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1. Introduction

Scope of applications. A variety of contributions con�rm the favorable per-
formance of exponential operator splitting methods [1, 2] for the time in-
tegration of evolutionary Schrödinger equations [3]. As a small selection of
works providing numerical evidence and a profound theoretical error analysis
for linear and nonlinear problems, we refer to [4, 5, 6, 7, 8] and references
given therein. Moreover, numerical experiments described in [9] show that
the use of a local error control for adaptive time stepsize selection is bene�cial
for low-dimensional nonlinear Schrödinger equations such as time-dependent
Gross�Pitaevskii equations.

Defect-based error estimators. In the present manuscript, our aim is to con-
struct a posteriori local error estimators for higher-order splitting methods
applied to linear evolution equations and to analyze them in the context of
time-dependent linear Schrödinger equations{

i ∂ tψ(x, t) = −1
2

∆ψ(x, t) + V (x)ψ(x, t) ,

ψ(x, 0) = ψ0(x) ,
x ∈ Rd , t ≥ 0 , (1)

involving a regular real potential V : Rd → R and a regular initial state
ψ0 : Rd → C. Such a local error estimator is a main ingredient in an
adaptive time stepsize selection algorithm. In order to expose the techni-
cally involved procedure, which extends the construction and error analysis
for the particular cases of the �rst-order Lie�Trotter and the second-order
Strang splitting methods, given in our previous work [10], we �rst focus on a
three-stage third-order splitting method and subsequently describe the gen-
eral approach. We prove asymptotical correctness of the a posteriori local
error estimators under natural commutator bounds on the involved opera-
tors. Along the way we also recover the known (non)sti� order conditions
and a priori convergence bounds, see for example [1, 5, 8]; however, in the
present work, we employ an alternative approach based on defects associated
with splitting methods, which is also essential for the construction of a pos-
teriori local error estimators. We con�rm the theoretical a posteriori local
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error bounds by numerical examples for a test problem of Schrödinger type
and also illustrate the error behavior of the a posteriori local error estimators
for a test problem of parabolic type.

Extension to nonlinear problems. As in [10], we restrict ourselves to the study
of linear evolution equations. The even more technically involved construc-
tion and analysis of defect-based local error estimates for nonlinear problems
based on the formal calculus of Lie-derivatives will be the subject of future
research.

Outline. The structure of the present manuscript is as follows. In Section 2,
we state the defect-based local error estimator associated with a higher-
order exponential operator splitting method; as our approach is conceptually
rather general and not particularly focussed on partial di�erential equations
of Schrödinger type, we employ an abstract framework of evolution equations
on Banach spaces. Auxiliary notations and results are collected in Section 3.
The construction and analysis of the defect-based local error estimator is
carried out in Sections 4 and 5; in order to demonstrate the general proce-
dure with a reasonable amount of involved technicalities, we �rst focus on a
three-stage third-order splitting method and only indicate the extension to
higher-order splitting methods. The main tools for a generalization to expo-
nential operator splitting methods of arbitrary order are then explicated in
Section 6. In Section 7, in the context of time-dependent linear Schrödinger
equations with su�ciently regular problem data we state a result ensuring
the asymptotical correctness of the a posteriori local error estimator under
natural commutator bounds on the involved operators. Numerical examples
for higher-order schemes proposed in the literature [11, 12], given in Sec-
tion 8, illustrate the error behavior of time-splitting methods for initial-value
problems of Schrödinger and parabolic type and in particular con�rm the
asymptotical correctness of the obtained a posteriori local error estimators.

2. Defect-based error estimators for high-order splitting methods

Linear evolution equation. In the following, we consider the abstract initial
value problem{

d
dt
u(t) = H u(t) = Au(t) +B u(t) , t ≥ 0 ,

u(0) = u0 ,
(2a)
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involving the unbounded linear operators A : D(A) → B, B : D(B) → B,
and H : D(H) → B, with domains D(A), D(B), D(H) ⊂ B such that ∅ 6=
D(A) ∩D(B) ⊂ D(H) contained in the underlying Banach space (B, ‖·‖B).
Due to linearity, it is su�cient to consider the evolution operator associated
with (2a)

E(t) = etH = et(A+B) , t ≥ 0 , (2b)

which satis�es the initial value problem{
d
dt
E(t) = H E(t) = A E(t) +B E(t) , t ≥ 0 ,

E(0) = I .
(2c)

For a particular application the regularity requirements on the initial state
are speci�ed later on in Section 5.

High-order splitting methods. For the time integration of (2a) we study an s-
stage exponential operator splitting method of (nonsti�) order p ≥ 1, de�ned
by coe�cients (aj, bj)

s
j=1. For our purposes, it is useful to consider the nu-

merical evolution operator

S(t) =
s∏
j=1

Sj(t) = Ss(t) · · · S1(t) ≈ E(t) , t ≥ 0 ,

Sj(t) = etBj etAj , Aj = aj A , Bj = bj B , 1 ≤ j ≤ s ,

(3a)

as time-dependent operator, contrary to practical realisations, where only
the evaluation at discrete times is required. Whenever the evolutionary
problem (2) with operator A related to the Laplacian originates from a
Schrödinger equation, we impose the coe�cients to be real, whereas com-
plex coe�cients aj ∈ C with <(aj) > 0 for 1 ≤ j ≤ s are considered for
equations of parabolic type. Henceforth, we assume the basic consistency
conditions

OC1:
s∑
j=1

aj = 1 ,
s∑
j=1

bj = 1 , (3b)

to be satis�ed.

Local error and defect. As standard, we de�ne the local error as di�erence
between the numerical and exact evolution operators

L(t) = S(t)− E(t) , t ≥ 0 . (4a)
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Inserting the splitting operator into equation (2c) for the exact evolution
operator further de�nes the defect

D(t) = d
dt
S(t)−H S(t) , t ≥ 0 . (4b)

As a consequence, due to d
dt
L = d

dt
(S −E) = H (S −E) +D = H L+D and

S(0) = I = E(0), the local error satis�es the initial value problem{
d
dt
L(t) = H L(t) +D(t) , t ≥ 0 ,

L(0) = 0 ,
(4c)

and thus by the variation-of-constant formula (Duhamel's principle) the in-
tegral representation

L(t) =

∫ t

0

e(t−τ)H D(τ) dτ , t ≥ 0 , (4d)

relating the local error and the defect is obtained.

Local error expansion and order conditions. A standard approach to derive
the (nonsti�) order conditions of splitting methods is to require that certain
derivatives of the local error vanish at t = 0, i.e.,

d
dt
L(0) = · · · = dp

dtp
L(0) = 0 . (5a)

In regard to the construction and analysis of a posteriori local error estima-
tors, we follow a di�erent approach based on the equivalent conditions

D(0) = d
dt
D(0) = · · · = dp−1

dtp−1D(0) = 0 , (5b)

rewritten in an appropriate way; for details, see Sections 4 and 6 below.

Defect-based local error estimators. For the purpose of local error estimation
the integral in (4d) is approximated by means of an Hermite quadrature
formula of order p+ 1∫ t

0

f(τ) dτ −Qf (t) = O
(
tp+2

)
, t ≥ 0 . (6a)

More precisely, in order to construct an asymptotically correct a posteriori
local error estimator for an s-stage splitting method (3) of order p ≥ 1, we
choose the quadrature approximation

Qf (t) =

p−1∑
`=0

ω` t
`+1 d`

dt`
f(0) + t

p+1
f(t) (6b)
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such that it relies on the evaluation of the �rst p − 1 derivatives of the
integrand f at τ = 0 as well as the evaluation of f at τ = t and further
involves certain uniquely de�ned weights (ω`)

p−1
`=0 . Assuming validity of the

order conditions (5b) this eventually yields the representation

P(t) = 1
p+1

tD(t)

= 1
p+1

t

( s∑
k=1

( s∏
j=k

Sj(t)
)
Ak

( k−1∏
j=1

Sj(t)
)
− A

( s∏
j=1

Sj(t)
)

+
s−1∑
k=1

( s∏
j=k+1

Sj(t)
)
Bk Sk(t)

( k−1∏
j=1

Sj(t)
)

− (1− bs)B Ss(t)
( s−1∏
j=1

Sj(t)
))

≈ L(t) , t ≥ 0 .

(7)

In Section 5 we particularize this construction for a three-stage third-order
splitting method and prove the asymptotical correctness

P(t) v − L(t) v = O
(
tp+2

)
(8)

of the obtained a posteriori local error estimator under suitable regularity
requirements on the argument v. In Section 6 we describe the extension to the
general case, and in Section 7 we infer the resulting regularity requirements
for linear Schrödinger equations. Furthermore, in Section 8 we illustrate the
asymptotical correctness of the local error estimators by numerical examples
for higher-order splitting methods applied to linear evolution equations of
Schrödinger and parabolic type.

