Characterization of CD-ROMs for Emulation-Based Access

Klaus Rechert, Thomas Liebetraut, Oleg

Stobbe, Isgandar Valizada
University of Freiburg
Hermann-Herder Str. 10
79104 Freiburg, Germany
{firstname.lasthame}@rz.uni-freiburg.de

ABSTRACT

Memory institutions have already collected a substantial
amount of digital objects, predominantly CD-ROMs. Some
of them are already inaccessible with current systems, most
of them will be soon. Emulation offers a viable strategy
for long-term access to these publications. However, these
collections are huge and the objects are missing technical
metadata to setup a suitable emulated environment. In this
paper we propose a pragmatic approach to technical meta-
data which we use to implement a characterization tool to
suggest a suitable emulated rendering environment.

General Terms
Infrastructure opportunities and challenges; Frameworks for
digital preservation; Preservation strategies and workflows.

Keywords

Emulation Characterization Tools

1. INTRODUCTION

Memory institution have already accumulated a substantial
amount of digital artifacts. For instance, the German Na-
tional Library (DNB) has been collecting German publica-
tions on various data carriers since commercial publication
began in the end of the seventies. There are all kinds of data
carriers for many different computer systems in the maga-
zines of the DNB. The estimation of the number of stored
digital carriers is about 500000. It is not exact as the cata-
loging of these publications was not consistent in the early
years.

Currently, a user in the DNB’s reading room can order a
data disk via catalogue, which will then be prepared for
usage in a virtual drive. These CD-ROMs, however, need
to run in the DNB’s current desktop computer environment
(currently Windows 7). In some cases the CD-ROMs still
work but other CD-ROMs fail or may fail soon. Hence,
the current access workflow lacks a future proof strategy.

iPres 2015 conference proceedings will be made available under a Creative
Commons license.

With the exception of any logos, emblems, trademarks or other nom-
inated third-party images/text, this work is available for re-use under
a Creative Commons Attribution 3.0 unported license. Authorship of
this work must be attributed. View a copy of this licence at http:
//creativecommons.org/licenses/by/3.0/legalcode.

Tobias Steinke
German National Library
Adickesallee 1
60322 Frankfurt, Germany

t.steinke@dnb.de

Furthermore, similar collections of digital publications with
a dynamic character, for instance web archives, also need a
future-proof access solution.

Emulation has been shown to be a useful and flexible ap-
proach to access legacy software collections [2, (15} 4]. How-
ever, in libraries and their classical reading-room scenar-
ios, the development and maintenance of tailored emulation
solutions is difficult. Especially for very large collections,
analyzing and evaluating each object individually is not a
feasible solution [13|. Based on these findings, the EMiLE]
project aims to develop an environment for library reading
rooms that addresses the challenges of complex objects with
a flexible emulation framework. The primary focus for the
DNB is on providing access to multimedia CD-ROMs of the
1990s and 2000s, but the EMiL system might be used for
other collections later on as well. Automation is essential,
since the huge number of objects prevent manual handling
of each object, in particular in view of the determination of
technical metadata required for emulation.

The default scenario for the DNB is rather simple: Users in
the DNB’s reading room may use specific workstations for
research purposes. If any of the catalogue’s entry is a mul-
timedia publication originally published on a data carrier,
a click on a link initiates the transfer of the data carrier’s
digital image from the digital preservation system to the
EMiL system. Then, the user gets access to the content
of the publication using a suitable emulation environment.
No additional interactions or decisions by the user should
be required during this process. Hence, for this rather sim-
ple workflow it is crucial that the EMiL system is able to
automatically determine the "best” available emulation en-
vironment.

Therefore the development of a trustworthy characterization
tool and a flexible management of emulation environments
are key tasks in the project EMiL. In this paper, we present
design, implementation and evaluation of a CD-ROM char-
acterization tool as well as necessary technical metadata and
technical components.

2. PROBLEM DEFINITION

As outlined in the previous section, EMiL aims at re-enacting
a multitude of digital objects using emulation technology.

'Emulation of Multimedia-objects in Libraries, http://
www.multimedia-emulation.de/

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode
http://www.multimedia-emulation.de/
http://www.multimedia-emulation.de/

However, these objects cannot run without suitable tech-
nical environments. These environments typically include
a (virtual) computer hardware, an operating system and
sometimes additional applications, all of which form the
complete emulation or rendering environment for a digital
object. Due to the many ways hardware and software can be
combined, not any such environment can be used to render
a specific object. Instead, the EMiL software framework has
to find environments suitable for a specific object based on
the technical aspects of this object.

