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Virtual geometricity is rare

Christopher H. Cashen and Jason F. Manning

Abstract

We present the results of computer experiments suggesting that the probability that a random
multiword in a free group is virtually geometric decays to zero exponentially quickly in the
length of the multiword. We also prove this fact.

1. Introduction

Let F be a finite rank non-abelian free group. Fix, once and for all, a basis x = {x1, . . . , xr}. A
word in F is an element of F expressed as a freely reduced word in the letters x±. A multiword
w = {w1, . . . , wk} is a finite subset of F. The set w determines a collection of conjugacy classes
[w] = {[w1], . . . , [wk]} in F, possibly with multiplicity.

Definition 1.1. Fix an identification of F with the fundamental group of an orientable
3-dimensional handlebody H. The set of conjugacy classes [w] determines a free homotopy
class of map

⊔
w∈w S

1 → H. The multiword w is (orientably) geometric if the homotopy class

determined by [w] contains an embedding into ∂H.
Similarly, a multiword w is non-orientably geometric if there is such an embedding where

we allow H to be a non-orientable handlebody.

Remark. Geometricity does not depend on the choice of identification F = π1(H), since
the handlebody group, that is, the group of (orientation preserving) homeomorphisms of H
modulo isotopy, surjects onto the outer automorphism group of π1(H).

Definition 1.2. If [w] is a conjugacy class in F and F < F is a finite index subgroup, we
can ‘lift’ [w] to F as follows. Let [w]F be the set of F -conjugacy classes of the form g−1wαg,
where g ∈ F and α = α(w, g) > 1 is minimal subject to the requirement that g−1wαg ∈ F .
The lift [w]F of [w] to F is then defined to be

⊔
w∈w[w]F .

(From a topological point of view, let H̃ → H be the cover corresponding to F < F. A
conjugacy class [w] corresponds to the free homotopy class of some map φ : S1 → H, and [w]F
corresponds to the collection of free homotopy classes of elevations of φ to H̃.)

Definition 1.3. A multiword w is virtually geometric if there exists a finite index subgroup
F of F such that [w]F is geometric.
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The Baumslag–Solitar words bapbaq in F2 = 〈a, b〉 with p 6= 0 6= q and |p| 6= |q| are examples
of words that are virtually geometric but not geometric [7, § 6].

If w is orientably geometric then 〈x | w〉 is the fundamental group of a compact 3-manifold.
This can be seen by taking the handlebody H with π1(H) = F and attaching a 2-handle along
each component of a regular neighborhood of the embedded multicurve representing [w].

If w is virtually geometric then there exists a positive number n such that 〈x | wn for w ∈ w〉
is virtually a 3-manifold group (see [15, Remark 1.5]).

Gordon and Wilton [7] studied virtual geometricity as an approach to a special case of
Gromov’s surface subgroup conjecture. They show that if w is virtually geometric, then the
double of F along w, constructed by taking two copies of F and identifying the two copies of
each w ∈ w via cyclic amalgamation, is virtually a 3-manifold group, and contains a surface
subgroup when it is 1-ended. In an early version of [7] ([6, Question 22]), they ask whether
any non-virtually geometric word exists. One reason to suspect words to be always virtually
geometric is the effectiveness in low-dimensional topology of arguments ‘desingularizing’
immersed submanifolds in finite-sheeted covers. Two important examples of such arguments
are Papakyriakopoulos’ ‘Tower argument’ for the loop and sphere theorems [17] and Scott’s
argument for subgroup separability in surface groups [19]. However, there do exist non-virtually
geometric words; the second author gave a (non-generic) criterion in [15] and exhibited some
words which satisfy it.

One might still wonder how common virtual geometricity is. We wrote a computer program
that determines if a given multiword is virtually geometric or not, and set it to work testing
random multiwords in low rank free groups. Our experiments, presented in § 7, suggest that the
probability that a random multiword is virtually geometric decays to zero exponentially quickly
in the length of the multiword. We also make explicit estimates for the rate of exponential
decay. Surprisingly, our experiments suggest that the ratio of the number of virtually geometric
words to the number of geometric words of a given length is bounded above.

