
Archiving Deferred Representations Using a Two-Tiered
Crawling Approach

Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson
Old Dominion University

Department of Computer Science
Norfolk, Virginia, 23508

{jbrunelle, mweigle, mln}@cs.odu.edu

ABSTRACT
Web resources are increasingly interactive, resulting in re-
sources that are increasingly difficult to archive. The archival
difficulty is based on the use of client-side technologies (e.g.,
JavaScript) to change the client-side state of a representa-
tion after it has initially loaded. We refer to these represen-
tations as deferred representations. We can better archive
deferred representations using tools like headless browsing
clients. We use 10,000 seed Universal Resource Identifiers
(URIs) to explore the impact of including PhantomJS – a
headless browsing tool – into the crawling process by com-
paring the performance of wget (the baseline), PhantomJS,
and Heritrix. Heritrix crawled 2.065 URIs per second, 12.15
times faster than PhantomJS and 2.4 times faster than wget.
However, PhantomJS discovered 531,484 URIs, 1.75 times
more than Heritrix and 4.11 times more than wget. To take
advantage of the performance benefits of Heritrix and the
URI discovery of PhantomJS, we recommend a tiered crawl-
ing strategy in which a classifier predicts whether a repre-
sentation will be deferred or not, and only resources with
deferred representations are crawled with PhantomJS while
resources without deferred representations are crawled with
Heritrix. We show that this approach is 5.2 times faster than
using only PhantomJS and creates a frontier (set of URIs to
be crawled) 1.8 times larger than using only Heritrix.

Categories and Subject Descriptors
H.3.7 [Online Information Services]: Digital Libraries

General Terms
Design, Experimentation, Measurement

Keywords
Web Architecture, HTTP, Web Archiving, Memento

1. INTRODUCTION
The Web – by design and demand – continues to change. To-
day’s Web users expect Web resources to provide application-

iPres 2015 conference proceedings will be made available under a Creative
Commons license.
With the exception of any logos, emblems, trademarks or other nom-
inated third-party images/text, this work is available for re-use under
a Creative Commons Attribution 3.0 unported license. Authorship of
this work must be attributed. View a copy of this licence at http:
//creativecommons.org/licenses/by/3.0/legalcode.

like interactive features, client-side state changes, and per-
sonalized representations. These features enhance the brows-
ing experience, but make archiving the resulting represen-
tations difficult – if not impossible. We refer to the ease of
archiving a Web resource as archivability [8].

Web resources are ephemeral by nature, making archives like
the Internet Archive [24, 36] valuable to Web users seeking
to revisit prior versions of the Web. Users (and robots)
utilize archives in a variety of ways [3, 15, 18]. Live Web
resources are more heavily leveraging JavaScript (i.e., Ajax)
to load embedded resources, which leads to the live Web
“leaking” into the archive [9] or missing embedded resources
in the archives, both of which ultimately results in reduced
archival quality [7].

We define deferred representations as those representations
of resources that rely on JavaScript and other client-side
technologies to load embedded resources after the initial
page load. We use the term deferred because the represen-
tation is not fully realized and constructed until after the
JavaScript code is executed on the client. Conventional Web
crawlers (e.g., Heritrix, wget) are not equipped with the nec-
essary tools to execute JavaScript during the archival pro-
cess [6] and subsequently never dereference the URIs of the
resources embedded via JavaScript and are required to com-
plete the deferred representation. PhantomJS allows Java-
Script to execute on the client, rendering the representation
as would a Web browser. In the archives, the missing embed-
ded resources return a non-200 HTTP status (e.g., 404, 503)
when their Universal Resource Identifiers (URIs) are deref-
erenced, leaving pages incomplete. Deferred representations
can also lead to zombies which occur when archived versions
of pages inappropriately load embedded resources from the
live Web, leaving pages incorrect, or more accurately, prima
facie violative [2].

We investigate the impact of crawling deferred representa-
tions as the first step in an improved archival framework that
can replay deferred representations both completely and cor-
rectly. We measure the expected increase in frontier (list of
URIs to be crawled) size and wall-clock time required to
archive resources, and investigate a way to recognize de-
ferred representations to optimize crawler performance us-
ing a two-tiered approach that combines PhantomJS and
Heritrix. Our efforts measure the crawling tradeoff between
traditional archival tools and tools that can better archive
JavaScript with headless browsing – a tradeoff that was

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

anecdotally understood but not yet measured.

Throughout this paper we use Memento Framework termi-
nology. Memento [37] is a framework that standardizes Web
archive access and terminology. Original (or live web) re-
sources are identified by URI-R, and archived versions of
URI-Rs are called mementos and are identified by URI-M.

2. RELATED WORK
Archivability helps us understand what makes representa-
tions easier or harder to archive. Banos et al. created an
algorithm to evaluate archival success based on adherence to
standards for the purpose of assigning an archivability score
[4]. In our previous work, we studied the factors influencing
archivability, including accessibility standards and their im-
pact on memento completeness, demonstrating that devia-
tion from accessibility standards leads to reduced archivabil-
ity [17]. We also demonstrated the correlation between the
adoption of JavaScript and Ajax and the number of missing
embedded resources in the archives [8].

Spaniol measured the quality of Web archives based on match-
ing crawler strategies with resource change rates [10, 33, 34].
Ben Saad and Gançarski performed a similar study regard-
ing the importance of changes on a page [5]. Gray and
Martin created a framework for high quality mementos and
assessed their quality by measuring the missing embedded
resources [13]. In previous work, we measured the relative
damage caused to mementos that were missing embedded re-
sources to quantify the damage caused by missing resources
loaded by JavaScript [7]. These works study quality, helping
us understand what is missing from mementos.

David Rosenthal spoke about the difficulty of archiving rep-
resentations enabled by JavaScript [25, 29]. Google has
made efforts toward indexing deferred representations – a
step in the direction of solving the archival challenges posed
by deferred representations [6]. Google’s indexing focuses on
rendering an accurate representation for indexing and dis-
covering new URIs, but does not completely solve the chal-
lenges to archiving caused by JavaScript. Archiving web
resources and indexing representation content are different
activities that have differing goals and processes.

