies (4.7).

PROOF. We start from the second-order Peano representation
t 2
P(t,u) — L(t,u) = / Ko(1,t) & F(r,t,u) dr .
0

From (2.11b) in Lemma 1 we conclude

L F (1, t,u) = 0Eu(t — 1, 8(1, 1)) - SO (1, 1)
+ 3(92251{(75 —1,8(T, U))(S(l)(T, u), S® (1,u))
+ @g’é};(t —7,8(T, u))(S(l)(T, u), 8(1)(7', u), 8(1)(7', u)) .

Lemmas 5 and 6 imply S (7, u) = ¢(7) and S@ (7, u) = €(1), which result
in a O(7) contribution to 8‘9—7_22 F(7,t,u). Thus,

D F(r,t,u) = 0:Eu(t — 7,8(1,u)) - SO (r,u) + O(1),

where S©) (7, u) is represented by (C.7a) from Lemma 7. Together with (see
Appendix C)

StV v) = o(r), S*V(r,0)=0(1),
0,81 (r,w) = O(7), 0,8 (r,w) = 0(1), and ST (rw) = O(r),

we obtain

SO (t,u) = {9€a(5t,w) - SEV(t,0) + SPI (L w) } ey 1y + O,

w=Ep(t,Ea(3t,u))

and due to representations (C.9a) and (C.9b) for SG(¢,v) and SG2) (¢, w)
this yields

SO(t,u) = {825A(%t, w) - Ep(t,v) - (= A[B,[B, All(v) — L[A, [B, A|(v))
+ 0oEa(3t,w) - (1B, [B, AJ(w) + 3[4, [B, AJw)) }] ey ey +00).

w=ER (t,SA(%t,u))
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It remains to show that

/0 Ko(7,t) 28y (t — 7,8(T, 1)) - 828,4(%7', Ep(T, SA(%T, u))) -
02Ep(T, 5A(%T, w)) - [B, B, A]](8A<%T, u))dr = O(th),

/0 t Ko(7,t) € (t — 7,8(1, 1)) - Ea(37,E(T,Ea(37, 1)) -
0:E5(7, Ea(57,w)) - [A, [B, Al|(Ea(57,u)) dr = O (1Y),

/0 Km0 aEn(l — 7, S(r ) - DaEa(br En(r, Ealbrou)) -
1B, [B, Al(€x(7, (Ea(zTw))) dT = O(t"),

/0 t Ko(1,t) 0:E(t — 7,8(7 1)) - €457, EB(T, Ea(AT,00))) -
[A,[B, Al|(E(7, (Ea(5T,u))) dr = O(t"),

are satisfied. Using integration by parts we convert these integrals into third-
order Peano form. For the first integral this yields

t
/ Ks(T,t) %(anH(t —71,8(7T,u)) - 825A(%T, Ep(T, 5,4(%7‘, u))) -
0
02Ep(T, EA(%T, w)) - [B, B, A]](5A<%T, u))) dr,
and analogously for the other integrals. Thus, we have to show

2 (0xEu(t — 7,8(1,0)) - 0x€a

(37, €p(7,Ea(37,1))) -
0:Ep(7,Ea(5T,w)) - [B,[B, All(€a(zT,w))) = 0(1), (4.8a)

2 (05En(t — 7,8(1,0)) - 82(€A(27—, B(1,Ea(37,1))) -
02Ep(7,Ea(5T,w)) - [A,[B, Al[(€a(57,u))) = 6(1),  (4.8b)

2 (0oEn(t —7,8(1,0)) - 825A(1T Ep(T, Ea(iT ) -
B, (B, All(€5(7, (Eazmw)))) = €(1),  (4.8¢)

( )

%(aggH(t—T,S(T,U)) 82€A( T, EB( ,gA %T,u) .
[A,[B, AlJ(€s(7, (Ea(57,u)))) = (1) (4.8d)

Relations (4.8a) and (4.8b) are valid because for each smooth operator F'
and thus in particular for F' = [B, [B, A]] and F' = [A, [B, A]], the respective
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derivative can be evaluated as

D (DaEn(t — 7,8(7,u)) - Ea(37,Ep(T, Ea(37,1))) - DaEp(T, Ea(3T, 1)) - F(Ea(37, 1))
= { — 10Eult — 7 S(r0) - DEalbrw) - DEs(r,) - [A,FI(0)

+ hEu(t — 7, 8(1,u)) - .S (1, w) - E5(T,v) - F(v)

+ &yt — 7,8(1,u)) - D37, W) - HSTY (1,v) - F(v)

+ Eh(t —7,8(7,u)) - 03EA (AT )(SU»U(T, v), 02Ep(T,v) - F(v))
+05Ex (t — 7,8 (7, ) (SV(7, ) 02E4(57,w) - OrER(T,v) - F()) [ |omen(iew

w=Ep (t,é’A(%t,u))

Relations (4.8c) and (4.8d)) are valid because for each smooth operator F
and thus in particular for F' = [B, [B, A]] and F' = [A, [B, A]], the respective
derivative can be computed as