Question. Does the ratio of virtually geometric words to geometric words stay bounded as
the length goes to infinity? Does it tend to 1?

In §§ 3–6 of the paper we apply the technology developed in [3, 4] to establish the result
suggested by the experiments. In the terminology of § 2, we show the following theorem.

Theorem. Virtual geometricity is exponentially rare.

More precisely, recall that F is a free group of fixed finite rank r > 1. In Theorem 6.3 we
show that the proportion of words of length l in F which are virtually geometric decays to zero
exponentially quickly in l. The same is true if we restrict our attention to the subset C ⊆ F
consisting of cyclically reduced words.

For multiwords there are different models of genericity. However, a multiword that contains
a non-virtually geometric word is itself non-virtually geometric, so virtual geometricity will
also be exponentially rare for any model in which a random multiword contains a long random
word. In particular, virtual geometricity is exponentially rare for multiwords in both the ‘few
relators model’ of genericity (Corollary 6.4) and the ‘density model’ (Corollary 6.5).

The rough idea of the proof is to find a ‘poison’ word v ∈ F which obstructs the virtual
geometricity of any cyclically reduced w ∈ F containing v as a subword.

The first author [3] characterized virtually geometric multiwords as those that are
constructed as amalgams of geometric pieces. In particular, if F does not admit cyclic splittings
relative to w, that is, splittings in which the elements of w are elliptic, then virtual geometricity
reduces to geometricity. The poison word v is a concatenation of words v1 and v2 so that v1
obstructs the existence of a relative splitting, and v2 obstructs non-orientable geometricity.
The characterization from [3] implies that v = v1v2 obstructs virtual geometricity.
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Finally we appeal to the well-known fact (Proposition 2.3) that cyclically reduced words
exponentially generically contain every short word — in particular they contain v.

In fact there is the slight complication that our word v is only poisonous to Whitehead
minimal words, but these are exponentially generic by a result of Kapovich–Schupp–Shpilrain
[12].

2. Generic sets

Our definitions in this section follow Kapovich, Schupp, and Shpilrain [12]. A sequence (cn) ⊂
R with limn→∞ cn = c ∈ R converges exponentially fast if there exist a > 0 and b ∈ R such
that |c− cn| 6 exp(b− an) for all sufficiently large n.

Let |w| denote the length of w in the word metric on F corresponding to x.

Definition 2.1. Let A ⊂ B ⊂ F. The set A is generic in B if

lim
n→∞

#{w ∈ A | |w| 6 n}
#{w ∈ B | |w| 6 n}

= 1.

A is exponentially generic in B if the convergence is exponentially fast.
A subset is rare, or negligible, if the complement is generic. It is exponentially rare, or

exponentially negligible, if the complement is exponentially generic.

It is an easy computation to see that the intersection of finitely many (exponentially) generic
sets is (exponentially) generic.

A property P is said to be (exponentially) generic/rare in B if the set of words having P is
(exponentially) generic/rare.

Let C be the set of cyclically reduced words in F with respect to the basis x.

Theorem 2.2 [12, Theorem B(1)]. The set of cyclically reduced words that are not proper
powers and are Whitehead minimal is exponentially generic in C. The set of words that are
not proper powers and whose cyclic reduction is Whitehead minimal is exponentially generic
in F.

Proposition 2.3. Let w be a word in F. The subset of words that contain w as a subword is
exponentially generic in F. The subset of cyclically reduced words that contain w as a subword
is exponentially generic in C.

Proof. This fact is well known. For F, see [8, § 2] or [13, Corollary 4.4.9]. For C, see [14,
Lemma 2.5]. Note that the statement of the latter result includes the assumption that |w| > 4,
but in fact the estimate and proof given there are valid for any subword w once the random
word length is greater than 16.