Several efforts have studied client-side state. Mesbah et al.
performed several experiments regarding crawling and in-
dexing representations of Web pages that rely on JavaScript
[19, 22]. These works have focused mainly on search engine
indexing and automatic testing [20, 21] rather than archiv-
ing, but serve to illustrate the pervasive problem of deferred
representations. Dincturk et al. constructed a model for
crawling Rich Internet Applications (RIAs) by discovering
all possible client-side states and identifying the simplest
possible state machine to represent the states [11].

These prior works have focused on archival difficulties of
crawling and indexing deferred representations, but have not
explored the impact of archiving deferred representations on
archival processes and crawlers. We measure the trade-off
between speed and completeness of crawling techniques.

3. BACKGROUND
Web crawlers operate by starting with a finite set of seed
URI-Rs in a frontier – or list of crawl targets – and add
to the frontier by extracting URIs from the representations
returned. Representations of Web resources are increasingly
reliant on JavaScript and other client-side technologies to
load embedded resources and control the activity on the
client. Web browsers use a JavaScript engine to execute the
client side code; Web crawlers traditionally do not have such
an engine or the ability to execute client-side code because
of the resulting loss of crawling speed. The client-side code
can be used to request additional data or resources from
servers (e.g., via Ajax) after the initial page load. Crawlers
are unable to discover the resources requested via Ajax and,
therefore, are not adding these URIs to their frontiers. The
crawlers are missing embedded resources, which ultimately
causes the mementos to be incomplete.

To mitigate the impact of JavaScript and Ajax on archiv-
ability, traditional crawlers that do not execute JavaScript
(e.g., Heritrix) have constructed approaches for extracting
links from embedded JavaScript to be added to crawl fron-
tiers. Even though it does not execute JavaScript, Heritrix
v. 3.1.4 does peek into the embedded JavaScript code to ex-
tract links where possible [16]. These processes rely on string
matching and regular expressions to recognize URIs men-
tioned in the JavaScript. This is a sub-optimal approach be-
cause JavaScript may construct URIs from multiple strings
during execution, leading to an incomplete URI extracted
by the crawler.

Because archival crawlers do not execute JavaScript, what is
archived by automatic crawlers is increasingly different than
what users experience. A solution to this challenge of archiv-
ing deferred representations is to provide crawlers with a
JavaScript engine and allow headless browsing (i.e., allow a
crawler to operate like a browser) using a technology such
as PhantomJS. However, this change in crawling method
impacts crawler performance, frontier size, and crawl time.

4. MOTIVATING EXAMPLES
To illustrate the challenge of archiving resources with de-
ferred representations, we consider the resource at URI-R
http://www.truthinshredding.com/ and its mementos in
Figure 1. We took a PNG snapshot of the live-Web re-
source as rendered in Mozilla Firefox (Figure 1(a)), the re-
source as loaded by PhantomJS (Figure 1(b)), and the mem-
ento created by Heritrix and viewed in a local installation of
the Wayback Machine (Figure 1(c)). The title of the page
“Truth in Shredding” appears in a different font in Figure
1(a) than in Figures 1(b) and 1(c) not due to a missing
style sheet but rather an incompatibility of the font for the
headless browser.

The live-Web resource loads embedded resources (annotated
as A, B, and C) via JavaScript. Embedded Resource A is an
HTML page loaded into an iframe. The original resource,
URI-RA, is

https://apis.google.com/u/0/_/widget/render/page?use
gapi=1&rel=publisher&href=%2F%2Fplus.google.com%2
F110743665890542265089&width=430&hl=en-GB&origin=

http://www.truthinshredding.com/

(a) The live resource at URI-R http:
//www.truthinshredding.com/ loads
A, B, and C via JavaScript.

(b) Using PhantomJS, the advertise-
ment (B) and video (C) are found but
the account frame (A) is missed.

(c) Using Heritrix, the embedded re-
sources A, B, and C are missed.

Figure 1: Neither archival tool captures all embedded resources, but PhantomJS discovers the URI-Rs of
two out of three embedded resources dependent upon JavaScript (B, C) while Heritrix misses all of them.

http%3A%2F%2Fwww.truthinshredding.com&gsrc=3p&ic
=1&jsh=m%3B%2F_%2Fscs%2Fapps-static...

The page loaded into the iframe uses JavaScript to pull the
profile image into the page from URI-RA1

https://apis.google.com/_/scs/apps-static/_/ss/
k=oz.widget.-ynlzpp4csh.L.W.O/m=bdg/am=AAAAAJ
AwAA4/d=1/rs=AItRSTNrapszOr4y_tKMA1hZh6JM-g1haQ

Embedded Resource B is an advertisement that uses the
JavaScript at URI-RB1

http://pagead2.googlesyndication.com/pagead/
show_ads.js

to pull in ads to the page. Embedded Resource C is a
YouTube video that is embedded in the page using the fol-
lowing HTML for an iframe:

<iframe allowfullscreen="" frameborder="0" height=
"281" src="//www.youtube.com/embed/QyLl4Fd4cGA?rel
=0" width="500"></iframe>.

PhantomJS does not load Embedded Resource A, poten-
tially because the host resource completes loading before
the page embedded in the iframe can finish loading. Phan-
tomJS stops recording embedded URIs and monitoring the
representation after a page has completed loading, and Em-
bedded Resource A executes its JavaScript to load the pro-
file picture after the main representation has completed the
page load1. PhantomJS does discover the advertisement
1PhantomJS scripts can be written to avoid this race-
condition using longer timeouts or client-side event detec-
tion, but this is outside the scope of this paper.

(Embedded Resource B) and the YouTube video (Embed-
ded Resource C). Even though the headless browser used by
PhantomJS does not have the plugin necessary to display
the video, the URI-R is still discovered by PhantomJS.

Heritrix fails to identify the URI-Rs for the Embedded Re-
sources A, B, and C. When the memento created by Heritrix
is loaded by the Wayback Machine, Embedded Resources A,
B, and C are missing. This is attributed to Heritrix, which
does not discover the URI-Rs for these resources during the
crawl. When viewing the memento through the Wayback
Machine, the JavaScript responsible for loading the embed-
ded resources is executed resulting in either a zombie re-
source (prima facie violative) or HTTP 404 response (in-
complete) for the embedded URI.

