
Deduplicating Bibliotheca Alexandrina’s Web Archive

Youssef Eldakar
Bibliotheca Alexandrina

PO Box 138
Alexandria 21526

EGYPT
youssef.eldakar@bibalex.org

Magdy Nagi
Bibliotheca Alexandrina

PO Box 138
Alexandria 21526

EGYPT
magdy.nagi@bibalex.org

ABSTRACT
Archiving web content is bound to produce datasets with du-
plication, either across time or across location. The Biblio-
theca Alexandrina (BA) has a web archive legacy spanning
a period of 10 years and is continuing to expand the collec-
tion. Initial assessment of this very large store of data was
conducted. Given a high enough rate of duplication, dedu-
plication would lead to sizable savings in storage require-
ments. The BA worked through the International Internet
Preservation Consortium (IIPC) to compile best practices
for recording duplicates in ISO 28500, the WARC File For-
mat. To deduplicate legacy web archives “after the fact,”
the BA is implementing the WARCrefs deduplication tools.
Following implementation and testing, the BA plans to put
the tools to use to deduplicate its one petabyte of archived
web content.

General Terms
case studies and best practice

Keywords
web archiving, deduplication, hash algorithms, ISO 28500,
WARC File Format, WARCrefs, WARCsum

1. INTRODUCTION
The International Internet Preservation Consortium (IIPC)
defines web archiving as “the process of collecting portions
of the World Wide Web, preserving the collections in an
archival format, and then serving the archives for access and
use”[9]. During the collection phase of the process, a crawler
is used to explore a network of hyperlinks, starting off at
a set of seeds, fetching resources it visits. This process is
typically repeated periodically to capture changes over time.

However, even though the web is quite a dynamic place, a
resource will not necessarily be modified during the interval
between one visit and a subsequent revisit. In addition, even
though the web is quite a diverse place, a resource will not

iPres 2015 conference proceedings will be made available under a Creative
Commons license.
With the exception of any logos, emblems, trademarks or other nomi-
nated third-party images/text, this work is available for re-use under a
Creative Commons Attribution 3.0 unported license. Authorship of this
work must be attributed. View a copy of this licence at http://
creativecommons.org/licenses/by/3.0/legalcode.

necessarily be unique within the web archive when compared
to other resources at different locations. For the former sit-
uation, consider, for instance, the text of the constitution
of some country on the government’s website, which can be
expected to remain unmodified for years, where archiving
subsequent identical snapshots of the resource as-is intro-
duces duplication across time into the archive. For the lat-
ter situation, consider, for instance, a photo of some event
that is posted to a blog, a social networking site, as well as
a personal homepage, where archiving all identical instances
of the resource as-is introduces duplication across location
into the archive.

The Bibliotheca Alexandrina (BA) in Alexandria, Egypt,
has in its holdings a legacy web archive of broad web crawls
provided by the Internet Archive in San Francisco. This
archive of a decade’s web history starting in 1996 plus BA’s
own collection of focused web crawls started in 2011 total
approximately 80 billion records and are stored in approx-
imately one petabyte in compressed form. For backup, an
additional petabyte is required. And even though the data
is hosted on a commodity hardware computer cluster, at
such large scale, reduction in storage requirements even by
a relatively modest percentage would lead to sizable finan-
cial savings and offer more room for expanding collection
activities.

Beyond using storage more efficiently, the desire to dedupli-
cate web archive data is driven by a few extra motivations.
Kristinn Sigurdhsson, in a 2006 publication [16], takes a look
at arguments for deduplication in a web archive. It is noted
therein that reduction in storage requirements is the most
notable benefit in addition to improving the quality of the
collection or its presentation. Other benefits also mentioned
therein but applying only to deduplication during crawl time
based on HTTP headers are reduction of load on web servers
as well as reduction in bandwidth consumption. We may
also add to the benefits of deduplication improvement in
performance on the access interface, as knowing which re-
sources are duplicates of which resources would improve the
caching implementation.

Could the rate of duplication in the BA web archive be sig-
nificant enough that the benefits to be achieved merit the
effort?