3. Auxiliary notations and results

In this section, we state auxiliary notations and results that are employed
throughout.

3.1. Auxiliary notations

Time-independent operators such as A are written in standard font, and
time-dependent operators such as E in calligraphic font.
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De�nition of related time-independent operators. In the following, we denote

Hj = Aj +Bj , (9a)

Hj =

j∑
`=1

H` , with H0 = 0 , Hs = H, (9b)

Ĥj = Hj−1 + Aj , (9c)

for 1 ≤ j ≤ s; for instance,

Ĥ1 = A1 ,

Ĥ2 = H1 + A2 = A1 +B1 + A2 ,

Ĥ3 = H1 +H2 + A3 = A1 +B1 + A2 +B2 + A3 .

(9d)

Iterated commutators and related abbreviations. The commutator of two lin-
ear operators K,L is given by

[K,L] = K L− LK ;

clearly, the commutator identity

[KL,M ] = K[L,M ] + [K,M ]L (10)

holds. As standard, iterated commutators are de�ned by

ad0K(X) = X , adnK(X) = [K, adn−1K (X)] , n ≥ 1 .

In regard to a suitable expansion of the defect, where certain iterated com-
mutators frequently occur, we employ the abbreviations

A
[0]
j = Aj , B

[0]
j = Bj ,

A
[`]
j = [A

[`−1]
j , Hj−1] , B

[`]
j = [B

[`−1]
j , Hj] , ` ≥ 1 ,

(11)

for 1 ≤ j ≤ s.

Values of time derivatives. For values of the k-th-order derivative of a time-
dependent function we set dk

dtk
f(0) = dk

dtk
f(t)

∣∣
t=0

.
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3.2. Auxiliary results

Sylvester-type equations. A Sylvester equation naturally occurs when deter-
mining the �rst time derivative of the splitting operator associated with the
�rst-order Lie�Trotter splitting method, see also [10]. The following result
collects solution representations for Sylvester-type equations needed for a
suitable expansion of the splitting operator associated with higher-order split-
ting methods; later on, it is applied with A = Aj and B = Bj.

Lemma 1. Let A,B,K denote time-independent operators and G a time-
dependent inhomogeneity. Consider the inhomogeneous Sylvester equation{

d
dt
X = X A+B X + G ,
X (0) given .

(12)

(i) The initial value problem (12) admits the solution representation

X (t) = etB X (0) etA +

∫ t

0

e(t−τ)B G(τ) e(t−τ)A dτ . (13)

(ii) Provided that X satis�es the Sylvester equation (12), the time-
dependent operators U and V, de�ned by

U(t) = X (t)K , V(t) = K X (t) , (14a)

are solutions of the Sylvester equations{
d
dt
U = U A+B U + X [A,K] + GK ,

U(0) = X (0)K ,
(14b)

and {
d
dt
V = V A+B V + [K,B]X +K G ,
V(0) = K X (0) ,

(14c)

respectively.

(iii) Provided that X satis�es the Sylvester equation (12), the �rst commu-
tator W(t) = [X , K](t) = [X (t), K] is the solution of the Sylvester
equation{

d
dt
W =W A+BW + X [A,K] + [B,K]X + [G, K] ,

W(0) = [X (0), K] .
(15)
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Proof. (i) Straightforward veri�cation, see also [10].

(ii) Di�erentiating U we obtain from (12)

d
dt
U = ( d

dt
X )K = X AK +B X K + GK

= X K A+B X K + X (AK −K A) + GK
= U A+B U + X [A,K] + GK ,

and analogously for V .

(iii) This follows directly from (ii) by combining (14b) and (14c). �

Evolution equation for a triple operator product. In the following, we make
use of the fact that the product of time-dependent operators which are solu-
tions to Sylvester equations of the form{

d
dt
Xj = Xj Aj +Bj Xj + Gj ,
Xj(0) given ,

(16a)

satis�es an evolution equation with dominant part involving H and a certain
inhomogeneity. In particular, in Section 4 we employ the relation

d
dt

(
X3X2X1

)
= H X3X2X1

+
(
[X3, Ĥ3] + G3

)
X2X1

+ X3

(
[X2, Ĥ2] + G2

)
X1

+ X3X2

(
[X1, Ĥ1] + G1

)
,

(16b)

obtained for a triple product, provided that (3b) holds with s = 3; this is
veri�ed by a straightforward calculation or follows from Lemma 2 deduced
in Section 6.

Further notation and preliminary remarks. For the sake of compact and con-
sistent notations, we introduce

δX = d
dt
X −HX , (17)

and de�ne by recurrence

S(0)
j (t) = etBj etAj , 1 ≤ j ≤ s , S(0) = S(0)

s · · · S
(0)
1 ,

S(n) = δS(n−1) , n ≥ 1 .
(18)
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Clearly, it holds S(0)
j = Sj and S(0) = S. We note that the defect (4b) equals

D = d
dt
S −HS = δS(0) = S(1) . (19)

In order to capture the residual of a time-dependent operator X with respect
to the j-th homogeneous Sylvester equation, we set

σj(X ) = d
dt
X − XAj −Bj X , 1 ≤ j ≤ s ; (20)

thus, identity (16b) can be reformulated as

δ
(
X3X2X1

)
=
(
[X3, Ĥ3] + σ3(X3)

)
X2X1

+ X3

(
[X2, Ĥ2] + σ2(X2)

)
X1

+ X3X2

(
[X1, Ĥ1] + σ1(X1)

)
.

(21)

Inserting Xj = S(0)
j into (21) and noting that σj

(
S(0)
j

)
= 0 motivates the

abbreviation S(1)
j = [S(0)

j , Ĥj] + σj
(
S(0)
j

)
= [S(0)

j , Ĥj]; more generally, we
de�ne

S(k)
j = [S(k−1)

j , Ĥj] + σj
(
S(k−1)
j

)
, k ≥ 1 . (22)

4. A priori local error analysis

Objective. In this section, our objective is to provide a suitable expansion of
the local error (4a) ensuring

L(t) v = O
(
tp+1

)
under certain regularity requirements on the argument v. By the integral
relation (4d) and due to (19) this is equivalent to

D(t) v = S(1)(t) v = O
(
tp
)
,

provided that the exact evolution operator remains bounded on the under-
lying function space.
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Approach. In principle, an appropriate expansion of the defect could be ob-
tained by a standard Taylor series expansion

D(t) = S(1)(t) =

p−1∑
`=0

1
`!
t` d`

dt`
S(1)(0) +

∫
Tp

dp

dtp
S(1)(τp) dτ ,

Tp = {τ = (τ1, . . . , τp) ∈ Rp : 0 ≤ τp ≤ · · · ≤ τ1 ≤ t} ,

where the p-th-order conditions on the coe�cients of the splitting method
correspond to the conditions

d`

dt`
S(1)(0) = 0 , 0 ≤ ` ≤ p− 1 , (23)

which are also utilized in the construction of the a posteriori local error
estimator. However, for a method of higher order involving a higher number
of stages this approach becomes unfeasible, due to the rapidly increasing
number of terms involved in dp

dtp
S(1). We note that in addition a careful

inspection of dp

dtp
S(1) and a suitable reformulation of the involved operators

as iterated commutators is required in order to retain the optimal regularity
requirements on the argument v.

Alternative approach. In this work, we follow a di�erent approach based on
the derivation of suitable di�erential equations for the splitting operator, the
defect and its higher derivatives. In this section, we expound our approach
for a three-stage third-order splitting method, where a stepwise expansion of
part of the integrand in (4d) yields the multiple integral representation

p = 3 : L(t) =

∫ t

0

e(t−τ1)H S(1)(τ1) dτ1

=

∫ t

0

∫ τ1

0

e(t−τ2)H S(2)(τ2) dτ2 dτ1

=

∫ t

0

∫ τ1

0

∫ τ2

0

e(t−τ3)H S(3)(τ3) dτ3 dτ2 dτ1 ,

(24a)

provided that the imposed order conditions (23)

p = 3 : S(1)(0) = 0 , d
dt
S(1)(0) = 0 , d2

dt2
S(1)(0) = 0 , (24b)

hold. In the following subsections, the derivation of the expansion (24a) is
explicated in detail, and, as a consequence, the desired a priori local error
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expansion L(t) v = O(t4) is retained under certain regularity requirements on
the argument v, see Proposition 1 below. For a p-th-order splitting method
the same procedure leads to the following local error expansion

L(t) =

∫
Tp

e(t−τp)H S(p)(τp) dτ ,

Tp = {τ = (τ1, . . . , τp) ∈ Rp : 0 ≤ τp ≤ · · · ≤ τ1 ≤ t} ,
(25)

provided that the order conditions (23) are satis�ed. Our approach estab-
lishes an explicit representation for the local error, which, however, is of high
complexity for higher-order splitting methods. As it su�ces to investigate
the structure of the terms involved, we refrain from a speci�cation of the
resulting local error representation.