Heritrix’s inability to discover the embedded URI-Rs could
be mitigated by utilizing PhantomJS during the crawl. How-
ever, this raises many questions, most notably: How much
slower will the crawl time be? How many additional em-
bedded resources could it recover and potentially need to
store? Can we optimize the crawl approach based on the de-
tection of deferred representations? Our investigation into
these questions will assess the feasibility of combining Her-
itrix with PhantomJS to balance the speed of Heritrix with
the completeness of PhantomJS.

5. COMPARING CRAWLS
We designed an experiment to measure the performance dif-
ferences between a command-line archival tool (wget [12]), a
traditional crawler (the Internet Archive’s Heritrix Crawler
[23, 30]), and a headless browser client (PhantomJS). Nei-
ther Heritrix nor wget execute the client-side JavaScript,
while PhantomJS does execute client-side JavaScript.

We constructed a 10,000 URI-R dataset by randomly gen-
erating a Bitly URI and extracting its redirection target

http://www.truthinshredding.com/
http://www.truthinshredding.com/

(identical to the process used to create the Bitly data sub-
set in [1]). We split the 10,000 URI dataset into 20 sets of
500 seed URI-Rs and used wget, Heritrix, and PhantomJS
to crawl each set of seed URI-Rs. We repeated each crawl
ten times to establish an average performance, resulting in
ten different crawls of the 10,000 URI dataset (executing the
crawl one of the 500-URI sets at a time) with wget, Heritrix,
and PhantomJS. We measured the increase in frontier size
(|F |) and the URIs per second (tURI) to crawl the resource.

While Heritrix provides a user interface that identifies the
crawl frontier size, PhantomJS and wget do not. We cal-
culate the frontier size of PhantomJS by counting the num-
ber of embedded resources that PhantomJS requests when
rendering the representation. We calculate the frontier size
of wget by executing a command2 that records the HTTP
GET requests issued by wget during the process of mirror-
ing a web resource and its embedded resources. We consider
the frontier size to be the total number of resources and em-
bedded resources that wget attempts to download.

We began a crawl of the same 500 URI-Rs using wget, Her-
itrix, and PhantomJS simultaneously to mitigate the im-
pact of live Web resources changing state during the crawls.
For example, if the representation changes (such as includes
new embedded resources) in between the times wget, Phan-
tomJS, and Heritrix perform their crawls, the number or
representations of embedded resources may change and there-
fore the representation influenced the crawl performance,
not the crawler itself.

We crawled live-Web resources because mementos inherit
the limitations of the crawler used to create them. De-
pending on crawl policies, a memento may be incomplete
and different than the live resource. The robots.txt pro-
tocol [27, 35], breadth- versus depth-first crawling, or the
inability to crawl certain representations (like deferred rep-
resentations as we discuss in this paper) can all influence
the mementos created during a crawl.

5.1 Crawl Time by URI
To better understand how crawl times of wget, PhantomJS,
and Heritrix differ, we determined the time needed to ex-
ecute a crawl. Heritrix has a browser-based user interface
that provides the URIs/second (tURI) metric. We collected
this metric from the Web interface for each crawl. We used
Unix system times to calculate the crawl time for each Phan-
tomJS and wget crawl by determining the start and stop
times for dereferencing each resource and its embedded re-
sources. We compare the wget, PhantomJS, and Heritrix
crawl times per URI in Figure 2 and Table 1. Heritrix out-
performs PhantomJS, crawling 2.065 URIs/s while Phan-
tomJS crawls 0.170 URIs/s and wget crawls 0.864 URIs/s.
Heritrix crawls, on average, 12.13 times faster than Phan-
tomJS and 2.39 times faster than wget.

The performance difference comes from two aspects of the
crawl. First, Heritrix executes crawls in parallel with multi-
ple threads being managed by the Heritrix software – this is

2We executed wget -T 40 -o outfile -p -O headerFile
[URI-R] which downloads the target URI-R and all embed-
ded resources and dumps the HTTP traffic to headerFile.

Figure 2: Heritrix crawls 12.13 times faster than
PhantomJS. The error lines indicate the standard
deviation across all ten runs.

not possible with PhantomJS on a single core machine since
PhantomJS requires access to a headless browser and its as-
sociated JavaScript engine, and parallelization will result in
process and threading conflicts. Second, Heritrix does not
execute the client-side JavaScript and only adds URIs that
are extracted from the Document Object Model (DOM),
embedded style sheets, and other resources to its frontier.

5.2 URI Discovery and Frontier Size
We performed a string-matching de-duplication (that is, re-
moving duplicate URIs) to determine the true frontier size
(|F |).

Crawler Crawl time Frontier Size
tURI stURI |F | s|F |

wget 0.864 0.855 129,443 3,213.65
Heritrix 2.065 0.137 302,961 1,219.82
PhantomJS 0.170 0.001 531,484 2,036.92

Table 1: Mean and standard deviation of crawl time
(URIs/s) and frontier size for wget, Heritrix, and
PhantomJS crawls of 10,000 seed URIs.

As shown in Figure 3 and in Table 1, we found that Phan-
tomJS discovered and added 1.75 times more URI-Rs to its
frontier than Heritrix, and 4.11 times more URI-Rs than
wget. Per URI-R, PhantomJS loads 19.7 more embedded
resources than Heritrix and 32.4 more embedded resources
than wget. The superior PhantomJS frontier size is at-
tributed to its ability to execute JavaScript and discover
URIs constructed and requested by the client-side scripts.

However, raw frontier size is not the only performance metric
for assessing the quality of the frontier. PhantomJS and
Heritrix discover some of the same URIs, while PhantomJS
discovers URIs that Heritrix does not and Heritrix discovers
URIs that PhantomJS does not. We measured the union
and intersection of the Heritrix and PhantomJS frontiers.
As shown in Figure 4(a), per 10,000 URI-R crawl Heritrix
finds 39,830 URI-Rs missed by PhantomJS on average, while
PhantomJS finds 194,818 URI-Rs missed by Heritrix per
crawl on average. PhantomJS and Heritrix find 63,550 URI-
Rs in common between the two crawlers. The wget crawl

Figure 3: PhantomJS discovers 1.75 times more em-
bedded resources than Heritrix and 4.11 times more
resources than wget. The averages and error lines
indicate the standard deviation across all ten runs.