When objects like CD-ROMs have been acquired and in-
gested into a memory institution’s catalog, typically descrip-
tive metadata has been gathered and associated with the
object. Even though these metadata entries may also de-
scribe technical aspects of the object, (re-)using this data
to identify and prepare a suitable rendering environment is
difficult. Listing shows an example of technical system re-
quirements of a CD-ROM published in the late 90s. These
technical descriptions were originally designed to guide po-
tential buyers, but from today’s viewpoint most of the in-
formation is irrelevant (computing power and memory and
disk sizes have risen by magnitudes). A much bigger prob-
lem is that there was no standard or schema in describing
system requirements; hence, using this information as tech-
nical metadata in an automated way is difficult.

Listing 1: System requirements as posted on the
CD-ROM box or booklet.

Windows 3.1x, 95, NT 4.0

IBM Compatible PC

80486 Processor or higher

Minimum: 8 MB Memory (RAM)

10 MB free hard disc space

Minimum DIN/ISO 9660 CD-ROM drive

MSCDEX 2.21

Mouse

The KEEP Emulation Framework [11] provides file charac-
terization in order to determine a ViewPath [14]. Based on
a file format, a rendering application is chosen; using the
application, an operating system and finally an emulator is
determined [1|. The information required is stored in the
framework’s database. This file-based approach can be used
very efficiently to cope with certain types of digital objects
(digital pictures, text documents, etc.). File types can be
automatically characterized which allows to select the cor-
responding viewer software.

This single-file characterization approach falls short on more
complex objects. Object types that consist of a collection
of different files and formats that are wrapped into a single
container format (e.g. ZIP or ISO9660 images) cannot be
classified with a single file format. Today’s file characteri-
zation tools may recognize the container format, which is,
however, of limited use for a useable access strategy. Even
if the container’s content is analyzed file by file, this ap-
proach can only provide a file-by-file re-enactment and loses
the collection-type character of the object. This is true espe-
cially for interactive CD-ROM publications (e.g. multimedia
productions, interactive educational content, encyclopedias
etc.) where just providing access to individual image and

text files is not sufficient if the original digital object pro-
vides a rich application that guides the user through the
available material.

Even if an object’s "viewer” software or its ViewPath is
known, this information is neither unambiguous nor suffi-
cient. Usually, executing a specific application is not pos-
sible without prior installation, neither is creating such an
environment in an automated way. Similarly, an emulator
system required to run such software needs to be set up and
configured properly. Furthermore, there exists an (almost)
unlimited number of potential software environments satis-
fying an object’s technical requirements. Hence, in a prac-
tical scenario an image archive with associated metadata is
required which provides means to search for a matching en-
vironment.

In earlier work we have presented workflows for manual in-
gest of CD-ROMs, i.e. the user individually chooses from
a list of available rendering environments [9]. If no suitable
environment is available, a new environment has to be built,
for instance, by installing additional software. The result of
the CD-ROM ingest workflow is a semantic link between a
digital object and the technical description of an emulated
system environment able to render a certain object. This
approach is viable and useful for instance in the digital art
domain since the rendering quality can be evaluated. How-
ever, good knowledge of each CD-ROM is required to be
able to choose or create an appropriate rendering environ-
ment. Traditional memory institutions, however, hold large
collections of different digital objects. A manual (re-)ingest
of these objects is labor-intensive, as this workflow requires
an in-depth analysis of each object to determine its render-
ing environment. For a majority of these objects (e.g. for
supplementary CDs) the total costs would probably not be
justifiable.

Our goal is to support and automate this process as much
as possible. From a set of available rendering environments,
only a few are suitable to render a given object. This match-
ing process requires a characterization tool as a prerequisite.
Furthermore, with respect to the memory institution’s large
collections, gathering information on required environments
covering (most of) the collection’s objects is necessary to
build a comprehensive image archive to be chosen from.

3. TECHNICAL METADATA

The problem definition and requirements show that tech-
nical metadata describing the capabilities of the rendering
environment is necessary. Several models for describing a
computing environment have already been developed. The
PREMIS data dictionary |12] provides a semantic environ-
ment entity to describe rendering environments, which has
been recently reworked and extended to improve expressive-
ness, in particular in emulation use-cases |7} |6]. Similarly,
The Trustworthy Online Technical Environment Database
— TOTEM (8| provides a comprehensive data model to de-
scribe environments in great detail. Furthermore, tools have
been proposed to determine environment information, for in-
stance capturing a digital object’s runtime dependencies [5].