L (0xEn(t — 7,8(1,0)) - EA(AT, E(T,Ea(3T,0))) - F(Ep(T, (Ea(3T,0))))

= { = %&ult - 7.5(r,w) - BEalir.w) - [B, Fl(w)

+ €yt —71,8(T,u)) - 05 S2) (T w) - F(w)
—1 5 0Eu(t —7,5(T,u)) -GQSA(5 w) - [A, Fl(w

+ 0yt —1,8(T,u)) - 02&1(%7, w) - F'(w) - SV (7, v)
+ 0:Ep(t — 7,8(1,u)) - BEAST, w) (ST (7,0), F(w))
+05En(t — 7,8(7,u) (S (7, 1), ba(37, W) - F(w)) } )”=5A<%t:“>

w=ER (t,gA(%t,u))

The manipulations leading to these representations are analogous to those
performed in the proof of Theorem 2, but are too lengthy to carry out here
in detail. The given result concludes the proof of Theorem 4. O

5. Application to Schrédinger equations

In this section, we study the application of our local error analysis to
time-dependent nonlinear Schrodinger equations. We state regularity re-
quirements sufficient the formal bounds in Theorems 1-4 to hold in a rigor-
ous sense and illustrate the theoretical results by numerical examples. As a
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model problem, we consider the time-dependent Schrédinger equation

iat¢(x7t) == % A’g/)(l‘, t) t K |77/)($, t)|2¢(l',t) )

5 (5.1)

¥(x,0) = (), reR, t>0,
involving a cubic nonlinearity?, where x € R. Incorporation of an additional
multiplicative potential W acting by ¢ (z) — i W (x) ¢(x) is already covered
by the analysis given in [5].

5.1. Semi-discretization in time

In the following, we deduce regularity requirements on the exact solution
to the time-dependent nonlinear Schrodinger equation (5.1) which ensure
that the compositions of operators and their Lie commutators appearing in

*The nonlinearity in (5.1) is not complex Fréchet differentiable. This is merely a formal
problem which can be circumvented by considering ¥ and i as separate variables and
considering the system

iatw(xvt) = _%Aw + w(xvt) 1/)(1,‘,t)2 )

o L= s (5.2)
—i0w(x,t) = —5 A% +ab(x,t) Y(z,t) .

More generally, an operator X (1) involving terms depending on 1 can be identified with
an operator X(¢) = (X (¢), X(¢)), with ¢ = (¢,4). If X() is Fréchet differentiable,
then

X(W+0) =XW)+ X)) o+ o(lo]]) -
Here, evaluation of the Fréchet derivative X” (7];) - is identical with the Gateaux derivative

lim 5 (& (¢+00) — (),

5§50 9

and the first component is given by
lim (X (e +36) = X(¥)) = X'() - 6.

In this sense, the Fréchet derivative of the dilated operator X (z/;) can be expressed by the
Gateaux derivative of X'(¢)). For example, the cubic complex function f(z) = |z|? z = 222
has the derivative f’(z)w = Zzw+ 22w which is only real linear but which can be identified
with the Fréchet derivative of its dilated version f(2) = f(z,2) = (222, 272).

In the following, we refrain from explicitly referring to (5.2) and all its corresponding
Fréchet differentiable dilations. All differentiation processes can be expressed in terms
of equivalent Gateaux linearizations. This applies to all nonlinear operators involved,
including corresponding flows and subflows.
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the a priori and a posteriori local error representations given in Theorems 14
are well-defined and bounded. We point out that the regularity of the initial
state is inherited by all flows and subflows. For the subflow associated with
the linear kinetic part

A=T := %iA

this has been demonstrated in [5]. For simplicity, for the nonlinear part we
meanwhile set k = 1 such that

B(y) =V (@) = =i[¢[*y.
For the associated flow
Ev(t,)(x) = e HOPy(z) 1 e R? (5.3)

we conclude differentiability in the sense of the remark above.
We next collect the relevant Lie commutators and Fréchet derivatives
arising in Theorems 1-4.

e Theorem 1: [T, V]
e Theorem 2: additionally [T, [T, V]], [V,[T,V]], [T,V], V"

e Theorem 3 only involves Lie commutators and Fréchet derivatives aris-
ing in Theorems 1 and 2.

e Theorem 4: additionally® [V, [V, [V, T])}, [T, [V, [V, T]]] = [V, [T, [V, T]]],
Vv, v, [T (v, 1)), [V.[v, 1)), [V.T)", T" = 0,T" =0, V"

For those quantities which have been estimated in our previous work [11],
we only quote the necessary regularity requirements, see also [12, 13]|. For
a bound that depends on the respective norm of v, possibly in a nonlinear
way, we write C = C(||¢||gm). The symbol ~ indicates that the term on
the right-hand side is the dominant term in the expression, in the sense
that other terms that are omitted can be estimated under milder regularity
assumptions.