(a) A portion of Heritrix,
PhantomJS, and wget fron-
tiers overlap. PhantomJS
and Heritrix identify URIs
that the others do not.

(b) The frontier of URI-
Rs unique to PhantomJS
shrinks when only consid-
ering the host and path
aspects (Base Policy for
matching) of the URI-R.

Figure 4: Heritrix, PhantomJS, and wget frontiers
as an Euler Diagram. The overlap changes depend-
ing on how duplicate URIs are identified.

Figure 5: Frontier size grows linearly with seed size.

Figure 6: Crawl speed is dependent upon frontier
size.

resulted in a frontier of 24,589 URI-Rs, which was a proper
subset of both the Heritrix and PhantomJS frontiers.

This analysis shows that PhantomJS finds 19.70 more em-
bedded resources per URI than Heritrix (Figure 5). Heritrix
runs 12.13 times faster than PhantomJS (Figure 6). Note
that the red axis in Figures 5 and 6 are unmeasured and
only projections of the measured trends, with the projec-
tions predicting the performance as the seed list size grows.

5.3 Frontier Properties
During the PhantomJS crawls, we observed that PhantomJS
discovers session-specific URI-Rs that Heritrix misses and
Heritrix discovers Top Level Domains (TLDs) that Phan-
tomJS misses, presumably from Heritrix’s inspection of Java-
Script. For example:

http://dg.specificclick.net/?y=3&t=h&u=http%3A%2F%2
Fmisscellania.blogspot.com%2Fstorage%2F
Twitter-2.png...

from PhantomJS versus

http://dg.specificclick.net/

from Heritrix. The uniquely Heritrix URI-Rs are potentially
the base of a URI to be further built by JavaScript. Be-
cause PhantomJS only discovers URIs for which the client is-
sues HTTP requests, this URI-R is not discovered by Phan-
tomJS. To determine the nature of the differences between
the Heritrix and PhantomJS frontiers, we analyzed the union
and intersection between the URI-Rs in the frontiers using
different matching policies (Figure 4(b)).

During a crawl of 500 URI-Rs by PhantomJS, 19,022 URI-
Rs were added to the frontier for a total of 19,522 URI-Rs

in the frontier. We also captured the content body (the
returned entity received when dereferencing a URI-R from
the frontier) and recorded its MD5 hash value. We used
the hash value to identify duplicate representations during
the crawl. To determine duplication between URIs, we used
five matching policies to determine the duplication within
the frontier (Table 2). In other words, we identify cases in
which the URIs are different but the content is the same,
similar to the methods used by Sigurðsson [31, 32].

The No Trim policy uses strict string matching of the URI-
Rs to detect duplicates. The Base Trim policy trims all
parameters from the URI. For example, the URI

http://example.com/folder/index.html?param=value

would be trimmed to

http://example.com/folder/index.html

The Origin Trim policy eliminates all parameters and as-
sociated values that reference a referring source, such as
origin, callback, domain, or referrer. These parameters
are often associated with a value including the top level do-
main of the referring page. Frequent implementers include
Google Analytics or ad services.

The Session Trim policy eliminates all parameters and their
associated values that reference a session. For example, the
parameters such as session, sessionid, token_id, etc. are
all removed from the URI-R before matching. These pa-
rameters are often used by ad services or streaming media
services to identify browsing sessions for tracking and rev-
enue generation purposes.

The HTTP Trim policy removes all parameters with values
that mention a URI. Ad services, JavaScript files, and other
statistics tracking services frequently utilize these parame-
ters. For example, the URI

http://example.com/folder/index.html?param=value
&httpParam=http://www.test.com/

would be trimmed to

http://example.com/folder/index.html?param=value

We used the five trimming policies to detect duplicates in
the frontiers constructed by PhantomJS in one of the crawls
of 500 URI-Rs. At the end of the crawl, PhantomJS had a
frontier of 19,522 URI-Rs. Using the MD5 hash of the repre-
sentations, we determined that this set had 8,859 duplicate
representations. With the trimmed URI and the MD5 hash
of the entity, we can compare the identifiers and the returned
entities for duplication.

Accuracy = True Positives + True Negatives
Number of Classifications (1)

Trim Type URI
Duplicates

URI and
Entity
Duplicates

Accuracy

No Trim 6,469 4,684 0.68
Other Trim 6,933 2,810 0.62
Origin Trim 7,078 4,749 0.68
Base Trim 10,359 5,191 0.56
Session Trim 8,159 4,921 0.64
HTTP Trim 7,315 4,868 0.67

Table 2: Detected duplicate URIs, entity bodies,
and the overlap between the two using the five URI
string trimming policies.

F-Measure = 2 ∗ Precision ∗ Recall
Precision + Recall (2)

For each of the 19,522 URIs in the frontier and their asso-
ciated entity hash values, we determined the trimmed URI
string and the duplications of URIs in the frontier and the
number of duplicate URIs that also had a duplicate entity
body (Table 2). We calculated the accuracy (Equation 1)3

of each trim policy using the number of URIs with the same
entity hash and URI as a true positive (TP), the number
of URIs that had neither a duplicate URI nor a duplicate
entity body as a true negative (TN), and the set of all pos-
itives and negatives (P + N) as the total number of URIs
(19,522).

The Base Trim and No Trim policies had identical accu-
racy ratings (0.68). The Base Trim policy identified the
most URI duplicates, and is used to determine the overlap
between the Heritrix and PhantomJS frontiers.

Using the Base Trim policy to only consider the host and
path (e.g., http://pubads.g.doubleclick.net/gampad/ads)
of the PhantomJS and Heritrix frontiers, PhantomJS identi-
fies 376,578 URI-Rs added to the frontier, 199,761 (55%) of
which are duplicates of the discovered URIs. If we consider
only the host and path of the PhantomJS URIs, the Euler
Diagram of PhantomJS and Heritrix frontiers is more evenly
matched (Figure 4(b)).