The major trade-off, from a practical perspective, is choos-
ing between the level of detail and the ability to re-use en-

vironments with new emulators, different objects or usage
contexts. A small number of generic environments to ren-
der a large number of digital objects is preferable, as it re-
duces the burden of preservation planning. With detailed
and very specific environment descriptions, re-use of envi-
ronments becomes less likely. Also the complexity of as-
sociated tools matters. For instance, with more details, it
becomes more difficult to design a matching algorithm that
links rather generic emulator software with specific hardware
requirements.

For this reason, we pursue a constructive approach, with
less focus on formal modeling yet. The primary purpose of
our technical metadata is to describe environments to ren-
der digital artifacts but also to describe environments such
that preservation planning for emulation-based preservation
strategies become possible. In order to integrate emulation
related metadata seamlessly into a memory institution’s ex-
isting preservation systems, a formal model and possibly en-
coding in a standard metadata language (e.g. PREMIS) may
be required. This, however is left for future work.

A complete set of metadata required to re-enact a virtual
environment is called an emulation environment and can
roughly be divided into two parts, a hardware environment
and a software environment. The former describes the tech-
nical features of an (emulated) computer system, while the
latter describes the software utilizing the computer hard-
ware, usually in form of a virtual disk image. A digital
artifact typically poses (abstract) requirements on its ren-
dering environment, e.g. a Windows operating system (Win-
dows 95 or newer) with a set of applications installed and
sound support enabled. However, specific requirements on
the sound hardware are rare. Hence, an artifact is (tightly)
linked to one or more software environments, but in gen-
eral indifferent to the underlying hardware environment (as
long as appropriate functionality is provided). The hardware
environment, on the other hand, is selected based on the
aggregated software environment’s requirements and hard-
ware’s capabilities. To use hardware features, usually driver
software needs to be installed and/or the operating system
requires configuration. A software environment thus limits
the choice of useable hardware configurations.

The separation of hardware and software environment de-
scriptions allows to change the underlying (emulated) hard-
ware without reevaluating (a huge number of) digital arti-
facts. This, makes it easier and more cost effective to cope
with technological changes. Operating systems (in partic-
ular old ones) do not change their hardware requirements
or their features over time. Hence, a particular software
environment description can be considered as constant (if
complete), especially regarding the hardware interfaces used.
Even though the link between a specific software and hard-
ware configuration is also stable in the short run, emulators
are also prone to a software life-cycle and will be technically
obsolete at some point. Then, if new emulation software
is required, a new hardware environment description is cre-
ated, describing individual emulated hardware components.
If the connecting interfaces between hardware (hardware
component description) and software (driver and operat-
ing system configuration) are made explicit in the technical
metadata, all affected software environments can be deter-

mined, and the search for new emulators can be guided. If no
perfect match is found, the necessary adaptions of affected
software environments can be predicted in an automated
way. This allows to focus preservation planning activities
on monitoring the links between software and hardware en-
vironments.

Listing 2: General structure of a software environ-

ment description.
<swEnvironment>
<id>..</id>
<description>...</description>

[...1

<binding>
<url>nbd://my.host?exportname=disk.img</url>
<md5sum>...</md5sum>
[...]

</binding>

<systemConfiguration />
<softwareCollection />

</swEnvironment>

3.1 Software Environment

A software environment description’s primary purpose is to
describe a computer system’s software setup. In the case of
emulation workflows, these setups can be found in the form
of disk images, representing a virtual hard disk to be used
with an emulator. Listing |2] illustrates an swEnvironment’s
general structure and main elements.

The first important element is a data binding definition, re-
ferring to the location of the disk image. Data bindings de-
fine volumes that can later be used to emulate a medium but
only represent the bare data or data source. This element
may contain further information, such as fixity information,
format and file-system of the container.

The second main element of a software environment de-
scribes its relation to a potential hardware environment de-
scription. The systemConfiguration tag describes if there
is an operating system installed and configuration of (re-
quired) hardware dependencies. The osConfiguration ele-
ment describes the operating system as a swComponent, in
particular with its rendering capabilities. For instance, a
Windows 98 installation is able to render (execute) Win32
executables (x-fmt/411) (native format) but may also run
Winl6 (x-fmt/410) and MS-DOS executables (x-fmt/409)
(import formats). In our implementation, we currently use
PRONOM IDs (PUID) [3| to specify the supported render-
ing capabilities, if available. While the format specifications
can be in any form, we chose PUIDs both because of its
simple scheme and to be able to (re-)use its file format and
software descriptions. While the PRONOM registry is far
from complete, in particular with respect to software de-
scriptions, it provides a viable (and well known) starting
point, which could be quickly extended with a growing em-
ulation community.