3T, [V, [V, T]] = [V, [T, [V, T]]] follows from the Jacobi identity (A.lc).
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According to [11], the first Lie commutator is equal to

[T,V(¢) = App® + 29 VY -V + 9 Vi - Vb, (5.4)

and satisfies the estimate
T, VI 22 < Cl[] a2) -

The estimate
1T T, VI@)lze < CUlYl )
also follows by the analysis given in [11].
Calculating [V, [T, V]](¢) it is found that the result consists of products
of five instances of ¢ or its derivatives, where the sum of the derivatives

equals two. Thus it is sufficient to estimate terms of either of the
following two forms,

192 (V) llze < Cl 1 (V)] 22
< Clel NVl < Clvly: = Cl¢]a2),
[ A2 < ClIY Iz AV 22 < ClllG2 = C(l[]]2)

where the bounds follow from ||¢q sz < [[¥1]|co]|¥2]|2 and the
Sobolev embedding of H?(R?) in L=(R?).

From (5.4) we can compute and estimate the derivative
[T VI(4) ¢ =Ap0* + 2804 ¢+ 26 VY - Vi
+2¢ Vo VY +2¢ VY-V
+ VY- VY +2¢ VY- Vo,
VY (@) - dlle < C1¢la2, 16]la2)

using additionally the Holder inequalities [[t1 ¥o|z2 < ||t1]|pa||t2]| 24
and |11 ¥ 3|12 < ||U1]| s ||2]| L6 ||¥s]| s and the Sobolev embeddings
of HY(R?) in L*(R*) and in LS(R?).

The first and second Fréchet derivatives of V evaluate to

V') - ¢=—i(2¢° o+ o),
V" () (h1, d2) = =21 (¢ (1 b2 + ¢1 §2) + U 1 62) ,
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resulting in the bound
V() (61, @2) 22 < CUIY )| o1l | B2 e -
It has been shown in [11] that
I, [T [T, V@)l < C(1¥[las) -

The Fréchet derivative of [T, [T, V]] can be estimated by realizing that
the critical term in [T, [T, V]] is equal to (see [11])

[T7 [T7 V]](dj) ~ 1/}2@;
and thus

[T, [T V]I (4) - ¢~ 200 A2 + 47 A2,
T[T V] (@) - dllz < C([& Nk, 9 ) -
The second Fréchet derivative of the first Lie commutator,

[V, T)"(¢)(¢1, ¢2) contains products of three functions, and is thus com-
puted similarly as V" resulting in

VLTV (9)(61, $2)llz2 < C([ N a2, (|61 a2, | P2l 2)
where we have used

[ &1 Agollr2 < ||[Ugn| L |AGa|lz2 < C 1|2l d1 |2 | d2ll a2
10 V1 - Vo2 < Cllll sl Vo1l ol Vdalle < C (10, |01l 2, |62l 12) -

The third Fréchet derivative V' satisfies

V" (W) (¢1, d2, 3) = — 21 (E% O3 + O P2 O3 + 1 P2 %) ;
and thus

V" (@) (61, 62, 03) 22 < C(lrllz 02l sl )

The Fréchet derivative of the second Lie commutator [V, [V, T]) can be
analyzed by the following reasoning: The Lie commutator consists of
products of five functions or their derivatives, where the sum of the
orders of the derivatives equals two. Thus, the same holds for the
Fréchet derivative, and accordingly

IV, VT () - 0l < C([[¢ )12, (|01l 12) -
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e A Lie commutator of the form [V, [V,[V,T]]] consists of products of
seven functions or their derivatives, where the sum of derivatives equals
two. Thus,

IV, IV, IV T 22 < CU[ ] a2) -

e To analyze the Lie commutator [V,[T,[V,T]]] we note that the crit-
ical term in [T,[V,T]](v) is J := ¥® 2 and therefore we need
to estimate the Lie commutator of the corresponding operator with

the operator V. First, we compute J'(¢)) - ¢ = ¢ h? + *) ¢?
and V'(¢) - ¢ = —i ($¢2 + 2|w|2¢) Thus, both J'(¢) - V(1) and

V(1)) (1™ 4)?) consist of products of five functions, which allow bounds
17'@) - V(@)lle < CUllae) s IV @) - @D ¢)ze < C(II¢lle) -

With these considerations we can now formulate the error bounds for
the local errors and their estimators for the Lie-Trotter and Strang splitting
methods.

Theorem 5 (Error bounds, Lie-Trotter and Strang splitting). The
Lie—Trotter splitting method (2.4) applied to the nonlinear Schridinger
equation (5.1) satisfies the following local error estimates.

(i) A priori: If ||o||gz < My, then
£t o)l < C 2, (55

with a constant C > 0 depending in particular on Ms.
(ii) A posteriori: If ||tho||gs < My, then P(t, ) is well-defined in L*(R®)
and there holds
[P (¢, 2bo) = L(t,o)|lz2 < C L, (5.6)

with a constant C > 0 depending in particular on My.

The Strang splitting method (2.5) applied to the nonlinear Schridinger equa-
tion (5.1) satisfies the following local error estimates.