5.4 Deferred vs. Non-Deferred Crawls
To isolate the impact of resources with deferred representa-
tions on crawl performance, we manually classified 200 URI-
Rs from our set of 10,000 URI-Rs as having deferred repre-
sentations and another 200 as having non-deferred represen-
tations. We crawled each of the deferred and non-deferred
sets of URI-Rs with PhantomJS and Heritrix.

During the crawl of the non-deferred set, PhantomJS crawled
tURI=0.255 URIs/s while Heritrix crawled tURI=1.34 URIs/s,
5.25 times faster than PhantomJS. Heritrix uncovered 1,044
URI-Rs to add to the frontier, while PhantomJS discovered
403 URI-Rs to add to the frontier. This phenomenon of

3Accuracy is defined as the number of correctly classified in-
stances divided by the test set size (Equation 1). F-Measure
extends accuracy to consider the harmonic mean of precision
and recall (Equation 2).

http://pubads.g.doubleclick.net/gampad/ads

Heritrix having a larger frontier than PhantomJS is due to
Heritrix’s policy of looking into the JavaScript files to ex-
tract URIs found in the code – the URI-Rs discovered by
Heritrix are top-level domains listed in the JavaScript that
may be used to construct URIs at run time (e.g., appending
a username or timestamp to the URI) or not used by Java-
Script at all (e.g., a URI that exists in un-executed code).

During the crawl of the deferred set, PhantomJS crawled
tURI=0.5. Heritrix ran tURI=12.56, 25.12 times faster than
PhantomJS. Heritrix added 3,206 URIs to the frontier, while
PhantomJS added 3,436 URIs to the frontier. PhantomJS
adds more URIs to the frontier despite Heritrix’s introspec-
tion on the JavaScript of each crawl target. This result is
due to PhantomJS’s execution of JavaScript on the client.

We observe that the PhantomJS frontier outperforms the
Heritrix frontier during the deferred crawl. Heritrix crawls
URIs faster than PhantomJS on each of the deferred and
non-deferred crawls, but far exceeds the speed of PhantomJS
during the deferred crawl.

6. CLASSIFYING REPRESENTATIONS
In practice, archival crawlers such as Heritrix would be able
to identify URI-Rs that have low archivability in real-time.
Heritrix currently does not have such an automatic capa-
bility. Archive-It, for example, uses a manually curated list
of URIs that have deferred representatiosn and uses Umbra
[26] to crawl them.

The ability to determine the archivability of a resource will
allow Heritrix to assign the URI-R to either the faster, tra-
ditional Heritrix crawler or the slower, PhantomJS (or other
JavaScript-enabled crawler). By enabling this two-tiered ap-
proach to crawling, the archival crawlers can achieve max-
imum performance by utilizing the heavy-duty JavaScript-
capable crawlers for only those that need it. However, this
approach requires the ability to, in real-time, recognize or
predict a deferred representation.

Even though our goal is to detect whether or not represen-
tations are dependent on JavaScript, the simple presence of
JavaScript is not a sufficient indicator of a deferred repre-
sentation. In our set of URI-Rs, the resources with deferred
representations had, on average, 21.98 embedded script tags
or files, while the resources with non-deferred representa-
tions had 5.3 script tags or files. Of those resources with
deferred representations, 84.1% had at least one script tag,
while 49.5% of the non-deferred representations had at least
one script tag. Because of the ubiquity of JavaScript in
both deferred and non-deferred representations, we opted
for a more complex feature vector to represent the features
of the representations.

In an effort to predict whether or not a representation would
be deferred, we constructed a feature vector of DOM at-
tributes and features of the embedded resources. We used
Weka [14] to classify the resources on subsets of the fea-
ture vectors to gauge their performance. We extracted the
following feature vector:

1. Ads: Using a list of known advertisement domains,
we determined whether or not a representation would

load an ad based on DOM and JavaScript analysis.
2. Script Tags: We counted the number of script tags

with JavaScript, both in files and embedded code.
3. Interactive Elements: We counted the number of

DOM elements that have JavaScript events attached
to them (e.g., onclick, onload).

4. Ajax (in JavaScript): To estimate the number of
Ajax calls (e.g., $.get(), XmlHttpRequest) we counted
the number of occurrences of Ajax requests in the em-
bedded external and independent JavaScript files.

5. Ajax (in HTML): To estimate the number of Ajax
calls (e.g., $.get(), XmlHttpRequest) we counted the
number of occurrences of Ajax requests in Script tags
embedded in the DOM.

6. DOM Modifications: We counted the number of
times JavaScript made a modification of the DOM
(e.g., via the appendChild() function) to account for
DOM modifications after the initial page load.

7. JavaScript Navigation: We counted the occurrences
of JavaScript redirection and other navigation func-
tions (e.g., window.location calls).

8. JavaScript Storage: We count the number of Java-
Script references to storage elements on the client (e.g.,
cookies) as an indication of client-controlled state.

9. Found, Same Domain: Using PhantomJS, we counted
the number of embedded resources originating from
the URI-R’s top level domain (TLD) that were suc-
cessfully dereferenced (i.e., returned an HTTP 200).

10. Missed, Same Domain: Using PhantomJS, we counted
the number of embedded resources originating from
the URI-R’s TLD that were not successfully derefer-
enced (i.e., returned a class HTTP 400 or 500).

11. Found, Different Domain: Using PhantomJS, we
counted the number of embedded resources originat-
ing outside of the URI-R’s TLD that were successfully
dereferenced (i.e., returned an HTTP 200).

12. Missed, Different Domain: Using PhantomJS, we
counted the number of embedded resources originating
outside of the URI-R’s TLD that were unsuccessfully
dereferenced (i.e., a class 400 or 500 HTTP response).

We manually sampled 440 URI-Rs (from our collection of
10,000, including the same 400 from Section 5.4) and classi-
fied the representations as deferred or non-deferred, with 200
training and 20 test URI-Rs for each based on whether or
not their representations were dependent upon JavaScript.