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode


2. IDENTIFYING DUPLICATES
Before evaluating how much more efficient use of the stor-
age infrastructure would become should the BA web archive
be free of duplicates, a method for telling whether two re-
sources are identical is needed. The most rudimentary one
is to compare the data streams byte-by-byte. Given a set
of n data streams, n(n− 1)/2 comparisons will be required,
because each data stream will have to be compared with all
data streams in the set but itself, forming a complete graph
with n vertices. To optimize, comparisons where the data
streams are not equal in size and therefore cannot be iden-
tical will be skipped. To further optimize, comparisons will
also be skipped where the data streams have already been
found identical via an indirect route on the graph. Yet,
where n is very large, and where the data is hosted on a dis-
tributed storage infrastructure, this method will not scale
well, because data will have to be marshalled heavily on the
network during the repetitive reads and compares.

An alternative method is hashing. Hash functions are algo-
rithms that map a data stream of arbitrary length to a fixed-
length hash value, which uniquely identifies the data stream
[3]. Using this method, each data stream will be read once
and hashed. Each hash value along with a reference to the
data stream will be inserted into a list. The list is sorted on
the hash value, clustering entries for identical data streams
together. Costly repetitive reads and compares in the former
method are replaced with a much lighter merge-sort.

Password verification, data integrity checking, and even au-
tomatic deduplication built into modern file systems such
as ZFS [7] and Btrfs [1] are examples of today’s common
applications of hash algorithms. Of hash algorithms, MD5,
SHA-1, and SHA-2 seem to be de-facto standards in the
industry.

A hash algorithm is reliable up until it is shown to entail a
risk for collisions, where two unidentical data streams are
mapped to the same hash value. As presented in CWI’s
“Cryptanalysis of MD5 and SHA-1” [17], the possibility for
collisions is demonstrated for MD5 in theory as well as in
practice, and only in theory for SHA-1. To date, there
seems to be no published work demonstrating susceptibility
of SHA-2 to collisions. However, the more reliable SHA-
1 and SHA-2 algorithms come at a cost. In Crypto++
5.6.0 benchmarks [2], MD5 performed 65 percent faster than
SHA-1, and well over twice as fast as 256-bit SHA-2 (SHA-
256) and 512-bit SHA-2 (SHA-512). See Figure 1.

Falsely identifying resources in the web archive as dupli-
cates shall not be tolerated, as that would lead to corrup-
tion in web history. Here, one model to take as reference is
how deduplication is managed in the ZFS file system, where
false positives also are not tolerated. ZFS uses SHA-256 to
identify duplicates but also runs positives through collision
resolution, which compares the files byte-by-byte to rule out
collisions. Such a model seems quite suitable for applica-
tion in web archive deduplication. In fact, in the safety of
collision resolution, even MD5 could be considered for its
significant speed advantage, and in hopes collisions will not
be very frequent. Further, statistics on collisions in such
very large dataset as a web archive could be of value to the
cryptography community.

Figure 1: Crypto++ hash algorithm benchmarks.

3. INITIAL ASSESSMENT
In 2012, the BA sampled close to 10 percent of data in its
web archive. Hash values for the resources were computed
and sorted into a list. Out of this sample, the rate of dupli-
cation was found to be approximately 14 percent. With a
bigger sample, it may be reasonable to optimistically hope
the rate of duplication will be higher. Still, even just a sav-
ing of 14 percent within the petabyte of data in the BA web
archive would translate into 140 terabytes of space. Multi-
plying this number by two to account for the backup, the
total storage saved becomes 280 terabytes. Such saving on
storage would yield a considerable cut-down on expenses,
which may possibly be invested towards widening the scope
of web archiving at the institution.

In addition to the duplication assessment on the BA web
archive, other web archives also report significant rates of
duplication. For instance, in a presentation during the 2011
IIPC General Assembly [15], the National Diet Library, Japan,
estimated deduplication would reduce the Japanese monthly
web archives by 80 percent, and the quarterly archives by
45 percent. Further experiences shared during discussions
at IIPC meetings did also describe the rate of duplication
as being significant in web archive collections at other insti-
tutions.