(i) A priori: If ||vo||ge < My, then
I£(t o)1= < CE, (5.7)

with a constant C > 0 depending in particular on My.
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(iv) A posteriori: If ||[to||ws < Mg, then P(t,1by) is well-defined in L*(R®)
and there holds
IP(t,%0) = L(t,%0)||2 < CtY, (5.8)

with a constant C > 0 depending in particular on Msg.

By the stability analysis given in [10, 11, 13] it is clear that the a priori
local error estimates in Theorem 5 reproduce the convergence result therein.
The a posteriori local error estimators relevant for adaptive time-stepping
are applied only locally and do not require additional stability properties.

5.2. Full discretization

In the following, we briefly discuss the effect of an additional spatial
discretization error resulting from an application of a spectral method; see
also [14, 15].

In particular, in the context of the cubic nonlinear Schrédinger equa-
tion (5.1) the numerical resolution of the linear subproblem involving the
Laplace operator typically relies on the Fourier spectral method. The op-
erator i1 = —%A is selfadjoint with a complete orthonormal system of
eigenfunctions (B,,)mem- By (Am)mem we denote the eigenvalues associated
with 7. As a detailed analysis is not in the scope of the present work, we
indicate the arguments for the least technical case of the Lie-Trotter splitting
method

S(tu) =Er(t.Ev(t,w), Er(tu) =eTu= )" e cp(u) By,
meM (5.9)
P(t,u) = %t <etT V(é'v(t, u)) — V(etTSV(t,u))> ,

where P is given in (3.12a) and with &, as specified in (5.3). With Qy
denoting the spectral interpolation operator which involves the restriction to
a finite index set My, C M with |M);| = M and a quadrature approxima-
tion of the spectral coefficients é,,(u) =~ ¢,,(u) for m € My, the numerical
realization of (5.9) can be cast into the form

Pfull(t, U) = %t (etTQM V(gv(t7 U)) — V(etTQM gv(t, u))> .

The additional approximation error induced by a spectral space discretization
is thus given by

Pran(t, u) — P(t,u) = 1t (etTQM V(Ev(tu)) — V(e Qu Ev(t, u)))
— Lt (T V(E(t W) — V(eTE (L u)).
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Aiming for a suitable representation in terms of the spectral interpolation
error Q) — I, we employ the reformulation

Pran(t,u) — P(t,u) = 3¢ (etT(QM 1) V(&v(t,u))
— /0 V(e Qu &y (t,u) + (1 —0)eEv(t,u)) do -

e"(Qu — 1) Ev(t,u)> :

Auxiliary estimates for ||Qns Ev (¢, u)| g2 and ||Qar — I 22 are provided by [15,
Lemma 4]. Altogether this leads to the estimate

| P (t,w) — P(t,u)||p2 < Ct||Qm — 1|12,

with a constant C > 0 depending in particular on bounds for ||u|/y2 and
1Qus v (8, 2

Finally, we obtain the following proposition. A similar estimate is valid
for the Strang splitting method. These investigations can also be extended,
for instance, to the Hermite and the generalized Laguerre-Fourier-Hermite
spectral methods on the basis of the analysis given in [16, 14].

Proposition 1 (Convergence of spectral discretization). The error of
the fully discretized a posteriori local error estimator associated with the Lie—
Trotter splitting method satisfies an estimate of the form

| Pran(t, w) — P(t,u)||p2 < Ct M7,

where the exponent ¢ > 0 in particular depends on the space dimension, the
reqularity of u, and the underlying spectral method.

5.8. Practical realization

It is straightforward to realize our defect-based local error estimators
algorithmically. As in Section 5.1, we set A = T = %iA and B(y) =
V(¢) = —i|¢|*9. The numerical resolution of the subproblem involving the
Laplace operator relies on the application of the Fourier spectral method,
and the solution to the subproblem involving the cubic nonlinearity can be
computed by the pointwise multiplication (5.3). The Fréchet derivative of
the evolution operator £, with respect to v is given by

(08w (t, ) - ) (x) = e POF (p(a) — it ([9()]* Pla) + ($(x))* (x))) -
This enters the evaluation of the error estimators (3.12a) and (4.6). For

higher-order schemes, evaluation according to (2.10) works in an analogous
way.
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At err (Lie-Trotter) p €IT st Pest
28 1.5556 - 1074 2.00 4.0136-107° 2.99
279 3.8903 - 10~° 2.00 5.0266-10"" 3.00
2-10 9.7265- 1076 2.00 6.2862-10"%  3.00
2-11 2.4317-1076 2.00 7.8587-107° 3.00
212 6.0792 - 1077 2.00 9.8237-107'% 3.00
2-13 1.5198 - 10~ 7 2.00 1.2280-107'% 3.00

At err (Strang) P €ITegt Pest
28 5.9464 - 107 3.00 1.2514-107% 3.98
279 7.4344 - 1078 3.00 7.8448-107'9 4.00
2-10 9.2935-107° 3.00 4.9067-10"" 4.00
2~ 1.1617-107° 3.00 3.0672-107'2 4.00
212 1.4521 - 10710 3.00 1.9157-107" 4.00
213 1.8152- 10~ 3.00 1.1867-107'* 4.01

Table 1: Local errors (err) and deviation of error estimates (erres;) and corresponding
observed orders p, pes; for the Lie-Trotter (top) and Strang (bottom) splitting methods
applied to (5.1) with soliton solution. At is the stepsize used.