Using PhantomJS, we collected the 12 features required for
a feature vector for each of our 440 URI-Rs. Using Weka, we
ran each classifier on the feature vectors. Rotation Forests
[28] performed the best of any of the standard Weka classi-
fiers for any of our datasets.

We used three subsets of the feature vector to investigate
the best method of predicting deferred representations. We
selected attributes 1-8 to represent DOM features. We se-
lected attributes 9-12 as embedded resource attributes (the
attributes we extract if we load and monitor the embedded
resources). Together, attributes 1-12 make up the entire
dataset. We use the feature sets to train and test our classi-
fier via 10-fold cross validation. We use the same three data

Actual Predicted Classification
Classification Deferred Non-Deferred

Deferred 182 38
Non-Deferred 58 166

Table 3: Confusion matrix for the entire feature vec-
tor (F-Measure = 0.791).

Actual Predicted Classification
Classification Deferred Non-Deferred

Deferred 179 41
Non-Deferred 47 173

Table 4: Confusion matrix for the resource features
(features 9-12 of the vector; F-Measure = 0.844).

subsets and provide a confusion matrix of each set including
the entire feature vector (Table 3), resource feature vector
(Table 4), and DOM feature vector (Table 5).

The accompanying statistics for the classifications are shown
in Table 6. With only the DOM features, the test set is accu-
rately classified representations as deferred or non-deferred
79% of the time. If we combine the DOM and resource
feature sets to create the full feature set, we can correctly
classify representations 81% of the time.

After a URI is dereferenced and a representation is returned,
we can determine whether or not the representation is de-
ferred with 79% accuracy. If we also dereference the URIs
for the embedded resources and monitor the HTTP status
codes, we can increase, albeit minimally, the accuracy of
the prediction to 81% of the time. However, crawling with
PhantomJS is much more expensive when executed properly.
Due to this minimal improvement and much higher cost to
measure, the feature extraction will be limited to the DOM
classification. With a negligible impact on performance, our
classifier is able to identify deferred representations using
the DOM crawled by Heritrix with 79% accuracy.

7. TWO-TIERED CRAWLING
To benefit from the increased crawl frontier size of Phan-
tomJS while maintaining the performance of Heritrix, we
propose a tiered crawling approach in which PhantomJS is
used to crawl only resources with deferred representations.
A tiered approach to crawling would allow an archive to
simultaneously benefit from the frontier size of PhantomJS
and the speed of Heritrix. Table 7 provides a summary of the
extrapolated crawl speed and discovered frontier size of each
crawler. While the test environment used a single system,
a production environment should expect to see performance
improvements with additional resources. PhantomJS crawls
are not run in parallel, and additional nodes for PhantomJS

Actual Predicted Classification
Classification Deferred Non-Deferred

Deferred 168 52
Non-Deferred 41 179

Table 5: Confusion matrix for the DOM features
(features 1-8 of the vector; F-Measure = 0.806).

threads will further improve performance.

Crawl Strategy Crawl Time
(hrs)

Crawl Rate
(tURI)

Frontier Size
(|F |)

wget 416.16 0.864 129,443
Heritrix 407.53 2.065 302,961
PhantomJS 8,684.38 0.170 531,484
Heritrix +
PhantomJS 9,100.54 0.152 537,609

Heritrix +
PhantomJS
with Classifier

6,495.23 0.196 458,815

Table 7: A summary of extrapolated performance
(based on our calculations) of single- and two-tiered
crawling approaches.

We have described the operation of crawls with wget, Her-
itrix, and PhantomJS in Sections 5.1 and 5.4 with wget serv-
ing as a baseline to which Heritrix and PhantomJS can be
compared but wget is not part of the archival workflow we
investigate. To reiterate, Heritrix crawls much more quickly
than PhantomJS, while PhantomJS discovers many more
embedded resources required to properly construct a repre-
sentation. Optimally during a crawl, Heritrix would derefer-
ence a URI-R and run the resulting DOM through the clas-
sifier to determine whether or not the representation will be
deferred (with 79% accuracy, as discussed in Section 6). If
the representation is predicted to be deferred, PhantomJS
should also be used to crawl the URI-R and add the newly
discovered URI-Rs to the Heritrix frontier.

Heritrix should be used to crawl all URI-Rs in the frontier
because the DOM is required to classify a representation as
deferred. Since Heritrix is the fastest crawler, it should be
used to dereference the URI-Rs in the frontier and retrieve
the DOM of the resource for classification. Subsequently,
only if the representation is classified as deferred will Phan-
tomJS be used to crawl the resource to ensure the maximum
amount of embedded resources are retrieved.

In a naive two-tiered crawl strategy that will discover the
most embedded URI-Rs and create the largest frontier, Her-
itrix and PhantomJS should both crawl each URI-R regard-
less of whether the representation can be classified as de-
ferred or non-deferred. This creates a crawl that is expected
to be 13.5 times slower than simply using Heritrix, but is ex-
pected to discover 1.77 times more URI-Rs than using only
Heritrix. This would ensure that 100% of all resources with
deferred representations would be crawled with both Her-
itrix and PhantomJS. However, we want to limit the use of
PhantomJS to minimize the performance impacts it has on
the crawl speed.

If we include the classifier to predict when PhantomJS should
be used or when Heritrix will be a suitable tool, the two-
tiered approach is expected to run 10.5 times slower and
is expected to discover 1.5 times more URI-Rs than only
Heritrix. This crawl policy balances the trade-offs between
speed and larger frontier size by using the classifier to in-
dicate when to use PhantomJS to crawl resources with de-
ferred representations.

Features Classification Accuracy F-measure Precision Recall
DOM
Features Only

Deferred 79% 79% 78% 81%
Non-deferred 76% 80%

DOM & Resource
Features

Deferred 81% 82% 79% 81%
Non-deferred 90% 80%

Table 6: Classification success statistics for DOM-only and DOM and Resource feature sets.