4.1. A �rst representation for the defect

For a splitting method involving three stages, i.e. s = 3, the de�ning rela-
tion (4b) for the defect reduces to

S(1) = δS(0) , S(0) = S(0)
3 S

(0)
2 S

(0)
1 , (26a)

see also (18) and (19). Observing that S(0)
j satis�es the initial value problem{

d
dt
S(0)
j = S(0)

j Aj +Bj S(0)
j ,

S(0)
j (0) = I ,

(26b)

relation (21) (with Xj = S(0)
j and σj

(
S(0)
j

)
= 0) together with the notation

S(1)
j = [S(0)

j , Ĥj], see (22), yields the following initial value problem for the
splitting operator,{

δS(0) = S(1)
3 S

(0)
2 S

(0)
1 + S(0)

3 S
(1)
2 S

(0)
1 + S(0)

3 S
(0)
2 S

(1)
1 ,

S(0)(0) = I .
(26c)

We note that this also provides a representation for the defect, namely,

S(1) = S(1)
3 S

(0)
2 S

(0)
1 + S(0)

3 S
(1)
2 S

(0)
1 + S(0)

3 S
(0)
2 S

(1)
1 , (27)

see (26a). The obvious generalization to an s-stage splitting method is

S(1) =
∑

k1+···+ks=1

S(ks)
s · · · S(k1)

1 .
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4.2. A �rst expansion step ensuring L(t) v = O(t2)

Aim. Our starting point is the local error representation given above,

L(t) =

∫ t

0

e(t−τ1)H S(1)(τ1) dτ1 ,

S(1) = S(1)
3 S

(0)
2 S

(0)
1 + S(0)

3 S
(1)
2 S

(0)
1 + S(0)

3 S
(0)
2 S

(1)
1 ,

(28)

ensuring L(t) v = O(t) under certain regularity assumptions on v, see
also (4d), (22), and (27). In a �rst step, we aim for a suitable integral

representation for the terms S(1)
j such that even L(t) v = O(t2).

Integral representations for S(1)
j . For convenience, we recall the abbreviations

S(0)
j (t) = etBj etAj , S(1)

j = [S(0)
j , Ĥj], and A

[1]
j = [Aj, Hj−1] = [Aj, Ĥj] as well

as B
[1]
j = [Bj, Hj] = [Bj, Ĥj]. Relation (15) implies{
σ
(
S(1)
j

)
= d

dt
S(1)
j − S

(1)
j Aj −Bj S(1)

j = S(0)
j A

[1]
j +B

[1]
j S

(0)
j ,

S(1)
j (0) = 0 ,

(29)

see also (20), and thus an application of the variation-of-constants for-
mula (13)

S(1)
j (t) =

∫ t

0

e(t−τ)Bj
(
S(0)
j (τ)A

[1]
j +B

[1]
j S

(0)
j (τ)

)
e(t−τ)Aj dτ (30)

ensures S(1)
j (t) v = O(t).

Local error expansion. Inserting the integral representation (30) into (28)
shows L(t) v = O(t2). In the context of linear Schrödinger equations, where
the operator A is related to the Laplacian and B to a smooth potential,
it is seen that S(1)

j (t) v and as a consequence L(t) v are well-de�ned in the
Lebesgue space L2 for arguments v in the Sobolev space H1, see Section 7
for further details. Generally, the necessary assumption will reduce to a
regularity requirement on the exact solution of the underlying di�erential
equation.
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4.3. A further expansion step ensuring L(t) v = O(t3)

Aim. In order to expand the local error further, we revisit (28) and deduce an
initial value problem for the defect S(1), aiming for an integral representation
of the form

S(1)(τ1) = eτ1HS(1)(0) +

∫ τ1

0

e(τ1−τ2)H S(2)(τ2) dτ2 . (31)

Due to the validity of the �rst-order conditions (3b), which correspond to

OC1: S(1)(0) = 0 ⇐⇒
s∑
j=1

aj = 1,
s∑
j=1

bj = 1 , (32)

this further leads to

L(t) =

∫ t

0

∫ τ1

0

e(t−τ2)H S(2)(τ2) dτ2 dτ1 . (33)

Utilizing an integral representation for building blocks constituting S(2) it
turns out that even L(t) v = O(t3), provided that an additional order condi-
tion is satis�ed.

Initial value problem for S(1). We recall (29){
σj
(
S(1)
j

)
= S(0)

j A
[1]
j +B

[1]
j S

(0)
j ,

S(1)
j (0) = 0 ,

and that the defect is given by

S(1) = S(1)
3 S

(0)
2 S

(0)
1 + S(0)

3 S
(1)
2 S

(0)
1 + S(0)

3 S
(0)
2 S

(1)
1 ,

see (27). Relation (21) applied for instance to the triple product S(1)
3 S

(0)
2 S

(0)
1

(setting X3 = S(1)
3 as well as Xj = S(0)

j for j = 1, 2 and utilizing σj(S(0)
j ) = 0

for j = 1, 2) implies

δ
(
S(1)
3 S

(0)
2 S

(0)
1

)
=
(
[S(1)

3 , Ĥ3] + σ3(S(1)
3 )
)
S(0)
2 S

(0)
1

+ S(1)
3 [S(0)

2 , Ĥ2]S(0)
1

+ S(1)
3 S

(0)
2 [S(0)

1 , Ĥ1]

= S(2)
3 S

(0)
2 S

(0)
1 + S(1)

3 S
(1)
2 S

(0)
1 + S(1)

3 S
(0)
2 S

(1)
1 ,
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where S(2)
j = [S(1)

j , Ĥj] + σj(S(1)
j ), see (22); clearly, δ

(
S(0)
3 S

(1)
2 S

(0)
1

)
and

δ
(
S(0)
3 S

(0)
2 S

(1)
1

)
can be represented in an analogous way. By summation

we thus obtain an initial value problem for the defect, rewritten as{
δS(1) = S(2) ,

S(1)(0) = 0 ,
(34)

involving the inhomogeneity

S(2) = S(2)
3 S

(0)
2 S

(0)
1 + S(1)

3 S
(1)
2 S

(0)
1 + S(1)

3 S
(0)
2 S

(1)
1

+ S(1)
3 S

(1)
2 S

(0)
1 + S(0)

3 S
(2)
2 S

(0)
1 + S(0)

3 S
(1)
2 S

(1)
1

+ S(1)
3 S

(0)
2 S

(1)
1 + S(0)

3 S
(1)
2 S

(1)
1 + S(0)

3 S
(0)
2 S

(2)
1 ,

(35)

where S(0)
j (t) v = O(1) and S(1)

j (t) v = O(t). It remains to investigate the

leading contributions involving S
(2)
j .

Generalization. Again, it is straightforward to extend the above considera-
tions to an s-stage splitting method, which leads to the representation

S(2) =
∑

k1+···+ks=2

2!
k1! ··· ks! S

(ks)
s · · · S(k1)

1 ,

see Section 6.

Integral representations for S(2)
j and structure of the term S(2). In order to

ensure L(t) v = O(t3), we next deduce an integral representation for the

quantities S(2)
j = [S(1)

j , Ĥj]+σj
(
S(1)
j

)
, see also (22); this step is accomplished

by invoking Lemma 4 with k = 2, see Section 6. An application of rela-
tion (59b) shows that S(2)

j satis�es an initial value problem, rewritten as{
σj
(
S(2)
j

)
= 2

(
S(1)
j A

[1]
j +B

[1]
j S

(1)
j

)
+ S(0)

j A
[2]
j +B

[2]
j S

(0)
j ,

S(2)
j (0) = A

[1]
j +B

[1]
j ;

(36)

involving the second iterated commutators

A
[2]
j = [[Aj, Hj−1], Hj−1], B

[2]
j = [[Bj, Hj], Hj] ;
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recalling that S(0)
j (0) = I and S(1)

j (0) = 0, the relation for the initial value is

obtained from the identity S(2)
j (0) = σj(S(1)

j )(0) = A
[1]
j +B

[1]
j , see (29). As a

consequence, the integral representation

S(2)
j (t) = etBj

(
A

[1]
j +B

[1]
j

)
etAj

+ 2

∫ t

0

e(t−τ)Bj
(
S(1)
j (τ)A

[1]
j +B

[1]
j S

(1)
j (τ)

)
e(t−τ)Aj dτ

+

∫ t

0

e(t−τ)Bj
(
S(0)
j (τ)A

[2]
j +B

[2]
j S

(0)
j (τ)