In order to describe a software’s rendering capabilities, we
chose a slightly different structure. While PRONOM uses
create and render categories to associate file formats to a
software description, we distinguish between import, export
and native formats. For our use-cases it is helpful to be able
to choose between applications rendering their native for-
mat and applications which are able to render a format to
a certain extent. Software usually has a native data format
that can be rendered without losing information. At the
same time, it often allows some sort of interoperability with
other software and thus provides at least partial support for
other formats. For instance, OpenOffice.org natively sup-
ports OpenDocument but is also able to open Word docu-
ments, even if the rendering quality may be imperfect. This
concept also provides a path to migrate independent data
objects to other formats, e.g. to migrate a Word Perfect file
to current Office Open XML.

As a specific software environment, in particular the em-
bedded operating system, does not run on any hardware, the
system configuration section also contains information about
specific hardware configuration. An operating system’s con-
figuration and its (additionally installed) drivers define a set
of “expectations” on the underlying hardware system. This
hwConfiguration description can then be matched against
hardware environment descriptions. Listing [3] illustrates a
simple system configuration of a typical Windows 98 instal-
lation.

Listing 3: A software environment’s system config-
uration description.
<systemConfiguration>
<osConfiguration>
<swComponent id="x-sfw/37">
<description>Windows 98 SE</description>
<nativeFormats>
<fmt puid="x-fmt/411" />
</nativeFormats>
<importFormats>
<fmt puid="x-fmt/410" />
<fmt puid="x-fmt/409" />
</importFormats>
</swComponent>
</osConfiguration>

<hwConfiguration>

<hwcomponent class="audio" device="sbl6">
<param key="irq" value="5"</param>
<swComponent id="x-driver/99 />
</hwcomponent >

<hwcomponent class="storage" device="piix3"
id="ide_1" />
<hwcomponent class="storage" device="cdrom">
<param key="controller" value="ide_1"</
param>
</hwConfiguration>
</systemConfiguration>

The metadata associated with a softwareCollection ex-
tends its rendering capabilities, i.e. the type of file that can
be used within this software environment. Software meta-
data could be kept directly in the software environment de-
scription but it is preferable to use only references to the
associated software archive or technical registry. This way,

software properties, in particular, license information, where
conditions may change over time, can be centrally main-
tained and evaluated on-the-fly.

Listing 4: Excerpt of a software collection descrip-
tion.
<softwareCollection>
<swComponent puid="x-sfw/68">
<description>
WordPerfect 0Office V.11
</description>
<nativeFormats>
<fmt puid="x-fmt/44" />
[...]
</nativeFormats>
<importFormats>
<fmt puid="fmt/125" />
[...]
</importFormats>
<exportFormats>
<fmt puid="fmt/97" />
[...]
</exportFormats>
</swComponent >
[...]

</softwareCollection>

3.2 Hardware Environment

The basis for running any software environment is either a
physical or an emulated computer system. The hardware
environment description is quite similar to the software en-
vironment, as it defines a set of available hardware interfaces
that make up a computer system.

A hardware environment is typically defined through its ba-
sic architecture (e.g. x86 compatible PC) and its specific
hardware features. A list of list of hwComponents describes
available hardware components, which a software environ-
ment is able to utilize. Each hwComponent represents specific
hardware and describes configuration options, if necessary.
For instance, Listing|[f]lists the audio cards supported by the
QEMU 1386 system emulator. The system environment’s
hwConfiguration from Listing [3| then chooses one of these
cards (Sound Blaster 16) and configures it accordingly.

The source of this environment description is usually the em-
ulator’s manual, describing the emulator’s capabilities. By
making the list of supported hardware explicit, different em-
ulators can be compared. For instance, Virtual Box supports
only three sound cards (Sound Blaster 16, AC97 and Intel
HDA), VMWare supports only Sound Blaster and Intel HDA
cards. The same applies to other hardware components like
network and graphics cards and storage controller. Based
on this information, one can produce guidelines to guide the
development of software environments, in particular oper-
ating system installation and its configuration. Hence, the
software environment from Listing [3| should be compatible
with QEMU, VirtualBox and VM Ware with respect to audio
hardware requirements.

Every hardware environment available in the EMiLL frame-
work is backed by an emulation component implementation
(cf. |10]). Each component is able to parse a systemConfig-
uration element and translate its requirements into native

configuration for a specific emulator software. Table[I]shows
an overview of EMiL’s supported emulators.