To validate this expected calculation, we classified our 10,000
URI-R dataset, which produced 5,187 URI-Rs classified as
having deferred representations, and 4,813 as having non-
deferred representations. We used PhantomJS to crawl the
URI-Rs classified as deferred, and only Heritrix to crawl the
URI-Rs classified as non-deferred. The results of the crawls
are detailed in Table 8.

Crawler URI-R Set Seed
Size

Frontier
Size

Crawl
Time (hrs)

P Deferred 5,187 311,903 84.9
H Non-deferred 4,813 124,728 23.6
H Deferred 5,187 171,499 26.7
P All URI-Rs 10,000 438,388 686
H All URI-Rs 10,000 275,234 48.3
Two-tier All URI-Rs 10,000 399,202 133

Table 8: A simulated two-tiered crawl showing that
the frontier sizes can be optimized while mitigating
the performance impact of PhantomJS’s (P) crawl
speed vs Heritrix’s (H).

In this table, we show that PhantomJS creates a frontier
of 438,388, 1.6 times larger than that of Heritrix. How-
ever, PhantomJS crawls 14 times slower than Heritrix. If
we perform a tiered crawl in which PhantomJS is responsi-
ble for crawling only deferred representations, we can crawl
5.2 times faster than using only PhantomJS (but 2.7 times
slower than the Heritrix-only approach) while creating a
frontier 1.8 times larger than using only Heritrix. As a re-
sult, we can maximize the frontier size, mitigate the impacts
of JavaScript on crawling, and mitigate the impact of the re-
duced crawl speeds when using a tiered crawling approach.

8. CONCLUSIONS
In this paper, we measured the differences in crawl speed
and frontier size of wget, PhantomJS, and Heritrix. While
PhantomJS was the slowest crawler, it provided the largest
crawl frontier due to its ability execute client-side JavaScript
to discover URIs missed by Heritrix and wget. Heritrix was
the fastest crawler. We also proposed a tiered approach to
crawling in which a classifier determines whether to crawl a
resource with PhantomJS to reap the URI discovery benefits
of the specialized crawler where appropriate.

This work lays the foundation for a two-tiered crawling ap-
proach and helps predict the performance of future archival
workflows. We know that PhantomJS finds 19.70 more em-
bedded resources per URI and Heritrix runs 12.13 times
faster than PhantomJS, meaning the crawler should avoid
crawling URI-Rs with non-deferred representations to main-
tain an optimal performance trade-off. We understand that
PhantomJS is required to discover the embedded resources

needed to complete a deferred representation that Heritrix
cannot discover. This has a performance detriment to run
time, but offers a benefit of more complete mementos and
a larger frontier for crawling. We also found that 53% of
URIs discovered by PhantomJS are duplicates if we remove
session-specific URI parameters.

Using DOM features we can accurately predict deferred and
non-deferred representations 79% of the time. Using this
classification, deferred representations can be crawled by
PhantomJS to ensure all embedded resources are added to
the crawl frontier.

If using a multi-tiered approach to crawling, archives can
leverage the benefits of PhantomJS and Heritrix simulta-
neously. That is, using a deferred representation classi-
fier, archives can use PhantomJS for deferred representa-
tions and Heritrix for non-deferred representations. Using a
tiered crawling approach, we showed that crawls will run 5.2
times faster than using only PhantomJS, create a frontier 1.8
times larger than using only Heritrix. This crawl strategy
mitigates the impact of JavaScript on archiving while also
mitigating the reduced crawl speed of PhantomJS.

Our future work will include a framework for archiving de-
ferred representations, along with a measurement of the
archival improvement when implementing a deferred rep-
resentation crawler.

9. ACKNOWLEDGMENTS
This work supported in part by the NEH (HK-50181).

References
[1] S. Ainsworth, A. Alsum, H. SalahEldeen, M. C. Weigle,

and M. L. Nelson. How much of the Web is archived?
In JCDL 2011, pages 133–136, 2011.

[2] S. Ainsworth, M. L. Nelson, and H. Van de Sompel. A
Framework for Evaluation of Composite Memento Tem-
poral Coherence. Technical Report arXiv:1402.0928,
2014

[3] Y. Alnoamany, A. Alsum, M. Weigle, and M. Nelson.
Who and What Links to the Internet Archive. In TPDL
2013, pages 346–357. 2013.

[4] V. Banos, K. Yunhyong, S. Ross, and Y. Manolopou-
los. CLEAR: a Credible Method to Evaluate Website
Archivability. In iPRES 2013, 2013.

[5] M. Ben Saad and S. Gançarski. Archiving the web using
page changes patterns: A case study. In JCDL 2011,
pages 113–122, 2011.

[6] J. F. Brunelle. Google and JavaScript.
http://ws-dl.blogspot.com/2014/06/
2014-06-18-google-and-javascript.html, 2014.

[7] J. F. Brunelle, M. Kelly, H. SalahEldeen, M. C. Wei-
gle, and M. L. Nelson. Not All Mementos Are Created
Equal: Measuring The Impact Of Missing Resources.
In JCDL 2014, pages 321 – 330, 2014.

[8] J. F. Brunelle, M. Kelly, M. C. Weigle, and M. L. Nel-
son. The Impact of JavaScript on Archivability. Inter-
national Journal on Digital Libraries, pages 1–23, 2015.

[9] J. F. Brunelle and M. L. Nelson. Zombies in
the archives. http://ws-dl.blogspot.com/2012/10/
2012-10-10-zombies-in-archives.html, 2012.

[10] D. Denev, A. Mazeika, M. Spaniol, and G. Weikum.
SHARC: framework for quality-conscious web archiv-
ing. Proceedings of the 35th International Conference
on VLDB, 2:586–597, August 2009.

[11] M. E. Dincturk, G.-V. Jourdan, G. V. Bochmann, and
I. V. Onut. A Model-Based Approach for Crawling Rich
Internet Applications. ACM Transactions on the Web,
8(3):19:1–19:39, July 2014.

[12] GNU. Introduction to GNU Wget. http://www.gnu.
org/software/wget/, 2013.

[13] G. Gray and S. Martin. Choosing a sustainable web
archiving method: A comparison of capture quality. D-
Lib Magazine, 19(5), May 2013.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. H. Witten. The weka data mining soft-
ware: An update. SIGKDD Explorations, 11(1):10–18,
2009.