4. STANDARDIZING THE RECORDING OF

DUPLICATES
The de-facto standard format used to store resources in web
archives is the ARC File Format initially conceived at Alexa
Internet [11], to which ISO 28500, the WARC File Format,
is a more comprehensive successor [14].

In Sigurdhsson’s 2006 publication [16], it is noted in the
conclusion, “While there are difficulties in presenting collec-
tions that have been [deduplicated], the introduction of the
WARC File Format should greatly alleviate that” [16]. How-
ever, even though the ISO specification provides for revisit
records, the specifics for practical usage are not clearly out-
lined. In 2013, the BA worked through the IIPC Harvesting
Working Group (HWG) to draft a “Proposal for Standard-
izing the Recording of Arbitrary Duplicates in WARC Files”
[10]. Later that same year, the proposal earned IIPC Steer-
ing Committee adoption as recommended best practices.

The proposal recommends the use of the following fields in



revisit records with the identical-payload-digest pro-
file in the WARC File Format to replace duplicate resources
with references to the initial capture:

WARC-Refers-To-Target-URI: The URI of the original re-
source.

WARC-Refers-To-Date: The date of the original resource.

In addition, the proposal discourages the use of “fields spec-
ifying the actual WARC file name and offset,” as such usage
is “potentially very brittle.”

5. TOOLS
Deduplication of web archive data may be carried out at
either of two phases: during a crawl, or after the crawl.

5.1 During a Crawl
In Sigurdhsson’s 2006 publication [16], modules imple-
mented for the Heritrix crawler [4] to stop processing of
duplicate resources are presented. The DeDuplicator mod-
ule depends on hash values to identify duplicates using
an index of previously crawled resources as reference. In
addition, the implementation also provides an alternative
method for identifying duplicates based on the datetime
and/or ETag in HTTP headers fetched during the crawl:
the DeDupFetchHTTP module.

5.2 Post-Crawl
Even though the DeDuplicator and DeDupFetchHTTP mod-
ules are quite effective in eliminating duplicates during a
crawl, the BA requires a different type of solution that en-
ables the archive keeper to sort out duplicates“after the fact”
in a legacy collection. For this, the BA has implemented the
WARCrefs set of tools for identifying duplicates and con-
verting them to references in a web archive collection after
crawl time.

BA’s developed solution is divided into two separate pack-
ages: WARCrefs for doing the deduplication, and WARC-
sum for generating hash manifests of web archive resources,
doing collision resolution, and post-processing the manifests,
which serve as input to WARCrefs. WARCrefs is imple-
mented in Java, because well-maintained WARC manipu-
lation APIs are available in this language. WARCsum, on
the other hand, is implemented in C, because hash genera-
tion as well as collision resolution are time-consuming tasks,
particularly when dealing with big data, which makes C as
a lower-level language a good choice when seeking to tune
performance. The software is operated at the command line.

Stage 1 in the deduplication process is warcsum. This tool
takes as input a list of WARC files. For each record of
type response in each file in the input, one line of output
is written to the hash manifest. Each hash manifest line
consists of six fields: the WARC file name, the file offset in
bytes at which the record is located, the length of the record
also in bytes, the URI the record captures, the date of the
capture, and the hash value of the content in the payload,
excluding headers. The following is an example of what
warcsum writes for a record in the input (for readability,
each field is on a separate line):

TGvr4fAfmc.warc.gz

3901

635

http://www.akhbarway.com/robots.txt

2012-04-08T20:13:38Z

sha1:aa20238aab9cea0696a9b5d5f7a44a42de16adfc

warcsum can be configured using command-line options.
warcsum uses hash functions from OpenSSL [5]. MD5,
SHA-1, SHA-256, and SHA-512 are supported. For records
where a hash value is already present in the record headers,
warcsum can be set to use the existing value or recompute
the hash. Records with empty content can be skipped or
treated as normal records.

warcsum is to be run on each host in the computer cluster
that makes up the data store where WARC files are kept.
Output from all instances is to be aggregated and sorted on
the hash value field.