Listing 5: System description excerpt as featured by
a current QEMU emulator.
<hwEnvironment>
<id>...</id>
<name>QEMU i386</name>
<architecture>x86</architecture>

[...1

<hwComponents>
<hwcomponent class="audio" device="sbl6">
<param key="irq" value="5"</param>
<param key="irq" value="7"</param>
[...1
</hwComponent>
<hwComponent class="audio" device="ac97"/>
<hwComponent class="audio" device="es1370"/>
<hwComponent class="audio" device="hd"/>

[...]

<hwComponent class="storage" device="piix3"
id="ide_1" />
<hwComponent class="storage" device="cdrom">
<param key="controller" value="ide_1"</param
>
</hwComponent >
</hwComponents>
</hwEnvironment>

4. DESIGN & IMPLEMENTATION OF A
CD-ROM CHARACTERIZATION TOOL

Based on the DNB’s reading room scenario, the access work-
flow starts by requesting an object from the library’s cata-
log. The goal is now to determine a suitable environment
for this object automatically. To this end, a software en-
vironment suitable for rendering the object at hand has to
be determined. This matching process has to be based on
the requirements of the object and its expectations about
the environment it runs in, e.g. a certain operating system
version or support for the file type of the digital object.

Table 1: List of EMIiL standard environments

Operating System | Arch Emulator Alt. Emulators

MS-DOS *x86 QEMU Dosbox, VBox(VX)
MS Windows 3.11 x86 QEMU Dosbox, VBox(VX)
MS Windows 9x x86 QEMU VBox(VX)

MS Windows XP x86 QEMU VBox(VX)

Linux 1386 x86 QEMU VBox(VX)

Apple 11 MOS Tec PCE vmac-mini, MESS
Apple System 7 m68k BasiliskII MESS

Apple System 8 ppc Sheepshaver MESS

Apple System 9 ppc Sheepshaver

Amiga m68k x-uae MESS

C64 MOS Tec VICE MESS

Atari m68k hatari MESS

4.1 Building an Image Archive

The test collection for the EMiL project consisted mainly
of interactive, runnable software objects rather than bare
document formats (like images or Word documents). CD-
ROMs were usually made for the mass market and are there-
fore mostly self-contained, i.e. if additional software was
required, which is not already part of the CD-ROM im-
age (Quicktime or Acrobat Reader are popular examples).
Hence, the most important feature for a software environ-

ment is to run applications made for a specific operating
system and computer architecture.

In order to provide suitable runtime environments, firstly, a
list of necessary standard environments has to be compiled.
These so-called standard environments provide a basic op-
erating system installation and configuration, so that there
is least one hardware environment (i.e. emulator) satisfying
the resulting software environment’s systemConfiguration.
We have chosen executable file formats as our primary iden-
tifier for the gathering runtime requirements.

Executable file formats, however, are usually not very pre-
cise, because they are designed as a very basic interaction
point between the operating system and CPU code. For
instance, the portable executable (PE) file format used on
Windows operating systems has been stable since Windows
NT 3.1 and Windows 95 until the recent introduction of
the 64-bit architecture and is still today used for non-64-
bit binaries on Windows. However, a PE binary designed
for Windows 95, is not guaranteed to run on Windows 8
and vice versa. To cope with this dilemma, we implemented
a second classifier to the matching mechanism. Depending
on the file’s timestamp we can distinguish between different
epochs of an operating system or software package and thus
“authentic” software environments.

Using these two classifiers, the binary file format and the
epoch, we analyzed all images in the sample collection and
produced a set of operating system and architecture (cf. Ta-
ble . Column 3 and 4 of the table also show emulators
that provide the technical features to emulate these envi-
ronments. This classification step showed that the object
collection provided by the DNB can be re-enacted using
comparatively few environments, in particular if compared
to the large number of objects.

Once the basic set of software environments required to ac-
cess the digital objects has been determined, these software
environments have to be created. This process includes the
installation of an operating system, configuring it accord-
ingly and installing required drivers for e.g. network or sound
support. As a hardware basis, a typical configuration of
the corresponding epochs computer systems is used, respec-
tively. The result is a freshly made software environment
with its characteristics known and described with a complete
set of technical metadata. These software environments, in-
cluding the disk images of the installed operating system,
are then ingested into the project’s image archive. Environ-
ments can then be used to be matched against the analysis
results of individual objects. As they were created accord-
ing to the requirements gained from the previous analysis
of the whole collection, we can ensure that all objects find
a matching software environment or we can determine pre-
cisely which objects lack specific features not (yet) included
in the image archive.