5.4. Numerical examples

In this section we give some numerical support for our theoretical con-
vergence results given in Theorem 5 and Proposition 1 for (5.1) in the semi-
discrete and fully discrete settings.

1. Firstly, to verify the convergence order, we consider (5.1) in 1D with
k = —1 and the initial condition chosen such that the problem solution
is a soliton given by

2e%it—iz

Ylat) = cosh(2t + 2z)’

x € [~16,16].

For the spatial discretization we use 512 Fourier modes. Table 1 gives
the local error of one step of the Lie-Trotter and the Strang splitting
method and of the errors of the local error estimates as compared to
the exact errors. As predicted by Proposition 1, the local error has
order two for the Lie-Trotter and order three for the Strang splitting,
and the error estimators are asymptotically correct.
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2. Finally, we demonstrate that our error estimates may serve as a re-
liable basis for adaptive time-stepping to enhance the efficiency of a
split-step time integrator. For this purpose, we consider the Gross—
Pitaevskii equation for a rotating Bose—Einstein condensate in 2D,
see |2, Ex. 1 (iii)] and also [14],

18157/}(957%25) = ( - %A + Vvea:t(xvy) - QLZ + K |¢(.I',y,t)|2) @ZJ(ZC,y,t) )

¢(m, Y, 0) — L\/Ely 6—(.7:2+y2)/2 ’

with an external potential consisting of a scaled harmonic part and a
regular potential W,

Veat(z,9) = 2 (® + ) + W(z,y), W(z,y) =102 -2y,

and a rotation term () L, defined in terms of a given angular velocity
2 and the angular momentum operator L, = —i(x 0, — y 0,).
For the application of splitting schemes, we proceed as in [14], with

Aw(xvya') = (_ %A—i_ % (CEQ +y2) - QLz) ¢(SL’,y,'),
B<w)(xvy7 ) = (W($,y) t K |2/}<l’,y)‘2) ¢(l’>y7 ) :

Spectral discretization of the linear A-part is performed by a gen-
eralized Laguerre—Fourier—Hermite pseudospectral method which was
proposed in 2] and has been recently analyzed in [14].

Problem parameters are chosen as in |2, Ex. 1 (iii)]: Q2 = 0.5, k = 100,
Y. = 0.8, 7, = 1.2.  In Figure 1 we plot the functional “condensate
width”,

o2 =02+ 05, with o2 = / o Yz, y, )P d(z,y), o=y,
RQ

together with the sequence of stepsizes chosen by a standard local error
control [17] on the basis of our error estimators for both the Lie-Trotter
and Strang splitting. Both stepsize sequences show a qualitatively sim-
ilar behavior which is in line with the local smoothness of the solution
according to the plotted functional. This example demonstrates that
our results are also applicable to problems from a wider class than
(5.1) which feature a more challenging dynamical behavior as a test for
adaptive time-stepping.
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Figure 1: Condensate width (top) and stepsizes (bottom) for the Lie-Trotter and Strang
splittings applied to the GPE for a rotating Bose—Einstein condensate.

Appendix A. Awuxiliary notations and results

First and second iterated Lie-commutators. The first and second nested Lie-
brackets of smooth vector fields are defined in terms of the first and second
iterated Lie-commutators

[F,G](v) = F'(v) - G(v) — G'(v) - F(v) = =[G, F](v), (A.1a)
[F, G, H](v) = [F,G]'(v) - H(v) — H'(v) - [F, G](v), (A.1b)
where
[F,G]'(v) -w

= F"(v)(G(v),w) + F'(v) - G'(v) - w — G'(v) - F'(v) - w — G"(v)(F(v),w) .

For the Lie commutator, the Jacobi identity is valid:

[F, |G, H]] + [G, [H, F]| + [H,[F,G]] = 0. (A.1lc)
Variation-of-constants formulae. The solution to the initial value problem

2X(t,u) = F'(Ep(t.u)) - X(t,w) + R(t,u). (A.22)

X(0,u) = Xo(u), (A.2b)
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has the representation by the linear variation-of-constants formula

X (t,u) :628p(t,u)-<Xo(u)+ / 0oEp(—7, Ep(1,u)) - R(T,u) dT). (A.2)

0

This follows from the fact that 0,Ep(t,u) is a fundamental system for the

associated homogeneous equation together with the identity 9Ep(7,u)~! =

02Er(—T,Ep(7,u)), which is verified by differentiating both sides of the rela-
tions Ep(—t,Ep(t,u)) = v and Ep(t, Ep(—t,u)) = u with respect to u.
For the initial value problems
g =F@),  Fuwt)=Fw)+r),
v(0) = w(0),
an application of the nonlinear variation-of-constants formula (Grébner—
Alekseev Lemma) implies

t
t) = / WEp(t —1,w(T)) - r(1)dr. (A.3)
0
First- and second-order variational equations. By differentiating the evolu-
tion equation
&-Er(t,u) = F(Er(t,u)), (A.4a)
Er(0,u) = u, (A.4Db)

and interchanging the order of derivatives leads to the first- and second-order
variational equations