Stage 2 is warccollres, provided in the WARCsum pack-
age. This tool performs the collision resolution, acting as a
safety measure against false positives due to hash collisions.
warccollres takes as input the aggregated hash manifest
generated by warcsum. For each cluster of lines having the
same hash value, the content is fetched from the data store
and compared byte-for-byte to verify whether the records
are indeed duplicates. The result of the collision resolution
is saved to the hash manifest line by appending a seventh
field: a hash extension, which is a sequential number that
distinguishes unidentical records incorrectly given the same
hash value. The output from warccollres is an extended
hash manifest.

To access the data store, warccollres looks up file names
in a MySQL database to determine where they are located
then fetches the records via HTTP. The de-facto standard
web archive access system, the OpenWayback [6], already
depends on HTTP for fetching records, hence going with
HTTP as the first choice for the fetch method and reusing an
existing infrastructure was natural. In the future, alterna-
tive fetch methods may be implemented into warccollres.

warccollres is to be run on one or more hosts with HTTP
access to the data store. When run on multiple hosts to
distribute the collision resolution workload, the input hash
manifest is to be partitioned across each host such that each
cluster of lines having matching hash values is fully con-
tained within a single partition. warcsumsplit is a tool
provided in the WARCsum package for this purpose. Out-
put from all warccollres instances is to be aggregated and
sorted on the hash value and hash extension fields.

Stage 3 is warcsumproc, also provided in the WARCsum
package. This tool post-processes the extended hash man-
ifest, further extending it such that each line encapsulates
all the information the deduplication stage needs to operate
on the record the line is for. Post-processing looks at the
hash value and hash extension in each line in the context
of the line before it and writes a copy number as the eighth
field on the line. Thus, a line where the copy number is 1
is an original record to be kept intact, while a line where
the copy number is greater than 1 is a duplicate to be con-



verted into a reference, i.e., a revisit record. In addition,
where the copy number is greater than 1, the post-processed
hash manifest also has as the ninth and tenth fields the URI
and date, respectively, of the original record, which is infor-
mation needed to construct the revisit record. The post-
processed hash manifest is to be sorted on the file name and
offset fields.

The post-processing functionality is also available in
warccollres and can be enabled using a command-line op-
tion, in which case, warccollres outputs a post-processed
hash manifest. This is more efficient than performing the
post-processing in a separate stage. However, given enough
confidence that the hash algorithm being employed is not
likely to have collisions, with some risk, the collision reso-
lution may be skipped in order to save time, in which case,
warcsumproc is needed. Needless to say, opting not to per-
form the collision resolution is quite inadvisable.

Both warcsum and warccollres read WARC files using
libgzmulti, a library the BA developed as a wrapper
around zlib [13] for working with multi-member GZIP files,
of which WARC files are a type.

Stage 4 is where the post-processed hash manifest pro-
duced by the toolchain provided in the WARCsum pack-
age is turned over to WARCrefs to perform the dedupli-
cation. Similar to warcsum (stage 1), the warcrefs tool
takes as input a list of WARC files but also now has ac-
cess to post-processed hash manifest lines for records in the
files it is to operate on. warcrefs iterates through each
WARC file in the input and also concurrently through cor-
responding lines in the post-processed hash manifest. Each
record with a copy number greater than 1 in the correspond-
ing manifest line is converted into a revisit record, where
WARC-Refers-To-Target-URI and WARC-Refers-To-Date in
the record headers are set to the URI and date, respectively,
of the original resource, and payload headers are transferred
as-is into the revisit record. Otherwise, if the copy number
is 1, or if no corresponding line is in the manifest, the record
is not altered.

warcrefs uses the Java Web Archive Toolkit (JWAT) [12]
for WARC file IO. warcrefs can be configured to rewrite
files in-place or save to a new file.

warcrefs is to be run on all hosts in the data store. The
post-processed hash manifest is to be split across the hosts
such that each host only has lines corresponding to records
in WARC files on the host. Further, as the absence of a man-
ifest line for a record implies the record is not a duplicate,
lines where the copy number is 1 are to be omitted to reduce
the amount of manifest data warcrefs has to process.