4.2 Managing Software

For some objects in the sample collection, the process de-
scribed previously failed due to our focus on executable bi-
nary formats. For instance, one object contained only a sin-
gle PPT file with all other media directly embedded. This
object, obviously, contains no executable binary format and

@ File Edit View Special Help

(<) Goethe in Weimar
4 items, zero K available

Goethe in Weimar (68 K) Goethe in Weimar (PPC)

- > Systemordner

Figure 1: Content of a hybrid CD-ROM opened on
an Apple Macintosh computer system.

thus does not require a specific operating system per se.
However, the PPT file requires another piece of software
that is shipped neither with the operating system nor the
digital object, namely Microsoft PowerPoint.

To add to the existing base environments and provide auxil-
iary software environments that provide support for further
file formats, it is possible to create derived environments
within the image archive. To facilitate this task, a sepa-
rate software archive can be provided that contains instal-
lation media for several additional software packages, e.g.
MS Office. Accompanying these installation media, there is
also metadata describing the additional native, import and
export file formats provided by the software. The installa-
tion process, then, is similar to the re-enactment of a digital
object: a media container and file system analysis yields
the required software environment that this software can be
installed on. After the installation process, the modified im-
age can be ingested back into the image archive with the
updated metadata as a derived environment based on the
original base environment.

Internally, only the modified data blocks of the hard disk
image are stored while the original blocks just reference the
original base image. Therefore, the derivative remains de-
pendent on the availability of the original environment. Due
to this link, it is also possible to precisely tell which software
environments may require looking into, once a base environ-
ment changes for some reason (e.g. because new emulators
require new drivers to be installed).

Using these newly created derived software environments,
the object only containing a PPT file can be started by
searching for the respective PRONOM IDs. Now, the deriva-
tive with MS Office will be a matching result and the object
can then be rendered using PowerPoint. Having such soft-
ware available individually also provides means for ensuring
the license limits of certain software is not exceeded. For
instance, a memory institution may have a large number of
operating system licenses but only a very limited number
of special-purpose software that not everyone needs. Ren-
dering all objects that do not require that special-purpose
software using software environments that do not contain
them allows for a larger number of parallel users.

4.3 On-the-fly Object Characterization

Once the image archive contains software environments and
corresponding metadata, we are able to match the require-

. Goethe (D:) =1of x|
| Fle Et View Go Favortes Hep i

‘ A ¥ @ @ [a X "
Back Forwerd Up Cut Copy Paste Undo | Delete
| Address [@ 0\ ;”
Data Autorun Goethe Instal Lingo
Goethe

IKD:) m 2 e

Select an item to
view its description

Figure 2: Content of the same CD-ROM opened on
a Windows computer system.

ments of a digital object requested by the access workflow
against the software environments and find a suitable ren-
dering environment. As the original text-based requirements
cannot be used to automatically and reliably find a render-
ing environment, we have to provide a different matching
process that relies on the object’s actual contents. This

matching process is outlined in Fig.
Digital Object Image Archive

Y Y

Retrieve available
rendering environments

Mount all available file systems

Y Y
Extract supported format
LU IDs from metadata

Y Y

/ RequiredformatIDs/ /AvailableformatIDs/

Select rendering environment
>~ suitable for Digital Object | <

Y

/ Renderingenvironment/

Figure 3: Characterization Workflow

As a first step, the digital object’s container format has to
be determined and its internal structure or filesystem has to
be accessed. In our case, all containers were CD-ROM im-
ages, but some were, unfortunately, not standard ISO 9660
images. Many CD-ROMs of the multimedia age were pro-
duced as hybrid CD-ROMs containing both, an ISO 9660
file system as well as one (or more) additional file systems
to overcome the restrictions of ISO 9660 and to implement
system-specific features.

A common example are HFS/HFS+ hybrid CD-ROMs pro-
duced to be used with Apple computer systems and IBM-
PCs. While Windows or DOS only sees the ISO 9660 filesys-
tem, MacOS was able to access the HF'S filesystem contained
on the same CD-ROM to provide a different view on the con-
tents. Fig.[I] shows the content of a HFS-hybrid CD-ROM
opened on an Apple Macintosh computer system while Fig.[2]
shows the content of the same CD-ROM opened on a Win-
dows computer system.

For characterizing the container’s content, both "views” of
an object need to be evaluated. Unfortunately, none of the
tools currently included in FITS are able to characterize
the container format correctly. Running FITS on a hybrid
disk image file will return a SINGLE_RESULT classifying the
file as application/x-is09660-image. To correctly iden-
tify the HF'S filesystem on these images, we had to imple-
ment an additional container classification tool, matching
for Apple_partition_map and HFS/HFS+ Master Direc-
tory Block signature to detect HFS/HFS+ filesystems on
the CD-ROM images.