2 05 (t,u) = F'(Eplt,w)) - B:Ep(t,u), (A.5a)
02<€'F(0, U) = ], (A5b)
and
G (03Er(t,u)(-,-) = F'(Er(t,u)) - 5Er(t,u)(-, ) (A.Ga)
-+ F”(gF(t, u))(@ygp(t, U) ° 828F(t, U) ) s
053Ep(0,u) =0. (A.6D)

Due to (A.2¢), the solution of (A.6) is given by

aggp(t,u)(, ) 825F t u / 825}7 -7, (c:F 7' 'LL)) (AGC)
F"(Ep(1,u))(0o€p(T,u) - Oo&p(T,u)-)dr.
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Fundamental identities. For our considerations, it is essential to employ the
fundamental identity

0ol (t,u) - Fu) — F(Ep(t,u)) =0, (A7)

which is a consequence of (A.5). Furthermore, by differentiation it is verified
that X(t,u) = 0€p(t, u)-G(u)—G(Ep(t, u)) satisfies the initial value problem

2 X(t,u) = F'(Ep(t,u)) - X(t,u) + [F, G)(Ex(r, ), (A.8a)
X(0,u) =0, (A.8b)

which implies the generalized fundamental identity

Er(t,u) - Glu) — G(Ep(t,u)) (A.9)
= 0,Ep(t,u) - /0 0Ep(—7, Ep(r,0)) - [F, G)(Er(r, u)) dr .

A fundamental identity involving the second derivative 03Er reads

02Ep(t,u)(F(u),v) + 0u&p(t,u) - F'(u) - v = F'(Ep(t,u)) - Ep(t,u) - v,
(A.10)

which follows by differentiation of (A.7) with respect to u.

Reformulation of variational equations. An alternative formulation of the
first-order variational equation (A.5a) in the form

2 0,Ep(t,u) = DuEp(t,u) - F'(u) + O2Ex(t, u)(F(u), ) (A.11)

is obtained by interchanging the order of differentiation and applying rela-
tions (A.4a) and (A.7),

%825F(t, u) = 82(%5F(t, u)) =0, (825F(t, u) - F(u))
= 0o&p(t,u) - F'(u) + 038p(t,u)(F(u),-).

Furthermore, the second-order variational equation (A.6a) can be rewritten
in the form

2-05Ep(t, u)(v, ) (A.12)
= Ep(t,u) - F'(u)(v,) +202Ep(t,u)(F'(u) - v, -) + 03Ep(t,u)(F(u),v,-).
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This follows by interchanging the order of differentiation and using (A.11),

203Er(t,u)(v,) = 2-(05Er(t,u) - v) = ag(g—t@ggp(t,u) v)
= 0y (0uEr(t,u) - F'(u) - v+ 05Ep(t, u)(F(u), v))
= 0uE () - F"(u)(v, ) + O3Er(t, w)(F'(u) -,
+05Ep(t, u)(F'(u) - v, ) + 05Ep(t, )(F(u)>v7')-

Reformulation of the variational equations with time-dependent arguments.
In a similar manner, an application of the chain rule yields the following gen-
eralization of (A.11) and (A.12), respectively, for explicitly time-dependent
arguments

D 00E(t, G(t, 1)) = OuEr(t, G(t,u)) - F'(G(t,u)) (A.13)
+ 0ER(L, Gt u) (&Gt u) + F(G(t,u)),"),
and
S (03Ep(t, G(t,u)) (v,w) = DEp(t, G(t, u)) - F'(G(t, u)) (v, w) (A.14)

+205Ep(t, G(t,w)) (F'(G(t,u)) - v, w)
+ BER(, G(t, u)(5-G(t,u) + F(G(t,u)),v,w).

Appendix B. Automatic manipulations of flows

For the analysis of the error estimator for the Lie-Trotter splitting in
Section 3 all calculations have been carried out explicitly. Additionally, the
results have been verified by a tool for automatic formula manipulation which
we implemented in the Perl programming language. For the Strang splitting
method, the manipulations of flows are too intricate for calculation by hand.
Although the general structure of the arising terms could be inferred theo-
retically in principle, we restricted ourselves to the verification of educated
guesses for these terms by our tool for formula manipulation.

This computer implementation is based on appropriate definitions of
classes representing expressions composed of operators, flows, and higher
derivatives of flows. Methods were implemented for instance for

e collecting and expanding terms,

e substitution of variables by sub-expressions,
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e symbolic differentiation with respect to time and space variables.

Additionally, a method was implemented realizing the substitution of expres-
sions of the form 0yEp(t,u) - F(u) by F(Er(t,u)) according to the fundamen-
tal identity (A.7). In the same way, the highest derivative appearing after
differentiation of (A.7) with respect to u is substituted by terms of lower
differentiation order.

