
Software Reuse, Repurposing and Reproducibility
Catherine Jones

STFC
Harwell Oxford

Didcot
44 (0)1235 445402

Catherine.jones@stfc.ac.uk

Brian Matthews
STFC

Harwell Oxford
Didcot

44 (0)1235 446648

Brian.matthews@stfc.ac.uk

Ian Gent
St Andrews University

North Haugh
St Andrews

+44 (0)1334 46 3247

Ian.gent@st-andrews.ac.uk

ABSTRACT

Software underpins the academic research process, regardless of

discipline. With the increased focus on the long term value of data

and other research outputs, then more attention needs to be paid to

how software used in these processes is both identified and

preserved for the long term as much data is meaningless without

the related software. In this poster we describe the aims,

objectives and current results of the Jisc funded project Software

Reuse, Repurposing and Reproducibility (Software RRR). This

poster discusses the issues around persistently identifying

software, makes some recommendations for good practice, and

discusses the relationship between identifying source code and a

playable version of this software.

General Terms

Preservation strategies and workflows

Keywords

Software preservation

1. INTRODUCTION
Software underpins the academic research process, regardless of

discipline. Software is written to be run, and while programmers

might strive for elegance or beauty in the code, the overwhelming

point of software is to execute it. To be able to understand and

use/reuse and preserve data then the software code which

generated, analysed or presented the data will need to be retained

and executed. A starting point is the persistent identification of

software to maintain the integrity of software as an item over

time. This is an emerging area and services such as Zenodo

(https://zenodo.org/) are enabling developers to persistently

identify code.

Software is a composite artefact and may have different

components bundled together. This can be seen by the following

definition:

“Computer software includes computer programs, libraries

and their associated documentation. The word software is also

sometimes used in a more narrow sense, meaning application

software only.”(https://en.wikipedia.org/wiki/Software Retrieved

12/6/2015)

Consequently, software cannot be treated in a similar manner to

other digital artefacts (for example documents, media content or

data) and needs separate consideration for preservation. Further,

if the software is to remain reproducible and reusable, additional

consideration needs to be taken to maintain its correct execution

behaviour.

1.1 Aims of the software RRR project
The Software RRR project is investigating the persistent

identification of software and how links can be made to runnable

versions of software enabling preservation of functionality. The

project builds on the Recomputation project

(http://recomputation.org) [1] and earlier work on a framework

for software preservation [2],[3].

Figure 1 Landing Page

The figure above represents the vision of the project which is

encapsulated in a landing page for a persistently identified

software object with effective metadata, links to the downloads,

including source code and a runnable version, together with hooks

to other entities in the wider context such as Orcid, data and

publications. Thus a user can: uniquely identify software released

in a particular context (via software citation); access landing

pages which give additional metadata to describe the software;

access a runnable version of the software replicating its original

behavior; and download packages with sufficient information to

allow its reconstruction locally.

To realise this vision, we need to provide consistent guidelines for

software identification together with local metadata and a

virtualized platform for replay and recomputation. In the rest of

this short paper, we concentrate on issues of persistently

identifying software.

2. ISSUES IN PERSISTENT

IDENTIFICATION

2.1 What is being identified?
A key issue is what exactly is being identified, as described in the

previous section software is a complex object and may include

one or more of: source code, executable version, packaged

version, additional items such as included libraries and

documentation. Further, software typically is an evolving

artefact, with different expressions being made available through

a software release cycle, reflecting the changes in functionality

and computing environment which software undergoes over time.

iPres 2015 conference proceedings will be made available under

a Creative Commons license.

With the exception of any logos, emblems, trademarks or other

nominated third-party images/text, this work is available for re-

use under a Creative Commons Attribution 3.0 unported license.

Authorship of this work must be attributed. View a copy of this

licence.

https://en.wikipedia.org/wiki/Software%20Retrieved%2012/6/2015
https://en.wikipedia.org/wiki/Software%20Retrieved%2012/6/2015
https://en.wikipedia.org/wiki/Software%20Retrieved%2012/6/2015
http://recomputation.org/
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

We use a four level model of software to describe the different

expressions a software system has over its release cycle. This

model enables better understanding of what might need to be

persistently identified.