Figure 2 illustrates the deduplication process.

WARCrefs, WARCsum, and libgzmulti will be available
open-source on GitHub [8].

6. EXECUTION
With the solution implemented, the next objective is to put
the WARCrefs deduplication tools to use to deduplicate the
full BA web archive. The plan is as follows:

Figure 2: WARCrefs deduplication process.

1. Test the tools. In deduplication, records are iden-
tified as duplicates and deleted, substituting in refer-
ences to what is allegedly the original record. In the
event that either the identification or the deduplica-
tion makes a bad move, this can result in data loss,
where all copies of a resource are converted to revisit

records, or where revisit records are set to point to
something that is not a copy of the converted record.
Moreover, as deduplication is data rewriting, data cor-
ruption is also a concern. If any of these errors oc-
cur, the damage will be irreversible once the rewriting
is committed to both copies of the data. Therefore,
extensive testing scenarios must be thought out and
carried out before putting the tools to production use.

2. Generate hash manifest. The legacy web archive
collection that was provided to the BA by the Internet
Archive in San Francisco is in the old ARC File For-
mat. Therefore, at this point, warcsum is to process
ARC as well as WARC files.

3. Convert ARC to WARC. As the described dedupli-
cation process is designed to work with the newWARC
File Format, conversion has to take place. The JWAT
toolkit [12] will be used to convert one of the two copies
of the data, leaving the other copy untouched as a fall-
back measure.

4. Validate the conversion. Generate a new hash man-
ifest for the all-WARC copy of the data. Compare this
manifest to the one generated pre-conversion. Investi-
gate and act on discrepancies as necessary.

5. Deduplicate. Carry on with the deduplication pro-
cess on the all-WARC copy of the data starting at stage
2 (warccollres). Be sure to use the post-conversion
manifest, as record offsets and lengths in the WARC
version of a file are different from those in the ARC
version.

6. Validate the deduplication. Generate yet another
hash manifest for the deduplicated data and compare
to the post-conversion manifest to confirm non-duplicate
records were not altered. Also, select a random sample
of deduplicated records for testing through the access
system. Investigate and act on issues as necessary.



7. Commit to second copy. If confident the deduplica-
tion process resulted in no damage to the data, commit
the deduplicated set over to the second set that was
kept unaltered throughout the process.

7. CONCLUSION
Deduplication is an effective technique for making smarter
use of the storage infrastructure that supports a web archive,
and also comes with a few desirable side effects, such as
improving the quality of the collection. Proper identification
of duplicates based on hash values and applying a second
check to rule out collisions ensure the deduplication target
is selected accurately. Best practices for standardizing how
duplicates are represented in the WARC File Format have
been drafted within the International Internet Preservation
Consortium. The Bibliotheca Alexandrina is developing the
tools needed to execute post-crawl deduplication of its web
archive, and hopes to report on results and lessons learned
from this petabyte-scale data rewriting job in a future venue.
Other institutions involved in web archiving are welcome
to put the tools to test on their own collections as well as
contribute to improving the software.

8. ACKNOWLEDGMENTS
The Bibliotheca Alexandrina wishes to thank colleagues in
the IIPC Harvesting Working Group, most notably, the Na-
tional and University Library of Iceland, for work drafting
the “Proposal for Standardizing the Recording of Arbitrary
Duplicates in WARC Files.”

9. REFERENCES
[1] Btrfs Wiki. https://btrfs.wiki.kernel.org/index.

php/Main_Page.

[2] Crypto++ 5.6.0 Benchmarks. http://www.cryptopp.
com/benchmarks.html.

[3] Hash function. Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Hash_function.

[4] Heritrix Wiki. https://webarchive.jira.com/wiki/
display/Heritrix/Heritrix.