Appendix C. Defect representations, Strang splitting

In this section we collect the precise details involved in the representation
of the defect SM(¢,u) and the higher-order defects S®(¢,u) and S® (¢, u)
for the Strang splitting method. These form the basis for the analysis in
Section 4.

The results collected in Lemmas 5-7 have been verified by means of au-
tomated symbolic manipulation, see Appendix B.

Lemma 5 (Defect S(V)(t,u), Strang splitting).
(i) The defect SD(t,u) = 28(t,u) — H(S(t,u)) has the form
SW(t,u) = 2S(t,u) — H(S(t,u)) (C.1a)
= 0oEa(3t, Ep(t, Ea(bt, ) - SUI(t, Ea(St, 1))
+ S, Ep(t, Eal5t, )

— {825A(%t, w) . 3(1,1) (t’ 'U) + 3(1,2) (t7 w)}’v:&;(%t,u) 3

w=Ep (tE4(t.u))

with
SEV(t,v) = L (8:E5(t,v) - A(v) — A(Ep(t,v))), (C.1b)

and
SUA(t,w) = €4 (5t,w) - B(w) — B(Ea($t,w)). (C.1c)

(it) SEY(t,v) and ST (t,w) satisfy the initial value problems

280N (¢, v) = B'(Ep(t,v)) - SV (1, 0) + 1B, Al(Es(t,v)),  (C.2a)
SEY(0,v) =0, (C.2D)
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(iii)

and
2. 8WA(1 w) = A'(Ea(ht,w)) - ST (1, w) + J[A, B](Ea(Lt, w)), (C.2¢)
S0, w) = 0. (C.2d)

For 3(1’1)(75, v) and 3(1’2)(25, w) the following integral representations are
valid:

SUV(t,v) =L 0,E5(t,0) - (C.3a)
/0 Ep(—1,Ep(T,v)) - [B, A|(Ep(T,v))dT,

and

SEA(t,w) = 1 sEa(3t, w) - (C.3b)

/0 OnEa(—Lr, Ea(br, w)) - [A, B](Ea(tr, w)) dr .

Remark 5. Integral representations for 0,SU(¢t,v), 0SWH(t,w) and
02SMN(t,v), 028M2(t,w) are obtained in an analogous way as for

DS

)(t,v), see the Remark following Lemma 3.

Lemma 6 (Second-order defect S (¢,u), Strang splitting).

()

The second-order defect S (t,u) (see (2.6c)) has the form
SA(t,u) = 28D (t,u) — H'(S(t,u)) - SY(t,u) (C.4a)
— {Da8a(3t,w) - SEV (1, 0) + St w)
+ BEA(St, w) (ST (t,v), STV (¢, v))
+ 20,8 (t,w) - St U)HUZSA(%M) :
w=Ep(t,€a(5tu))
with
SV (t,v) = 19,80V (t,0) - A(v) — A (Ep(t,v)) - STV (¢t v)
+ 1[B, A](Ep(t,v)), (C.4b)
and
SEA(t,w) = 0,8 (t,w) - H(w) — H'(Ea(3t,w)) - ST (¢, w)
— 20:E4(3t,w) - [B, Al(w). (C.4c)
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(i) S@V(t,v) and S®(t,w) satisfy the initial value problems
%5(2’1)(15, v) = B'(Ex(t,v)) - SV (t,v) (C.5a)
+ B"(Ep(t,v))(STV(t,v), STV (¢, v))
+ (B, A (Ep(t,v)) - STI(t,0)
— 3B, [B, Al|(€5(t,v)) — 1A, [B, Al|(€p(t,v)),
§¢(0,0) = 3(B, Al(v), (C.5D)
and
%3(2’2) (t,w) = LA (Ea(dt, w)) - S (¢, w) (C.5¢)
+ LA (EA(St, W) (ST (t, w), ST (¢, w))
— B, A'(Eat.w)) - ST (t,w)
+5[B,[B, All(€a(5t, w)) + 5[A, [B, Al|(Ea(5t, w))

SE2(0,w) = =3B, AJ(w). (C.5d)
(iii) For SEV(t,v) and S®(t,w) the following integral representations are
valid:
SEV(t,0) = L duEp(t,v) - [B, Al(v) (C.6a)
+ 0xEp(t,v) -/Ot 02Ep(—T,Ep(T,v)) -
{B/ (s 08V (r.0).84(r.v))
— 3B, [B, AlJ(Ep(7,v)) — 3[A, [B, A]|(Es(7,v))
+[B. AJ'(Ep(r,v)) - SV (r,0) } ar,
and
SCA(t,w) = —1 0:E4(5t,w) - [B, Al(w) (C.6b)

t
+ 0s€a(3t, W) / DEa(—37,Ea(537,0)) -
0

(LA Ea(r,)) (S0 (r,10), 50 7, )
+ 1B, (B, All(€al}r, >> S[A, (B, Al(Ea(Er,w)
— [B, A (€4, w)) - S, w)  dr
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Remark 6. Integral representations for 828 @ (¢ v) and 9S> (t,w) are
obtained in an analogous way as for 9SW(t, v), see the remark following

Lemma 3.