Once the filesystems contained in the images are identified,
characterization tools can be used to determine the file for-
mats of all files contained in the object. To automate the
process of finding a suitable environment, we aggregate file
format information of all files found. The resulting required
format IDs can then be matched against list of import or na-
tive file formats in the software environments that are avail-
able from the image archive. In this step, certain formats
may have to be prioritized over others. For example, a mul-
timedia CD-ROM contains many picture files that belong to
a multimedia application. While theses files can be viewed
by any software environment that can view e.g. JPEG files,
the multimedia application itself may only run on a PPC
Apple MacOS.

In the final step, a very similar matching process is used to
find a hardware environment that fulfills the requirements
of the software environment. The resulting set of digital ob-
ject, software and hardware environment is then the com-
plete rendering environment and can be used by the EMiL
emulation framework to re-enact the object.

5. RESULTS

In a first round we classified 69 CD-ROMs which were care-
fully selected to reflect the the diversity of the memory insti-
tution’s collections. The goal was to have a wide representa-
tion of objects for different time periods and different types
of objects. For instance, objects with more or less complex
applications, interactive multimedia content especially with
audio and video, 3D rendering, etc., but also objects made
for different operating systems (Mac/Windows hybrid CDs)
were chosen. The CDs were published between 1991 and
2009. For most of these CD-ROMs we had a transcript of
their original system requirements. These requirements are
used as ground truth for evaluating our classification. This
information was not available for a few items, which meant
that these CD-ROMs had to be tested manually.

Based on the analysis of executables found on each CD-
ROM, we could determine from 66 CDs at least one suit-
able rendering environment selecting an appropriate oper-

ating system. 35 CDs were classified with multiple envi-
ronments. While 11 CDs were hybrids which can either be
run under a Windows or a Mac OS environment, we found
24 CDs which provided binaries for different Windows en-
vironments (e.g. legacy support for Windows 3.11 or MS-
DOS). Even though final characterization results could be
stored as metadata along with each object both character-
ization tools and available environments may be improved
over time. On-demand characterization would provide the
best user-experience, since newly added or improved envi-
ronments can be considered. On a 4 CPU machine using 8
parallel threads, characterization of a single CD took less the
30 seconds, in most cases even less then 10 seconds. Only
one object took more than 60 seconds to process, which was
in fact a 4 Gb DVD.

For some CD-ROMs however, our simple file-by-file classi-
fication approach failed, e.g. because no executables were
present on the CD-ROM. For instance, we have found a
”Chinese Language Course”, which contained more than 6000
files, however, most were encoded as HTML (fmt/96), JPEGs
(fmt/41,43) and WAV (fmt/143) format. Figure[d]shows the
format distribution as histogram. With no browser or other
executable on the medium, a characterization solely on ex-
ecutable formats cannot determine a suitable environment.
In this case, the aggregate file format information indicates
that any environment with a Web browser installed would
be suitable.

In a similar case, only PPT files were present on the CD,
which would require a software environment containing an
Office installation and a CD which only contained images.
In the specific case of CD-ROMs, presence of an autorun.inf
indicates the requirement for a Windows environment. Such
information can be used for a secondary classification step,
by defining sets of file formats typically associated with spe-
cific software setups or domain specific applications. Even
if no suitable environment is found, the analysis of file for-
mat distribution can give useful hints about (additionally)
required setups for a specific collection.

6. CONCLUSION & OUTLOOK

We presented a first step towards an automated reading-
room access workflow for a large digital media collection.
Our goal was to support users when accessing a CD-ROM
from a memory institution’s catalog and ideally render it
instantly in a suitable emulated environment. To achieve
this we have implemented a characterization tool for digital
media containers accompanied with a technical framework
and workflows. The characterization workflow successfully
determined at least one suitable environment for 66 out of
69 objects based only on executable file formats and time
signatures. Hence, for a vast majority of objects, a very
simple heuristic can be applied to automate access.

Our evaluation, however, also shows the limitations of such a
simple approach. For instance, if no executables are present,
no classification of a basic rendering environment is pos-
sible. For more sophisticated environments, e.g. an envi-
ronment for typical office workflows or specific engineering
tasks, a thorough description of the available software and
its supported file formats is necessary. The characterization
workflow is then easily able to find an environment that can

File Format Histogram

3000
2500
c
g
5 1500
E
o
= 1000 . R]
500
0 ||
A, . vy) Y A
O/A‘(G/A\{ 0, ’%\G '%o/ '<>,<\r &/}{/ o(@ N @A\’, 0, e)-‘1",\ QX /%0& 91,%\ 0’)(./
Co. %o f2 Cu 2 2 fe % %
O, &, 4 4 4 C) Cx. .
@)s &e v % % % L RN %45%
4 4 2 File Formats

Figure 4: File format distribution of a CD-ROM containing an HTML-based language course.

render a specific file found on the CD-ROM.