Figure 2 Levels of Software

• Product: The whole top-level conceptual entity

encompassing the whole lifecycle of the software, and is how

the system may be commonly or informally referred to

• Version: is an expression of the product which provides a

single coherent presentation of the product with a well-

defined functionality and behaviour and usually in how it

interacts with the computing environment.

• Variant is a version adapted to a specific operating

environment

• Instance is an actual deployment of a software product

which is to be found on a particular environment or machine.

A particular software citation will typically refer to a particular

expression of the software which is used in a particular context,

thus the same expression should be used to validate the results.

2.2 Environment
The environment that the software was built and operates in is a

vital part of ensuring software is not just preserved but remains

runnable. Metadata supplied with the software expression should

describe its target environment. This is a complex area and has not

been addressed in this phase of the project.

2.3 Metadata
Metadata plays an important role in the discovery, access,

management & preservation of software, and thus we need to

consider the appropriate metadata to provide. We address the use

of DataCite discovery metadata to describe software in the next

section.

3. DATACITE METADATA
DataCite (www.datacite.org) issues Digital Object Identifiers for

data and other research artefacts. While it is not the only

persistent identification system available, its wide adoption means

it is an important source for identification of software, and

consequently we concentrate on how to adapt Datacite DOIs for

the citation of software expressions.

Datacite provides set of metadata elements to characterise digital

objects for search and discovery [4]. The DataCite elements have

been analysed to propose an appropriate profile for describing

software. The approach taken is not to prescribe the content of any

specific element but to describe the importance and enable the

potential user to establish the correct answer for theirown

situation. This poster will discuss how some key elements are

used in the context of identifying software.

3.1 Creator
This element identifies the people responsible for the software.

However this may not be straightforward to ascertain as software

has a long life-span and may be worked on by many people. The

point during the development cycle that the first DOI is given may

also affect those identified as creators.

3.2 Title
The title of the resource is a mandatory field and can contain

significant information. In a software context, there are some

specific issues. If it a piece of software written by a single person

for a specific project does it actually have a name? Is the official

name different from the common name? What effect is versioning

or branching of code going to have on the name? Will the name

used be unique enough for it to be found and distinguished from

other search results?

3.3 ResourceType
There is a resource type of Software, but this is a rather wide

category and at present there aren’t many formal suggestions for

how this might be broken down further. This is an area with

potential for further work.

3.4 Description
This field is designed to enable the addition of further information

to assist in the understanding of the object being identified.

Currently the two subtypes being used for software are Abstract

and Other. These do not encourage the use of this field for

technical information that may be needed to understand the object

and a new subtype with a more descriptive label may be of

assistance

4. FURTHER WORK
The first phase of this project has been concerned with persistent

identification. The next phase is concerned with how software

may be captured in such a way to ensure it remains runnable, thus

preserving the performance. Being able to link the different

software artefacts together in a fixed complex object will enable

the long term preservation of software

ACKNOWLEDGMENTS
This work has been funded by Jisc in the Research@Risk scheme.

We are grateful to our colleagues Tom Griffin, Simon Dobson and

John McDermott for their comments and advice.

REFERENCES
[1] Arabas, S. et. al. 2014, Case Studies and Challenges in

Reproducibility in the Computational Sciences. 1st Summer

School on Experimental Methodology in Computational

Science Research, St Andrews, August 4-8, 2014.

arXiv:1408.2123

[2] Matthews, B., Shaon, A., Bicarregui, J., Jones, C.,

Woodcock, J., and Conway, E. 2009. Towards a

Methodology for Software Preservation. In 6th International

Conference on Preservation of Digital Objects (iPres 2009),

San Francisco, USA, 5-6 Oct 2009.

[3] Matthews, B., Shaon, A., Bicarregui, J., and Jones, C. 2010.

A Framework for Software Preservation. International

Journal of Digital Curation 5, no. 1.

[4] Datacite Metadata Working Group, 2015. DataCite

Metadata Schema for the Publication and Citation of

Research Data. Version 3.1, June 2015, doi:10.5438/001

http://www.datacite.org/