)
e(t−τ)Aj dτ ,

(37)

is obtained, where S(1)
j is expressed by (30). We point out that the �rst term

in (37) satis�es etBj
(
A

[1]
j + B

[1]
j

)
etAj v = O(1) only. In order to ensure that

the leading term in S(2), given by

S(2;0)(t) = etB3
(
A

[1]
3 +B

[1]
3

)
etA3 S(0)

2 (t)S(0)
1 (t)

+ S(0)
3 (t) etB2

(
A

[1]
2 +B

[1]
2

)
etA2 S(0)

1 (t)

+ S(0)
3 (t)S(0)

2 (t) etB1
(
A

[1]
1 +B

[1]
1

)
etA1 ,

satis�es S(2;0)(t) = O(t), we employ the second-order condition

OC2: S(2)(0) =
s∑
j=1

(
A

[1]
j +B

[1]
j

)
= 0

⇐⇒
s∑
j=1

j−1∑
k=1

ajbk −
s∑
j=1

j∑
k=1

bjak = 0 ,

(38)

which in particular implies S(2;0)(0) = 0; recall that S(0)(0) = I. By means
of the variation-of-constants formula

S(2;0)(t) =

∫ t

0

e(t−τ)H δS(2;0)(τ) dτ ,

this further yields S(2;0)(t) v = O(t), as desired. Thus, together with the
integral representation (30) the relation S(2)(t) = O(t) readily follows. It
remains to specify the structure of the obtained representation for S(2) and
in particular of δS(2;0). Due to σj

(
S(0)
j

)
= 0, and with

Xj(t) = etBj
(
A

[1]
j +B

[1]
j

)
etAj , Xj(0) = A

[1]
j +B

[1]
j , σj

(
Xj
)

= 0 ,
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relation (21) yields

δS(2;0) = [X3, Ĥ3]S(0)
2 S

(0)
1 + X3 S(1)

2 S
(0)
1 + X3 S(0)

2 S
(1)
1

+ S(1)
3 X2 S(0)

1 + S(0)
3 [X2, Ĥ2]S(0)

1 + S(0)
3 X2 S(1)

1

+ S(1)
3 S

(0)
2 X1 + S(0)

3 S
(1)
2 X1 + S(0)

3 S
(0)
2 [X1, Ĥ1] .

An application of Lemma 1 (iii) and (i) further implies

σj([Xj, Ĥj]) = Xj A[1]
j +B

[1]
j Xj ,

[Xj, Ĥj](t) = etBj
(
A

[1]
j +B

[1]
j

)
etAj

+

∫ t

0

e(t−τ)Bj
(
Xj(τ)A

[1]
j +B

[1]
j Xj(τ)

)
e(t−τ)Aj dτ .

This shows that δS(2;0) can be expressed via compositions of at most two
commutators and evolution operators associated with the subproblems. Sim-
ilarly, the remaining contributions to S(2) involving S(1)

j are of this structure,

see (35) and (30). Altogether, this implies that the quantity S(2) comprises
compositions of at most two commutators and evolution operators.

Local error expansion. Subsuming the above considerations concerning S(2)

and inserting the obtained integral representations for S(1)
j and S(2)

j into (33)
leads to a local error expansion implying L(t) v = O(t3). In the context of
linear Schrödinger equations the term S(2) v and thus L(t) v is well-de�ned
in L2 for v ∈ H2, see also Section 7.

4.4. A �nal expansion step ensuring L(t) v = O(t4)
Aim. We employ the same procedure as before, with some additional tech-
nicalities. Revisiting formula (33) and applying the second-order condition
S(2)(0) = 0, see (38), our aim is to deduce an initial value problem for S(2)

in order to obtain an integral representation of the form

S(2)(τ2) =

∫ τ2

0

e(τ2−τ3)H S(3)(τ3) dτ3 , (39)

which leads to

L(t) =

∫ t

0

∫ τ1

0

∫ τ2

0

e(t−τ3)H S(3)(τ3) dτ3 dτ2 dτ1 . (40)

Similarly as before, with the help of suitable integral representations for
building blocks constituting S(3) it turns out that even L(t) v = O(t4), pro-
vided that the third-order conditions are satis�ed.
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Initial value problem for S(2). In order to obtain a further expansion of the
term S(2), we invoke Lemma 3 given in Section 6 with s = 3 and k = 3

S(3) = δS(2) =
∑

k1+k2+k3=3

3!
k1! k2! k3!

S(k3)
3 S(k2)

2 S(k1)
1 , (41)

with S(k)
j de�ned by the recurrence in (22). That is, the operator S(2) satis�es

the initial value problem {
δS(2) = S(3) ,

S(2)(0) = 0 ,
(42)

involving the inhomogeneity S(3), see also (41).

Generalization. It is straightforward to extend the above considerations to a
splitting method involving s stages, yielding

S(3) =
∑

k1+···+ks=3

3!
k1! ··· ks! S

(ks)
s · · · S(k1)

1 ,

see Section 6.

Integral representations for S(3)
j and structure of the term S(3). In order to

ensure L(t) v = O(t4), we deduce an integral representation for the quanti-

ties S(3)
j . Invoking again Lemma 4 with k = 3 implies

σ
(
S(3)
j

)
= d

dt
S(3)
j − S

(3)
j Aj −Bj S(3)

j

= 3
(
S(2)
j A

[1]
j +B

[1]
j S

(2)
j

)
+ 3

(
S(1)
j A

[2]
j +B

[2]
j S

(1)
j

)
+ S(0)

j A
[3]
j +B

[3]
j S

(0)
j ,

involving the third iterated commutators

A
[3]
j = [[[Aj, Hj−1], Hj−1], Hj−1] , B

[3]
j = [[[Bj, Hj], Hj], Hj] .

By de�nition (22) and (36)

S(3)
j = [S(2)

j , Ĥj] + σj
(
S(2)
j

)
= [S(2)

j , Ĥj] + 2
(
S(1)
j A

[1]
j +B

[1]
j S

(1)
j

)
+ S(0)

j A
[2]
j +B

[2]
j S

(0)
j ;
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due to S(0)
j (0) = I, S(1)

j (0) = 0, and S(2)
j (0) = A

[1]
j + B

[1]
j , evaluation at zero

yields
S(3)
j (0) = [A

[1]
j +B

[1]
j , Ĥj] + A

[2]
j +B

[2]
j .

Thus, the integral representation

S(3)
j (t) = etBj

(
[A

[1]
j +B

[1]
j , Ĥj] + A

[2]
j +B

[2]
j

)
etAj

+ 3

∫ t

0

e(t−τ)Bj
(
S(2)
j (τ)A

[1]
j +B

[1]
j S

(2)
j (τ)

)
e(t−τ)Aj dτ

+ 3

∫ t

0

e(t−τ)Bj
(
S(1)
j (τ)A

[2]
j +B

[2]
j S

(1)
j (τ)

)
e(t−τ)Aj dτ

+

∫ t

0

e(t−τ)Bj
(
S(0)
j (τ)A

[3]
j +B

[3]
j S

(0)
j (τ)

)
e(t−τ)Aj dτ

(43)

follows, where S(1)
j and S(2)

j are expressed by (30) and (37), respectively.
Analogously to the preceeding step, in order to ensure that the leading term
in S(3), given by

S(3;0)(t) = etB3
(
[A

[1]
3 +B

[1]
3 , Ĥ3] + A

[2]
3 +B

[2]
3

)
etA3 S(0)

2 (t)S(0)
1 (t)

+ S(0)
3 (t) etB2

(
[A

[1]
2 +B

[1]
2 , Ĥ2] + A

[2]
2 +B

[2]
2

)
etA2 S(0)

1 (t)

+ S(0)
3 (t)S(0)

2 (t) etB1
(
[A

[1]
1 +B

[1]
1 , Ĥ1] + A

[2]
1 +B

[2]
1

)
etA1 ,

satis�es S(3;0)(t) v = O(t), we employ the third-order conditions

OC3: S(3)(0) =
s∑
j=1

(
[A

[1]
j +B

[1]
j , Ĥj] + A

[2]
j +B

[2]
j

)
= 0

⇐⇒
s∑
j=1

(
2

j∑
k=1

j∑
`=1

bj ak a` −
s∑
j=1

j−1∑
k=1

aj bk

(
aj + 2

j−1∑
`=1

a`

))
= 0

and
s∑
j=1

( j∑
k=1

j∑
`=1

bj ak b` − 2

j−1∑
k=1

j−1∑
`=1

aj bk b`

)
= 0 ,

(44)

which ensure S(3;0)(0) = 0. By means of the variation-of-constants formula
we obtain

S(3;0)(t) =

∫ t

0

e(t−τ)H δS(3;0)(τ) dτ ,
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and as desired S(3;0)(t) = O(t). Furthermore, the relation S(3)(t) = O(t)
readily follows. In order to specify the structure of S(3;0), arguments as in
Section 4.3 are used, but with

Xj(t) = etBj
(
[A

[1]
j +B

[1]
j , Ĥj] + A

[2]
j +B

[2]
j

)
etAj ,

Xj(0) = [A
[1]
j +B

[1]
j , Ĥj] + A

[2]
j +B

[2]
j .