For the aforementioned HTML-based language course, how-
ever, more considerations have to be taken into account.
While almost any editor is able to open HTML files, the
results may not be what the user expects. Similarly, all
the WAV files found on the medium can be opened using
a simple audio player. The object itself, however, has a
characteristic "Web medium” footprint and clearly should
be opened in a Web browser that allows using the language
course in the guided and interactive fashion that was in-
tended, rather than opening every file individually. There-
fore, a more complex characterization approach that recog-
nizes a "Web medium” footprint may be required.

A future option is to encode our technical metadata using
the PREMIS data dictionary or similar established meta-
data standards to support interoperability and to simplify

7]

8]

[9]

adaption or integration of emulation-based preservation strate-

gies. In a similar way, technical interfaces to technical reg-
istries, such as PRONOM and TOTEM, enable rapid pub-
lication and sharing of new file format signatures, and espe-
cially, verified relations between file formats and necessary
rendering software.

7. REFERENCES

[1] D. Anderson, J. Delve, and D. Pinchbeck. Document
describing metadata for the specified range of digital
objects. KEEP Public Deliverable D3.2a (online).
T. Bahr, M. Lindlar, K. Rechert, and T. Liebetraut.
Functional Access to Electronic Media Collections
using Emulation-as-a-Service. In Proceedings of the
11th International Conference on Digital Preservation
(iPres1/), page 332. State Library of Victoria, 2014.
[3] A. Brown. Pronom 4 information model. 2005.
G. Brown. Developing virtual cd-rom collections: The
voyager company publications. International Journal
of Digital Curation, 7(2):3-22, 2012.
F. Corubolo, A. Eggers, A. Hasan, M. Hedges,
S. Waddington, and J. Ludwig. A pragmatic approach
to significant environment information collection to
support object reuse. IPRES 201/ proceedings, 2014.
[6] A. Dappert, S. Peyrard, C. C. Chou, and J. Delve.

2]

(10]

(11]

(12]

(13]

(14]

(15]

Describing and preserving digital object environments.
New Review of Information Networking,
18(2):106-173, 2013.

A. Dappert, S. Peyrard, J. Delve, and C. C. Chou.
Describing digital object environments in premis. In
9th International Conference on Preservation of
Digital Objects (iPRES2012), pages 69—76. University
of Toronto, 2012.

J. Delve and D. Anderson. The Trustworthy Online
Technical Environment Metadata Database — TOTEM.
Number 4 in Kolner Beitrige zu einer
geisteswissenschaftlichen Fachinformatik. Verlag Dr.
Kova¢, Hamburg, 2012.

D. Espenschied, K. Rechert, I. Valizada, D. von
Suchodoletz, and N. Russler. Large-Scale Curation
and Presentation of CD-ROM Art. In iPres 2013 10th
International Conference on Preservation of Digital
Objects. Biblioteca Nacional de Portugal, 2013.

T. Liebetraut, K. Rechert, I. Valizada, K. Meier, and
D. von Suchodoloetz. Emulation-as-a-Service — The
Past in the Cloud. In 7th IEEE International
Conference on Cloud Computing (IEEE CLOUD),
pages 906 — 913, 2014.

D. Pinchbeck, D. Anderson, J. Delve, G. Alemu,

A. Ciuffreda, and A. Lange. Emulation as a strategy
for the preservation of games: the keep project. In
DiGRA 2009 — Breaking New Ground: Innovation in
Games, Play, Practice and Theory, 2009.

PREMIS Editorial Committee. PREMIS data
dictionary for preservation metadata, version 2.0.
2008.

K. Rechert, D. von Suchodoloetz, T. Liebetraut, D. de
Fries, and T. Steinke. Design and Development of an
emulation-driven Access System for Reading Rooms.
In Archiving 201/, pages 123-132. IS&T, 2014.

J. van der Hoeven and D. von Suchodoletz.
Emulation: From digital artefact to remotely rendered
environments. International Journal of Digital
Curation, 4(3), 2009.

K. Woods and G. Brown. Assisted emulation for
legacy executables. International Journal of Digital
Curation, 5(1), 2010.

	Introduction
	Problem Definition
	Technical Metadata
	Software Environment
	Hardware Environment

	Design & Implementation of a CD-ROM Characterization Tool
	Building an Image Archive
	Managing Software
	On-the-fly Object Characterization

	Results
	Conclusion & Outlook
	References