It is also true that for a fixed word w ∈ F the set of words that contain w as a subword of
their cyclic reduction is exponentially generic. This can be deduced from [12, Proposition 6.2],
which is stated without proof. For completeness, we give a proof in Proposition 2.8. The proof
uses a few auxiliary lemmas.

Lemma 2.4. Let A ⊂ F. Let Sn be the set of words in F of length exactly n, and suppose
there exist a > 0, b ∈ R so that

#A ∩ Sn
#Sn

6 exp(b− an)

for all sufficiently large n. Then A is exponentially rare in F.
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Proof. In fact one can show that for any 0 < a′ < min{a, ln(2r − 1)}, there is a b′ so that
(#A ∩Bn)/#Bn 6 exp(b′ − a′n). This straightforward computation is left to the reader.

Let dxe denote the least integer greater than or equal to x.

Definition 2.5. Define the middle third of a word w ∈ F of length l > 5 to be the subword
of w obtained by discarding the first and last dl/3e letters.

Lemma 2.6. Let w be a word in F. The set of words containing w as a subword of their
middle third is exponentially generic in F.

Proof. The ratio of the number of words of length l not containing w as a subword of their
middle third to the number of words of length l is equal to the ratio of the number of words of
length m = l− 2dl/3e not containing w as a subword to the number of words of length m. By
Proposition 2.3, this ratio decays exponentially in m, but m is linear in l, so the ratio decays
exponentially in l. Conclude by applying Lemma 2.4.

Lemma 2.7. The set of words w ∈ F such that the middle third of w is a subword of the
cyclic reduction of w is exponentially generic in F.

Proof. Let r be the rank of F. Let n(l) be the number of words of length l for which cyclic
reduction reduces length by at least 2dl/3e. Every such word is of the form wvw−1, where w
is of length dl/3e, v is of length m = l − 2dl/3e, and the last letter of w is not the inverse of
the first letter of v. Thus, n(l) 6 2r(2r− 1)(m−1) · (2r− 1)dl/3e. In fact, the inequality is strict
because for some choices there will be a free reduction in vw−1, resulting in a word of length
less than l. We have

n(l)

2r(2r − 1)(l−1)
<

2r(2r − 1)(m−1) · (2r − 1)dl/3e

2r(2r − 1)(l−1)
6

1

( 3
√

2r − 1)l
.

Now, Lemma 2.4 implies that the set of words w for which the middle third of w survives
cyclic reduction of w is exponentially generic in F.

Proposition 2.8. Let w be a word in F. The set of words that contain w as a subword of
their cyclic reduction is exponentially generic in F.

Proof. The set of words containing w as a subword of their cyclic reduction contains the
intersection of the set of words containing w as a subword of their middle third with the set
of words whose middle third survives cyclic reduction. By Lemma 2.6 and Lemma 2.7, both
of these sets are exponentially generic in F, so their intersection is as well.

Definition 2.9. Let B ⊂ F. A word w ∈ F is poison to property P in B if no word of B
containing w as a subword of its cyclic reduction enjoys P.

A word w is (exponentially) generically poison to P in B if there exists a (exponentially)
generic subset A ⊂ B such that w is poison to P in A.

The following corollary is a consequence of Propositions 2.3 and 2.8.

Corollary 2.10. If there exists a word that is (exponentially) generically poison to P in
F or C then P is (exponentially) rare in F or C, respectively.
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3. Whitehead graphs

Definition 3.1. A multiword w = {w1, . . . , wk} such that each wi is not a proper power,
and such that wi is not conjugate to wj or wj for all i 6= j, is called unramified.

A multiword is called cyclically reduced if all of its elements are cyclically reduced with
respect to the fixed basis x of F.

Let T be the Cayley graph of F with respect to x, which is a 2|x|-valent tree. Let T = T ∪ ∂T
denote the compactification of T by its Gromov boundary ∂T .

Definition 3.2. If w is a cyclically reduced multiword, define Lw to be the collection of

distinct bi-infinite geodesics [fw∞, fw∞] ⊂ T where w ∈ w and f ∈ F.