Altogether, this shows that S(3) can be expressed via compositions of certain
iterated commutators and evolution operators.

Local error expansion. A local error expansion ensuring L(t) v = O(t4) un-
der suitable regularity requirements on v is �nally obtained by inserting the
above integral representations for S(1)

j ,S(2)
j ,S(3)

j into (40), see also (24a).
In the context of linear Schrödinger equations involving su�ciently regular
potentials, the evolution operators etH , etA, etB preserve the regularity prop-
erties of their arguments [10, Lemma 12]; thus it remains to deduce suitable
bounds for iterated commutators, which leads to the regularity requirement
v ∈ H3, see Section 7. The main tools for a generalization to higher-order
splitting methods are deduced in Section 6.

Proposition 1 (A priori local error expansion). Provided that the con-
sidered three-stage exponential operator splitting method satis�es the third-
order conditions (32), (38), and (44), for the associated local error it follows

L(t) v = O(t4) ,

under appropriate regularity requirements on the argument v. The local error
expansion in particular comprises third iterated commutators of the involved
operators A,B and the evolution operators etH , etA, etB.

4.5. Structure of the term S(4)

For p = 3 and in view of the analysis of our a posteriori local error estimator
in Section 5 below, the structure of the quantity S(4) = δS(3) is relevant. For
a general scheme involving s stages, Lemma 3 shows

S(4) =
∑

k1+···+ks=4

4!
k1! ··· ks! S

(ks)
s · · · S(k1)

1 , (45)
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where it remains to specify the quantities S(4)
j . Invoking once more Lemma 4

with k = 4 yields

σ
(
S(4)
j

)
= d

dt
S(4)
j − S

(4)
j Aj −Bj S(4)

j

= 4
(
S(3)
j A

[1]
j +B

[1]
j S

(3)
j

)
+ 6

(
S(2)
j A

[2]
j +B

[2]
j S

(2)
j

)
+ 4

(
S(1)
j A

[3]
j +B

[3]
j S

(1)
j

)
+ S(0)

j A
[4]
j +B

[4]
j S

(0)
j ,

(46)

involving in particular the fourth iterated commutators

A
[4]
j = [[[[Aj, Hj−1], Hj−1], Hj−1], Hj−1] , B

[4]
j = [[[[Bj, Hj], Hj], Hj], Hj] .

We thus obtain the integral representation

S(4)
j (t) = etBj S(4)

j (0) etAj

+ 4

∫ t

0

e(t−τ)Bj
(
S(3)
j (τ)A

[1]
j +B

[1]
j S

(3)
j (τ)

)
e(t−τ)Aj dτ

+ 6

∫ t

0

e(t−τ)Bj
(
S(2)
j (τ)A

[2]
j +B

[2]
j S

(2)
j (τ)

)
e(t−τ)Aj dτ

+ 4

∫ t

0

e(t−τ)Bj
(
S(1)
j (τ)A

[3]
j +B

[3]
j S

(1)
j (τ)

)
e(t−τ)Aj dτ

+

∫ t

0

e(t−τ)Bj
(
S(0)
j (τ)A

[4]
j +B

[4]
j S

(0)
j (τ)

)
e(t−τ)Aj dτ ,

(47)

where

S(4)
j (0) = [[A

[1]
j +B

[1]
j , Ĥj], Ĥj] + [A

[2]
j +B

[2]
j , Ĥj]

+ 3
(
(A

[1]
j +B

[1]
j )A

[1]
j +B

[1]
j (A

[1]
j +B

[1]
j )
)

+ A
[3]
j +B

[3]
j ,

with S(4)
j (0) 6= 0, in general. In the context of Schrödinger equations this

shows that the dominant terms in S(4) involving fourth iterated commutators
impose the regularity requirement v ∈ H4 to ensure S(4)(t) = O(1). We note

that the quantities S(4)
j (0) contain compositions of iterated commutators,

which remain bounded under the regularity requirements imposed on the
leading terms.
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Remark 1. Let us recapitulate the structure of the third-order conditions
for a splitting method involving s stages. In addition to the basic consistency
condition

OC1: S(1)(0) = 0 ⇐⇒
s∑
j=1

(
Aj +Bj

)
= A+B ,

it is required that the conditions

OC2: S(2)(0) =
s∑
j=1

(
A

[1]
j +B

[1]
j

)
= 0 ,

OC3: S(3)(0) =
s∑
j=1

(
[A

[1]
j +B

[1]
j , Ĥj] + A

[2]
j +B

[2]
j

)
= 0 ,

hold, see also (32), (38), and (44). We point out that S(2)(0) is a multiple
of the �rst commutator [A,B], provided that the condition OC1 is satis�ed,
and that S(3)(0) is a linear combination of the second iterated commutators
[A, [A,B]] and [B, [A,B]], provided that the conditions OC1 and OC2 are
satis�ed. However, if the validity of the respective lower-order conditions
is not utilized, the quantities S(2)(0) and S(3)(0) are of a more complicated
structure, involving terms that cannot be represented as commutators.

The above considerations also extend to high-order methods. For in-
stance, a close inspection shows that the term

S(4)(0) = S(4)
3 (0) + S(4)

2 (0) + S(4)
1 (0)

+ 6
(
S(2)
3 (0)S(2)

2 (0) + S(2)
3 (0)S(2)

1 (0) + S(2)
2 (0)S(2)

1 (0)
) (48)

reduces to a linear combination of the third iterated commutators
[A, [A, [A,B]]], [B, [A, [A,B]]] = [A, [B, [A,B]]], and [B, [B, [A,B]]] provided
that the conditions OC1, OC2, and OC3 are satis�ed. The direct veri�ca-
tion of this fact requires rather tedious calculations which we do not explicate
here. It can be shown that such a structure of the order conditions is valid
for splitting methods of arbitrary order p; however, a rigorous proof of this
fact is beyond the scope of the present manuscript and will be given in a
separate work. Such a result also implies that the order conditions obtained
in this way are non-redundant. Furthermore, this enables the automatic gen-
eration of the respective system of polynomial equations for the coe�cients
(aj, bj)1≤j≤s with the help of computer algebra.
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5. A posteriori local error estimators

Construction of local error estimators (s = p = 3). As indicated before, for
an exponential operator splitting method of the form (3) the construction
of the defect-based local error estimator (7) relies on the application of an
Hermite quadrature formula (6) for the approximation of (4d). In particular,
for a three-stage third-order splitting method, application of the fourth-order
Hermite quadrature formula

Qf (t) = t
(
3
4
f(0; t) + 1

4
t ∂τf(0; t) + 1

24
t2 ∂2τf(0; t) + 1

4
f(t; t)

)
,∫ t

0

f(τ ; t) dτ −Qf (t) = O
(
t5
)
, t ≥ 0 ,

(49)

see also (6), yields the local error estimator

P(t) = 1
4
tS(1)(t) ≈ L(t) =

∫ t

0

f(τ ; t) dτ ,

f(τ ; t) = e(t−τ)H S(1)(τ) , 0 ≤ τ ≤ t ,

S(1) = S(1)
3 S

(0)
2 S

(0)
1 + S(0)

3 S
(1)
2 S

(0)
1 + S(0)

3 S
(0)
2 S

(1)
1 ,

(50)

see (4d), (24a), (27), and recall that the defect D equals S(1). In fact, due to

f(τ ; t) = e(t−τ)H S(1)(τ) ,

∂τf(τ ; t) = e(t−τ)H δS(1)(τ) = e(t−τ)H S(2)(τ) ,

∂2τf(τ ; t) = e(t−τ)H δS(2)(τ) = e(t−τ)H S(3)(τ) ,

(51)

and the validity of the conditions S(1)(0) = S(2)(0) = S(3)(0) = 0 re�ecting
the third-order conditions it follows

f(0; t) = ∂τf(0; t) = ∂2τf(0; t) = 0 , f(t; t) = S(1)(t) ,

hence P(t) = 1
4
tS(1)(t) results, see (50).

Construction of local error estimators (general case). More generally, fol-
lowing the analogous approach, for a p-th-order splitting method the defect-
based local error estimator is given by

P(t) = 1
p+1

tS(1)(t) ≈ L(t) ,

which leads to the representation (7).
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Asymptotical correctness (s = p = 3). The analysis comprises three steps.