Lemma 7 (Third-order defect S (¢, u), Strang splitting).
(i) The third-order defect S®(t,u) (see (2.6d)) has the form
SOt u) = FSP(t,u) — H'(S(t,w)) - SP(t,u)
— H"(S(t,u)(SV(t,u), SV (t,u)
:{@&@mw SED(t,v) + S (¢, w)
+305Ea(5t, w)( STV (8, v), SEV(t,v))

+ 05E4 (3t w) (ST (¢, v), STV (¢, v), 8(1’1)(15 v))
+ 30,81 (¢, w) - SV (t,v) + 30,832 (1, w) - STV (¢, v)

+ 30880 (1, w) (S (1,0), 8 (t,v)) |

(C.7a)

v=E4 (%t,u) )
w=Ep(t,€a(5t,u))

with
SEV(t,v) = § SV (t,0) - Al )—% "(Es(t,0)) - SEV(t,v) (C.7H)
— $A"(Ep(t,0)) (ST (¢, v), STVt v))
— 3B, [B, AJ|(€ )) ilA (B, All(Ex(t,v))

B(t,
+[B,A'(€p(t,v) - SMI(tv),

and
SC2A(t,w) = 0,8%H(t,w) - H(w) — H'(Ea(5t,w)) - SE2 (¢, w) (C.7¢)
— H"(Ea(5t,w))(SH2 (), S (¢, w))
+3 0:€a(5t,w) - [B, [B, Al|(w) + § 02€a(5t w) - [A, [B, All(w)
— 0,81 (t,w) - [B, Al(w) .
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(i) SBCV(t,v) and SB(t,w) satisfy the initial value problems

D.8EV(t,v) = B'(Ep(t,v)) - SV (t,v) (C.8a)
+3B"(Ep(t,0)) (ST, ) (A v))
+ B"(E(t,v))(STV(t,v), STV (¢, v), SEV(t, v))
+5[A [A, [B, AJ]|(E(t, ) + 3[A, [B [ Alll(Ep(t,v))
(t,

+3[B.[B,[B, Alll(€5 ))
— 34, [B, A)'(€p(t,v)) - S (M)
— 3[B,[B, AlJ'(Es(t,v)) - SV (t,v)
+3[B, Al (€s(t,v)) - 321)( t,v)
+ 3B, A"(Ep(t, 0))(STV(t,0), STV (L, v)),
SEV(0,0) = —3[B, [B, A (v) - 3[A, [B, A]] (v), (C.8b)
and

%5(3’2)(75,111) = %A’(&A(%t,w)) -5‘(3’2)(t,w) (C.8¢)
+ 3A"(EAS W) (ST (2, w), SB (t,w))
1A”’(é’ ( w))(S‘( )(t w), 3(1’2)(t,w),3(1’2)(t,w))
—-[ A B AJll(Ea(Gtw)) — [A, [B, [B, AllJ(Ea(57,w))
1B, [B, Alll(Ea(5t ))
(B, Al (Ea(5t,w
B, All(E (%
A (Ea(Gt, w)) - w)
A]"(<‘3A( ))(5(12)(25 w),«?“’”(t,w)),
B, AlJ(w) + (A, [B, A]](w) .

+ o+
NI NIWw NW Nw [OI»—‘
E W E E E

SG2(0,w) = [B, (C.8d)

.—|

(iii) For S®V(t,v) and S®?(t,w) the following integral representations are
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valid:
SEV(t,v) = =3 0:Ep(t,v) - [B,[B, All(v) — § 0:€(t,v) - [A, [B, Al|(v)

+ OnEp(tv) - /  OnEn(—r. En(r.0)) - (C.9a)

{3B"(Ep(r, ) (7,0), 82V o)
+ B"(E5(7,0)) (S (r,0), 84D (7, ), S0 (7, v)
+ LA, 14, [B, All|Es(r,v)) + 3[4, [B, [B, Al[|(Ea(br, w)
%[B 5,15, Al ()
— 314, [B, A (Es(7,0)) - S1(7, v)
— 3B, (B, A (€5(r,v)) - M (r,v)
+ 3[B, Al (€p(T,v)) - SEV (7, v)
+ 3B, A (Ep(r, ) (S (r,0), 80 (7, v) } dr,

and
SEA(t,w) = (it w) - [B,[B, All(w) + 2 0:€4(3t,w) - [A, [B, Al](w)
- 0uEa(St w) - /0 (L, Ea(ir,w)) - (C.9b)

(347 Ea(r ) (S0 (7, 0), 569, )
+ %A’"(é’A(%T, w))(S’(l’Q)(T, w), 3(1’2)(7, w), St (1,w))

— 3[A (A [B, All[(Ea(T, w)) — [A,[B, [B, AJl(Ea(57, w))
—3[B,[B, B, A]|(€a(57, w))

+2[A, (B, AV (Ea(ir,w)) - 1D (7, w)

+ 3B, [B, Al (Ea(37,w)) - ST (7, w)

— 3B, AV (Ea(37,w)) - S®V (7, w)

— 3B, A"(E (1T W) (S (r,w), SE (7, w))} dr
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