[15] B. A. Howell. Proving Web History: How to Use the
Internet Archive. Journal of Internet Law, 9(8):3–9,
February 2006.

[16] P. Jack. ExtractorHTML Extract-JavaScript.
https://webarchive.jira.com/wiki/display/
Heritrix/ExtractorHTML+extract-javascript, 2014.

[17] M. Kelly, J. F. Brunelle, M. C. Weigle, and M. L. Nel-
son. On the Change in Archivability of Websites Over
Time. In TPDL 2013, pages 35–47, 2013.

[18] C. C. Marshall and F. M. Shipman. On the Institutional
Archiving of Social Media. In JCDL 2012, pages 1–10,
2012.

[19] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling
Ajax by inferring user interface state changes. In ICWE
2008, pages 122 –134, 2008.

[20] A. Mesbah and A. van Deursen. Migrating multi-page
web applications to single-page Ajax interfaces. In
CSMR 2007, pages 181–190. 2007.

[21] A. Mesbah and A. van Deursen. Invariant-based au-
tomatic testing of Ajax user interfaces. In ICSE 2009,
pages 210–220. 2009.

[22] A. Mesbah, A. van Deursen, and S. Lenselink. Crawl-
ing Ajax-Based Web Applications Through Dynamic
Analysis of User Interface State Changes. ACM Trans-
actions on the Web, 6(1):3:1–3:30, March 2012.

[23] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic. In-
troduction to Heritrix, an archival quality web crawler.
In Proceedings of the 4th IWAW, September 2004.

[24] K. C. Negulescu. Web Archiving @ the Internet Ar-
chive. Presentation at the 2010 Digital Preservation
Partners Meeting, 2010 http://1.usa.gov/1GkRUDE.

[25] NetPreserver.org. IIPC Future of the Web
Workshop – Introduction & Overview. http:
//netpreserve.org/sites/default/files/
resources/OverviewFutureWebWorkshop.pdf, 2012.

[26] S. Reed. Introduction to Umbra. https:
//webarchive.jira.com/wiki/display/ARIH/
Introduction+to+Umbra, 2014.

[27] Robots.txt. The Web Robots Page. http://www.
robotstxt.org/, 2014.

[28] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso. Ro-
tation forest: A new classifier ensemble method. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 28(10):1619–1630, Oct. 2006.

[29] D. S. H. Rosenthal. Talk on Harvesting the Future
Web at IIPC2013. http://blog.dshr.org/2013/04/
talk-on-harvesting-future-web-at.html, 2013.

[30] K. Sigurðsson. Incremental crawling with Heritrix. In
Proceedings of the 5th IWAW, September 2005.

[31] K. Sigurðsson. The results of URI-
agnostic deduplication on a domain crawl.
http://kris-sigur.blogspot.com/2014/12/
the-results-of-uri-agnostic.html, 2014.

[32] K. Sigurðsson. URI agnostic deduplica-
tion on content discovered at crawl time.
http://kris-sigur.blogspot.com/2014/12/
uri-agnostic-deduplication-on-content.html,
2014.

[33] M. Spaniol, D. Denev, A. Mazeika, G. Weikum, and
P. Senellart. Data quality in web archiving. In Proceed-
ings of the 3rd Workshop on Information Credibility on
the Web, pages 19–26. 2009.

[34] M. Spaniol, A. Mazeika, D. Denev, and G. Weikum.
Catch me if you can: Visual Analysis of Coherence
Defects in Web Archiving. In Proceedings of The 9th
IWAW, pages 27–37, 2009.

[35] Y. Sun, Z. Zhuang, and C. L. Giles. A large-scale study
of robots.txt. In WWW 2007, pages 1123–1124, 2007.

[36] B. Tofel. ‘Wayback’ for Accessing Web Archives. In
Proceedings of the 7th IWAW, 2007.

[37] H. Van de Sompel, M. L. Nelson, R. Sanderson, L. L.
Balakireva, S. Ainsworth, and H. Shankar. Mem-
ento: Time Travel for the Web. Technical Report
arXiv:0911.1112, 2009.

http://ws-dl.blogspot.com/2014/06/2014-06-18-google-and-javascript.html
http://ws-dl.blogspot.com/2014/06/2014-06-18-google-and-javascript.html
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://www.gnu.org/software/wget/
http://www.gnu.org/software/wget/
https://webarchive.jira.com/wiki/display/Heritrix/ExtractorHTML+extract-javascript
https://webarchive.jira.com/wiki/display/Heritrix/ExtractorHTML+extract-javascript
http://1.usa.gov/1GkRUDE
http://netpreserve.org/sites/default/files/resources/OverviewFutureWebWorkshop.pdf
http://netpreserve.org/sites/default/files/resources/OverviewFutureWebWorkshop.pdf
http://netpreserve.org/sites/default/files/resources/OverviewFutureWebWorkshop.pdf
https://webarchive.jira.com/wiki/display/ARIH/Introduction+to+Umbra
https://webarchive.jira.com/wiki/display/ARIH/Introduction+to+Umbra
https://webarchive.jira.com/wiki/display/ARIH/Introduction+to+Umbra
http://www.robotstxt.org/
http://www.robotstxt.org/
http://blog.dshr.org/2013/04/talk-on-harvesting-future-web-at.html
http://blog.dshr.org/2013/04/talk-on-harvesting-future-web-at.html
http://kris-sigur.blogspot.com/2014/12/the-results-of-uri-agnostic.html
http://kris-sigur.blogspot.com/2014/12/the-results-of-uri-agnostic.html
http://kris-sigur.blogspot.com/2014/12/uri-agnostic-deduplication-on-content.html
http://kris-sigur.blogspot.com/2014/12/uri-agnostic-deduplication-on-content.html

	Introduction
	Related Work
	Background
	Motivating Examples
	Comparing Crawls
	Crawl Time by URI
	URI Discovery and Frontier Size
	Frontier Properties
	Deferred vs. Non-Deferred Crawls

	Classifying Representations
	Two-Tiered crawling
	Conclusions
	Acknowledgments