(i) For the Hermite quadrature formula (49) the Peano representation for
the quadrature error involving a third-order Peano kernel reads

P(t)−L(t) =

∫ t

0

K3(τ ; t) ∂3τf(τ ; t) dτ , K3(τ ; t) = 1
24

(4τ− t) (t−τ)2 ,

where K3(τ ; t) satis�es ∫ t

0

K3(τ ; t) dτ = 0 . (52)

Further di�erentiation of (51) implies ∂3τf(τ ; t) = e(t−τ)H S(4)(τ); this
yields the representation

P(t)− L(t) =

∫ t

0

K3(τ ; t) e(t−τ)H S(4)(τ) dτ .

Our basic idea is to exploit relation (52) and to rewrite P − L as

P(t)− L(t) = etH S(4)(0)

∫ t

0

K3(τ ; t) dτ

+

∫ t

0

K3(τ ; t) e(t−τ)H
(
S(4)(τ)− eτHS(4)(0)

)
dτ

=

∫ t

0

K3(τ ; t) e(t−τ)H
(
S(4)(τ)− eτHS(4)(0)

)
dτ .

Evidently, the relation K3(τ ; t) = O(t3) holds; consequently, in order
to ensure P(t) − L(t) = O(t5), a close inspection of the leading term
in e(t−τ)H

(
S(4)(τ)− eτHS(4)(0)

)
is required.

(ii) Recall the structure of S(4)(0) speci�ed in (48), and consider the time
evolution of the corresponding operator

S(4)
3 S

(0)
2 S

(0)
1 + S(0)

3 S
(4)
2 S

(0)
1 + S(0)

3 S
(0)
2 S

(4)
1

+ 6
(
S(2)
3 S

(2)
2 S

(0)
1 + S(2)

3 S
(0)
2 S

(2)
1 + S(0)

3 S
(2)
2 S

(2)
1

)
.

In this expression, replace all S(k)
j by

S̃(k)
j (t) := etBj S(k)

j (0 ) etAj , S̃(k)
j (0) = S(k)

j (0),
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and consider S̃(4), de�ned by

S̃(4) := S̃(4)
3 S̃

(0)
2 S̃

(0)
1 + S̃(0)

3 S̃
(4)
2 S̃

(0)
1 + S̃(0)

3 S̃
(0)
2 S̃

(4)
1

+ 6
(
S̃(2)
3 S̃

(2)
2 S̃

(0)
1 + S̃(2)

3 S̃
(0)
2 S̃

(2)
1 + S̃(0)

3 S̃
(2)
2 S̃

(2)
1

)
.

Here,
S̃(k3)
3 (t) S̃(k2)

2 (t) S̃(k1)
1 (t) (53a)

are splitting analogues of

etH S(k3)
3 (0)S(k2)

2 (0)S(k1)
1 (0). (53b)

To study the di�erence between (53a) and (53b), we apply again (21)

and insert σj(S̃
(kj)
j ) = 0, obtaining

δ
(
S̃(k3)
3 S̃(k2)

2 S̃(k1)
1

)
= [S̃(k3)

3 , Ĥ3] S̃(k2)
2 S̃(k1)

1

+ S̃(k3)
3 [S̃(k2)

2 , Ĥ2] S̃(k1)
1

+ S̃(k3)
3 S̃(k2)

2 [S̃(k1)
1 , Ĥ1] .

Again, we represent [S̃(kj)
j , Ĥj] as solutions of Sylvester equations, (see

Lemma 1, (iii)). This results in an evolution equation of the form

δ
(
S̃(k3)
3 (t) S̃(k2)

2 (t) S̃(k1)
1 (t)−etH S(k3)

3 (0)S(k2)
2 (0)S(k1)

1 (0)
)

= O(1), (54)

with homogeneous initial condition. We note that the inhomogene-
ity in (54) is O(1) but not O(t), which is su�cient in the present
context. This is due to the fact that for kj > 0 the initial values

[S̃(kj)
j (0), Ĥj] = [S(kj)

j (0), Ĥj] are commutator expressions which do not

vanish, in contrast to [S(0)
j (0), Ĥj] = [I, Ĥj] = 0.

Summing up all the contributions, after integration we obtain

S̃(4)(t)− etH S(4)(0) = O(t).

(iii) Noting that

eτH S(4)(0)− S(4)(t) = eτH S(4)(0)− S̃(4)(t) + S̃(4)(t)− S(4)(t) ,

it remains to study the second term S̃(4)(t)− S(4)(t), which consists of
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� O(t)-terms in the multinomial expansion (45) for S(4)(t) (com-
prising all other index combinations as for instance (2, 1, 1) with
homogeneous initial value), and

� terms like, for instance,

S̃(2)
3 S̃

(2)
2 S̃

(0)
1 − S

(2)
3 S

(2)
2 S

(0)
1

wish vanish at t = 0.

For the latter terms, O(t) remains to be shown. After rearranging, the
triangle inequality implies that it is su�cient to verify

S̃(k)
j (t)− S(k)

j (t) = O(t).

These terms are given by the integral representations for S(k)
j (t) where

the O(1) terms S̃(k)
j (t) = etBj S(k)

j (0) etAj cancel out, cf. for exam-
ple (47) for k = 4.

Altogether, this shows asymptotical correctness of the local error estimator
P(t) from (50). �

Proposition 2 (Asymptotical correctness). Provided that the consid-
ered three-stage exponential operator splitting method satis�es the third-order
conditions (32), (38), and (44), the associated defect-based local error esti-
mator is asymptotically correct, that is, it holds(

P(t)− L(t)
)
v = O

(
t5
)

under appropriate regularity requirements on the argument v. The above
expansion in particular comprises fourth iterated commutators of the involved
operators A,B and the evolution operators etH , etA, etB.

Asymptotical correctness (General case). More generally, for a p-th-order
splitting method we obtain the following Peano representation for the quadra-
ture approximation error

P(t)− L(t) =

∫ t

0

Kp(τ ; t) ∂pτ f(τ ; t) dτ

=

∫ t

0

Kp(τ ; t) e(t−τ)H S(p+1)(τ) dτ ;
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here, the p-th order Peano kernelKp is a polynomial of degree p in τ satisfying∫ t

0

Kp(τ ; t) dτ = 0 .

Rewriting the di�erence P−L in a similar manner as before shows that the a
posteriori local error estimator quadrature approximation is asymptotically
correct,

P(t) v − L(t) v = O
(
tp+2

)
,

provided that the argument v satis�es suitable regularity requirements. In
the context of linear Schrödinger equations the neccessary regularity assump-
tions are speci�ed in Section 7; auxiliary results on the structure of S(p+1)

are provided in Section 6 below.

6. Main tools for a generalization to higher-order splitting methods

In the following, we derive auxiliary results specifying the structure of the
operator S(n) for arbitrary n ≥ 1; as indicated in Sections 4 and 5 these
results provide the main ingredients for an extension of our approach to
higher-order exponential operator splitting methods (3).

Evolution equation for multiple product. The following auxiliary result pro-
vides a relation for the derivative of a multiple product of time-dependent
operators Xν satisfying a Sylvester equation. We denote

X k
` =

k∏
ν=`

Xν = Xk Xk−1 · · · X` , k ≥ ` , X k
` = I , k < ` . (55)

Lemma 2. For any 1 ≤ j ≤ s the product X j
1 = Xj · · · X1 of time-

dependent operators satisfying the inhomogeneous Sylvester equations{
d
dt
Xν = Xν Aν +Bν Xν + Gν ,
Xν(0) given ,

(56)

is a solution of the initial value problem
d
dt
X j

1 = Hj X j
1 +

j∑
ν=1

X j
ν+1

(
[Xν , Ĥν ] + Gν

)
X ν−1

1 ,

X j
1 (0) given.

(57a)
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In particular, the operator X = X s
1 = Xs · · · X1 satis�es

d
dt
X = H X +

s∑
ν=1

X s
ν+1

(
[Xν , Ĥν ] + Gν

)
X ν−1

1 ,

X (0) given.

(57b)

Proof. We apply induction on j.

• For j = 1 assertion (57a) follows at once from (56), since

d
dt
X1 = X1A1 +B1X1 + G1

= (A1 +B1)X1 + [X1, A1] + G1
= H1X1 + [X1, Ĥ1] + G1 .

• In order to prove the induction step j− 1 → j for 2 ≤ j ≤ s, we make
use of the commutator identity (10). Di�erentiation and application of
the induction assumption yields

d
dt
X j

1 = d
dt

(
Xj X j−1

1

)
= d

dt
(Xj)X j−1

1 + Xj d
dt
X j−1

1

=
(
Xj Aj +Bj Xj + Gj

)
X j−1

1

+ Xj
(
Hj−1X j−1

1 +

j−1∑
ν=1

X j−1
ν+1

(
[Xν , Ĥν ] + Gν

)
X ν−1

1

)
=
(
Hj Xj + [Xj, Aj] + Gj

)
X j−1

1

+ Xj Hj−1X j−1
1 +

j−1∑
ν=1

X j
ν+1

(
[Xν , Ĥν ] + Gν

)
X ν−1

1

= Hj X j
1 + Xj Hj−1X j−1

1 +
(
[Xj, Aj] + Gj

)
X j−1

1

+

j−1∑
ν=1

X j
ν+1

(
[Xν , Ĥν ] + Gν

)
X ν−1

1 .