[5] OpenSSL Wiki. http://wiki.openssl.org/index.
php/Main_Page.

[6] OpenWayback. IIPC website. http://netpreserve.
org/openwayback.

[7] Oracle Solaris ZFS Administration Guide. http://
docs.oracle.com/cd/E19253-01/819-5461/.

[8] The BA web archive on GitHub. https://github.
com/arcalex.

[9] Web Archiving. IIPC website. http://netpreserve.
org/web-archiving/overview.

[10] Proposal for Standardizing the Recording of Arbitrary
Duplicates in WARC Files. IIPC internal document,
September 2013.

[11] M. Burner and B. Kahle. ARC File Format Reference,
September 1996. http://archive.org/web/
researcher/ArcFileFormat.php.

[12] N. Clarke. Java Web Archive Toolkit (JWAT)
Documentation, October 2012. https://sbforge.org/
display/JWAT/Documentation.

[13] J.-L. Gailly and M. Adler. zlib 1.2.8 Manual, April
2013. http://www.zlib.net/manual.html.

[14] J. A. Kunze, A. Arvidson, G. Mohr, and M. Stack.
The WARC File Format, January 2006. http://
archive-access.cvs.sourceforge.net/viewvc/

archive-access/archive-access/src/docs/warc/

warc_file_format.html?revision=1.10.

[15] M. Shibata. Web archives of devastated area sites and
deduplication project. IIPC General Assembly
presentation, 2011. http://www.netpreserve.org/
general-assembly/2011/Overview.

[16] K. Sigurdhsson. Managing duplicates across sequential
crawls. In 6th International Web Archiving Workshop
(IWAW06), Alicante, Spain, 2006.

[17] M. Stevens. Cryptanalysis of MD5 and SHA-1.
Centrum Wiskunde en Informatica (CWI),
Amsterdam, the Netherlands. http://2012.sharcs.
org/slides/stevens.pdf.

https://btrfs.wiki.kernel.org/index.php/Main_Page
https://btrfs.wiki.kernel.org/index.php/Main_Page
http://www.cryptopp.com/benchmarks.html
http://www.cryptopp.com/benchmarks.html
http://en.wikipedia.org/wiki/Hash_function
https://webarchive.jira.com/wiki/display/Heritrix/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix/Heritrix
http://wiki.openssl.org/index.php/Main_Page
http://wiki.openssl.org/index.php/Main_Page
http://netpreserve.org/openwayback
http://netpreserve.org/openwayback
http://docs.oracle.com/cd/E19253-01/819-5461/
http://docs.oracle.com/cd/E19253-01/819-5461/
https://github.com/arcalex
https://github.com/arcalex
http://netpreserve.org/web-archiving/overview
http://netpreserve.org/web-archiving/overview
http://archive.org/web/researcher/ArcFileFormat.php
http://archive.org/web/researcher/ArcFileFormat.php
https://sbforge.org/display/JWAT/Documentation
https://sbforge.org/display/JWAT/Documentation
http://www.zlib.net/manual.html
http://archive-access.cvs.sourceforge.net/viewvc/archive-access/archive-access/src/docs/warc/warc_file_format.html?revision=1.10
http://archive-access.cvs.sourceforge.net/viewvc/archive-access/archive-access/src/docs/warc/warc_file_format.html?revision=1.10
http://archive-access.cvs.sourceforge.net/viewvc/archive-access/archive-access/src/docs/warc/warc_file_format.html?revision=1.10
http://archive-access.cvs.sourceforge.net/viewvc/archive-access/archive-access/src/docs/warc/warc_file_format.html?revision=1.10
http://www.netpreserve.org/general-assembly/2011/Overview
http://www.netpreserve.org/general-assembly/2011/Overview
http://2012.sharcs.org/slides/stevens.pdf
http://2012.sharcs.org/slides/stevens.pdf

	Introduction
	Identifying Duplicates
	Initial Assessment
	Standardizing the Recording of Duplicates
	Tools
	During a Crawl
	Post-Crawl

	Execution
	Conclusion
	Acknowledgments
	References