Rearranging the �rst three terms according to

Hj X j
1 + Xj Hj−1X j−1

1 +
(
[Xj, Aj] + Gj

)
X j−1

1

= Hj X j
1 +Hj−1Xj X j−1

1 + [Xj, Hj−1]X j−1
1 +

(
[Xj, Aj] + Gj

)
X j−1

1

= Hj X j
1 +Hj−1X j

1 +
(
[Xj, Aj +Hj−1] + Gj

)
X j−1

1

= Hj X j
1 +

(
[Xj, Ĥj] + Gj

)
X j−1

1 ,
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further implies

d
dt
X j

1 = Hj X j
1 +

(
[Xj, Ĥj] + Gj

)
X j−1

1 +

j−1∑
ν=1

X j
ν+1

(
[Xν , Ĥν ] + Gν

)
X ν−1

1

= Hj X j
1 +

j∑
ν=1

X j
ν+1

(
[Xν , Ĥν ] + Gν

)
X ν−1

1 ,

which completes the induction argument. �

Representation for S(n). In order to establish a local error expansion of the
form (25) and to prove asymptotical correctness of the a posteriori local
error estimator (7), it is essential to employ a suitable representation for
S(n) = δnS(0).

Lemma 3. The quantity S(n) can be represented in the form

S(n) =
∑

k1+···+ks=n

n!
k1! ··· ks! S

(ks)
s · · · S(k1)

1 , (58a)

where S(k)
j are recursively de�ned by

S(0)
j = Sj , S(k)

j = [S(k−1)
j , Ĥj] + σj

(
S(k−1)
j

)
, k ≥ 1 . (58b)

Proof. We refer to Sections 4 and 5 for a detailed treatment of the special
case s = p = 3 and recall the notations (20) as well as (22). With the help
of Lemma 2 providing the starting point for an induction argument

S(1) = δS(0) = d
dt
S(0) −H S(0) =

s∑
ν=1

S(0)
s · · · S

(0)
ν+1 [S(0)

ν , Ĥν ]S(0)
ν−1 · · · S

(0)
1 ,

the proof of Lemma 3 is then identical with the proof of the general multi-
nomial Leibniz formula for higher derivatives of a product of functions. In
the present situation, the linear operation S(k−1)

j 7→ S(k)
j according to (58b)

replaces the linear operation of di�erentiation. �
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Representation of S(k)
j . In order to deduce an appropriate representation

for S(n) and S(n)(t) − etHS(n)(0), respectively, it is essential to represent

the building blocks S(k)
j in a suitable manner. This is accomplished by the

following auxiliary result, which enables a representation of S(k)
j as solution of

a Sylvester-type equation with inhomogeneity depending on S(0)
j , . . . ,S(k−1)

j .

Lemma 4. The binomial expansion

d
dt
S(k)
j =

k∑
`=0

(
k

`

)(
S(`)
j A

[k−`]
j +B

[k−`]
j S(`)

j

)
(59a)

holds true for any 1 ≤ j ≤ s and k ≥ 0; that is, S(k)
j satis�es a Sylvester-type

equation with inhomogeneity

σj(S(k)
j ) = d

dt
S(k)
j − S

(k)
j Aj −Bj S(k)

j

=
k−1∑
`=0

(
k

`

)(
S(`)
j A

[k−`]
j +B

[k−`]
j S(`)

j

)
.

(59b)

Proof. For notational simplicity, we meanwhile suppress the stage index j.
For given A = A[0], B = B[0] and Ĥ, de�ne

H = Ĥ − A , H = Ĥ +B ,

(see (9a)), and

A[`] = [A[`−1], H] , B[`] = [B[`−1], H] , ` ≥ 1 ,

(see (11)). As in (20), we use the abbreviation

σ(X ) = d
dt
X − XA−B X .

Assume that X (0) is given, satisfying σ(X (0)) = 0, and consider the recursion
(see (58b))

X (k) = [X (k−1), Ĥ] + σ(X (k−1)) , k ≥ 1 .

Now we prove the analogue to (59b),

σ(X (k)) =
k−1∑
`=0

(
k

`

)(
X (`)A[k−`] +B[k−`]X (`)

)
(60)

for all k ≥ 0. In the following we repeatedly make use of identity (10).
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• Step 1: For µ ≥ 0 the auxiliary identity

[XA[µ] +B[µ]X , Ĥ] + σ(XA[µ] +B[µ]X )

= XA[µ+1] +B[µ+1]X
+
(
[X , Ĥ] + σ(X )

)
A[µ] +B[µ]

(
[X , Ĥ] + σ(X )

) (61)

holds, since

[XA[µ] +B[µ]X , Ĥ] + σ(XA[µ] +B[µ]X )

= X [A[µ], Ĥ] + [X , Ĥ]A[µ] +B[µ] [X , Ĥ] + [B[µ], Ĥ]X
+ d

dt
XA[µ] +B[µ] d

dt
X −

(
XA[µ] +B[µ]X

)
A−B

(
XA[µ] +B[µ]X

)
= X [A[µ], Ĥ] + [X , Ĥ]A[µ] +B[µ] [X , Ĥ] + [B[µ], Ĥ]X

+
(
σ(X ) + XA+B X

)
A[µ] +B[µ]

(
σ(X ) + XA+B X

)
−
(
XA[µ] +B[µ]X

)
A−B

(
XA[µ] +B[µ]X

)
= X [A[µ], Ĥ]−X [A[µ], A] + [B[µ], Ĥ]X + [B[µ], B]X

+ [X , Ĥ]A[µ] + σ(X )A[µ] +B[µ] [X , Ĥ] +B[µ] σ(X )

= XA[µ+1] +B[µ+1]X +
(
[X , Ĥ] + σ(X )

)
A[µ] +B[µ]

(
[X , Ĥ] + σ(X )

)
after rearrangement, observing the recursive de�nition of A[`] and B[`].

• Step 2: For k = 0, (60) is equivalent to the assumption σ(X (0)) = 0.

• Step 3: Induction k → k + 1 :

σ(X (k+1)) = σ([X (k), Ĥ]) + σ(σ(X [k]))

= d
dt

[X (k), Ĥ]− [X (k), Ĥ]A−B [X (k), Ĥ] + σ(σ(X [k]))

= [X (k)A+B X (k), Ĥ]− [X (k), Ĥ]A−B [X (k), Ĥ]

+ [σ(X (k)), Ĥ] + σ(σ(X [k]))

= X (k) [A, Ĥ] + [B, Ĥ]X (k) + [σ(X (k)), Ĥ] + σ(σ(X [k]))

= X (k)[A,H] + [B,H]X (k) + [σ(X (k)), Ĥ] + σ(σ(X [k]))

ind
= X (k)A[1] +B[1]X (k)

+
k−1∑
`=0

(
k

`

)(
[X (`)A[k−`] +B[k−`]X (`), Ĥ]

+ σ(X (`)A[k−`] +B[k−`]X (`))
)
.
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Now, identity (61) together with the recursive de�nition of X (`) implies

[X (`)A[k−`] +B[k−`]X (`), Ĥ] + σ(X (`)A[k−`] +B[k−`]X (`))

= X (`)A[k+1−`] +B[k+1−`]X (`) +
(
X (`+1)A[k−`] +B[k−`]X (`+1)

)
.

Thus, σ(X (k+1)) evaluates to

σ(X (k+1)) = X (k)A[1] +B[1]X (k)

+
k−1∑
`=0

(
k

`

)(
X (`)A[k+1−`] +B[k+1−`]X (`)

)
+

k−1∑
`=0

(
k

`

)(
X (`+1)A[k−`] +B[k−`]X (`+1)

)
=

k∑
`=0

(
k

`

)(
X (`)A[k+1−`] +B[k+1−`]X (`)

)
+

k∑
`=1

(
k

`− 1

)(
X (`)A[k+1−`] +B[k+1−`]X (`)

)
= X (0)A[k+1] +B[k+1]X (0)

+
k∑
`=1

(
k + 1

`

)(
X (`)A[k+1−`] +B[k+1−`]X (`)

)
=

k∑
`=0

(
k + 1

`

)(
X (`)A[k+1−`] +B[k+1−`]X (`)

)
,

which proves (60).

Finally, setting X (k) = S(k)
j , the proposed identity (59) corresponds to (60) .

�

7. Application to linear Schrödinger equations

In this section, we discuss the application of our a priori and a posteriori local
error analysis to linear Schrödinger equations (1); in particular, we state the
regularity assumptions on the exact solution ψ : Rd × [0, T ] → C and the
potential V : Rd → R.
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Main tools for the local error analysis. In our previous work [10] concerned
with a posteriori local error estimators for (1) based on the �rst-order Lie�
Trotter splitting method and the second-order Strang splitting method, re-
spectively, it has been demonstrated that the obtained a priori and a pos-
teriori local error expansions involve commutators of the operators A = i∆
and B = − iV applied to terms which are composed of the evolution op-
erator et(A+B) associated with the problem and of the evolution operators
etA, etB arising in the splitting scheme; for notational simplicity, we omit
an additional scaling factor in the de�nition of A. Due to the linearity of
the problem, the regularity of the initial state and the smoothness of the
potential determine the regularity properties of the exact solution, and the
regularity of the initial state is inherited by the involved evolution operators,
see also [10, Lemma 12]. In order to extend the a priori and a posteriori local
error estimates given in [10, Theorems 1,2] to higher-order schemes, a main
ingredient are bounds for higher-order iterated commutators. Auxiliary re-
sults given for instance in [8, 13], see also references therein, ensure that the
k th-order commutator adkA(B)ψ is bounded in terms of ‖V ‖C2k and ‖ψ‖Hk .
To keep this presentation self-contained, we brie�y explicate these smooth-
ness requirements. A straightforward calculation yields[

∆, V
]
ψ = ∆(V ψ)− V ∆ψ = 2∇V · ∇ψ + ∆V ψ ;

we point out that the terms comprising second spatial derivatives of ψ cancel.
This in particular implies that the �rst commutator [A,B] = [∆, V ] is well-
de�ned and bounded for arguments ψ ∈ H1, provided that the potential
satis�es V ∈ C2. Similarly, it is seen that the second iterated commutators[

∆, [∆, V ]
]
ψ = 2

[
∆,∇V · ∇

]
ψ +

[
∆,∆V

]
ψ

is well-de�ned for ψ ∈ H2 and V ∈ C4, whereas[
V, [∆, V ]

]
ψ = 2

[
V,∇V · ∇

]
ψ +

[
V,∆V

]
ψ = − 2 (∇V · ∇V )ψ

only requires ψ ∈ L2 and V ∈ C1. By induction, it follows that the dominant
error term involving the iterated commutator adkA(B) is well-de�ned provided
ψ ∈ Hk and V ∈ C2k, see also [8, Section 2.2] for detailed arguments.

Altogether, we obtain the following result on the asymptotical correctness
of the defect-based a posteriori local error estimators (7), and along the
way we recover the known a priori error bounds for higher-order splitting
methods.
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Theorem 1. The following local error estimates are valid for an exponential
operator splitting method (3) of (nonsti�) order p ≥ 1 applied to the linear
Schrödinger equation (1).

(i) A priori: If V ∈ C2p and ‖ψ0‖Hp ≤Mp, then there holds

‖L(t)ψ0‖L2 ≤ C tp+1

with a constant C > 0 depending in particular on Mp.

(ii) A posteriori: If V ∈ C2p+2 and ‖ψ0‖Hp+1 ≤ Mp+1, then the application
of the a posteriori local error estimator P(t)ψ0 is well-de�ned in L2

and there holds
‖(P − L)(t)ψ0‖L2 ≤ C tp+2

with a constant C > 0 depending in particular on Mp+1.

8. Numerical examples

In this section, we illustrate the error behavior of higher-order defect-based
local error estimators (7) when applied to test problems of Schrödinger and
parabolic type. The numerical results in particular con�rm the asymptotical
correctness of the constructed a posteriori local error estimators (7).

Splitting methods. For the sake of completeness we specify the coe�cients of
the employed higher-order splitting methods in Table 1 (real coe�cients) and
Table 2 (complex coe�cients), see also [1, 2]. In addition, we apply the �rst-
order Lie�Trotter splitting method, where a1 = b1 = 1, and the second-order
Strang splitting method, where a1 = a2 = 1

2
, b1 = 1, b2 = 0.

Test problem of Schrödinger type. As a �rst illustration, we consider the
time-dependent linear Schrödinger equation (1) in one space dimension, sub-
ject to the periodic potential V (x) = sin2(π

4
x) and the initial condition

ψ0(x) = e−x
2+iσ0(x) with σ0(x) = − ln

(
ex+e−x

)
. For the space discretization,

we apply fast Fourier transform techniques. We truncate the unbounded spa-
tial domain to the interval [−8, 8] and subdivide into M = 256 equidistant
grid points. Due to the fact that the exact solution remains localized on the
considered time interval [0, 1] and as the number of basis functions is chosen
su�ciently high, the e�ect from the arti�cial periodic boundary conditions
and the in�uence of the spatial error is negligible. For the time integration,
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Table 1: Splitting methods with real coe�cients of orders p = 3 (top), p = 4 (middle),
and p = 6 (bottom).

j aj

1 1
2 −2/3
3 2/3

j aj

1 0
2 1.351207191959658
3 −1.702414383919316
4 1.351207191959658

j aj

1 0
2 0.784513610477557
3 0.235573213359358
4 −1.177679984178871
5 1.315186320683911
6 −1.177679984178871
7 0.235573213359358
8 0.784513610477557

j bj

1 −1/24
2 3/4
3 7/24

j bj

1 0.675603595979829
2 −0.175603595979829
3 −0.175603595979829
4 0.675603595979829

j bj

1 0.392256805238779
2 0.510043411918458
3 −0.471053385409756
4 0.068753168252520
5 0.068753168252520
6 −0.471053385409756
7 0.510043411918458
8 0.392256805238779

we apply di�erent splitting methods of orders p = 1, 2, 3, 4, 6 with real coe�-
cients, namely, the �rst-order Lie�Trotter splitting, the second-order Strang
splitting, a three-stage third-order splitting, a four-stage fourth-order split-
ting proposed by Yoshida, and an eight-stage sixth-order splitting proposed
by Yoshida, see Table 1. A numerical reference solution is computed by a
fourth-order splitting scheme proposed in [11], applied with constant time

Table 2: Splitting methods with complex coe�cients of orders p = 3 (top) and p = 4
(bottom).

j aj

1 0.162198202010086 + 0.067293136245403 i
2 0.405225180733310 + 0.198864212461903 i
3 0.432576617256604− 0.266157348707306 i

j aj

1 0
2 0.324396404020171 + 0.134586272490807 i
3 0.351207191959658− 0.269172544981613 i
4 0.324396404020171 + 0.134586272490807 i

j bj

1 0.415770154056105 + 0.212948225747424 i
2 0.385509228205624− 0.110555709201699 i
3 0.198720617738271− 0.102392516545726 i

j bj

1 0.162198202010086 + 0.067293136245403 i
2 0.337801797989914− 0.067293136245403 i
3 0.337801797989914− 0.067293136245403 i
4 0.162198202010086 + 0.067293136245403 i
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Figure 1: Linear Schrödinger equation: Global errors versus time stepsizes for di�erent
splitting methods (left) of orders p = 1, 2, 3, 4, 6 and associated improved approximations
(right) of orders p+ 1 resulting from the a posteriori local error estimators (7).

stepsize ∆t = 2−11. The asymptotical correctness of the associated a poste-
riori local error estimators ensures that a numerical approximation of order
p+1 is obtained when subtracting the a posteriori local error estimator from
the basic solution, since

(S − P)− E = L − P = O(tp+2) .

In Figure 1, the global errors of the basic splitting methods and of the associ-
ated improved integrators are displayed; the numerical results indeed con�rm
order p + 1 for the improved approximations. Thus, the observed error be-
havior for the linear test problem of Schrödinger type is in accordance with
our theoretical analysis, see Theorem 1.

Test problem of parabolic type. As a further illustration we consider the lin-
ear evolution equation (1), but with imaginary unit replaced by one, which
leads to a problem of parabolic type. Although this problem class is not
strictly covered by our theory, the computations demonstrate that our error
analysis also extends to more general classes of problems, provided that the
evolution operators associated with the subproblems remain bounded on the
involved function spaces. For the time integration we apply the �rst-order
Lie�Trotter splitting, the second-order Strang splitting, a three-stage third-
order splitting involving complex coe�cients with positive real parts, and a
four-stage fourth-order splitting involving complex coe�cients with positive
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Figure 2: Parabolic equation: Global errors versus time stepsizes for di�erent splitting
methods (left) of orders p = 1, 2, 3, 4 and associated improved approximations (right) of
orders p+ 1 resulting from the a posteriori local error estimators (7).

real parts, see Table 2 and [12] as well as references given therein. The global
errors of the basic splitting methods and of the associated improved integra-
tors, displayed in Figure 2, illustrate the asymptotical correctness of the a
posteriori local error estimators.
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