Definition 3.3. Let w be a cyclically reduced multiword. Let X be a connected subset of T .
Let X be its closure in T . The Whitehead graph of w over X , denoted W(X ), is a graph whose
vertices are in bijection with connected components of T \X . Distinct vertices are joined by an
edge for each L ∈ Lw with endpoints in the corresponding complementary components of X .

Remark. The Whitehead graph depends on w via Lw. We suppress w from the notation,
as it will always be clear from context.

The following easy lemma clarifies the definition.

Lemma 3.4. Let C1 and C2 be components of T \X . Then C1 and C2 are connected by an
edge in W(X ) if and only if the label of the shortest path joining them is a subword of w∞ or
w−∞ for some w ∈ w.

Remark. If w is unramified and cyclically reduced, and if X = ∗ is a single vertex, then
the vertices of W(∗) are in bijection with x±, and there is one edge from vertex x to vertex y
for every occurrence of the subword xy in w, with words of w treated as cyclic words. This is
the classical definition of the Whitehead graph.

Let |w| denote the word length of w with respect to the basis x of F. Let |[w]| denote the
minimal word length of an element of the conjugacy class of w.

Definition 3.5. An unramified, cyclically reduced multiword w = {w1, . . . , wk} is
Whitehead minimal if for every automorphism α ∈ Aut(F) we have

k∑
i=1

|wi| 6
k∑
i=1

|[α(wi)]|.

4. Relative splittings

Definition 4.1. A splitting of F relative to w is a splitting of F as a graph of groups such
that each w ∈ w is elliptic.

The following lemma is essentially due to Whitehead [23]. See also [16, 21, 22].

Lemma 4.2. If W(∗) is connected and has no cut vertices then F does not split freely relative
to w.

The next lemma is a consequence of [4, Lemma 4.9].
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Lemma 4.3. If F splits over 〈v〉 relative to w then W([v∞, v∞]) has more than one connected
component.

5. Filling words and full words

Kapovich and Lustig [11] define a non-trivial element w ∈ F to be filling if it has non-zero
translation length for every very small isometric action of F on an R-tree. (An action of F on
an R-tree is very small if tripod stabilizers are trivial and arc stabilizers are maximal cyclic.)
Work of Guirardel [10] shows that w is filling if and only if F does not split freely or cyclically
relative to w. Kapovich and Lustig ask for a combinatorial criterion that implies a word is
filling. The first such criterion was given by Solie [20]. We will give another. Solie uses an
exponentially generic set constructed by Kapovich, Schupp, and Shpilrain [12]. Essentially,
the set consists of words that are balanced, in the sense that every element of x± occurs
roughly the same number of times in w and every reduced two letter word in x± occurs as a
subword of w roughly the same number of times (see [12, Proof of Theorem A]). Solie shows
these words are filling. Our condition essentially says that a word is filling if it is sufficiently
complicated, in the sense that every reduced three letter word in x± occurs as a subword of
w. Both Solie’s condition and ours are satisfied on exponentially generic sets in F; ours is
somewhat simpler to check.

If w and v are words in x±, we say w cyclically contains v if the free reduction of v appears
as a subword of the cyclic reduction of a power of w. We say a multiword w cyclically contains
v if one of the words of w cyclically contains v.

Definition 5.1. A multiword w is full if for every reduced word v in (x±)3 either v or v is
cyclically contained in w.

Lemma 5.2. The set of full words is exponentially generic in F. The set of full, cyclically
reduced words is exponentially generic in C.

Proof. Let B be either F or C. Fix a reduced word w containing every reduced word of (x±)3

as a subword. The set A of words in B whose cyclic reduction contains w is exponentially
generic in B, by Proposition 2.3 if B = C or Proposition 2.8 if B = F.

The rest of this subsection is devoted to establishing that F cannot split freely or cyclically
relative to a full word.

Lemma 5.3. The group F does not split freely relative to a full word.

Proof. Let w be a full word. Its Whitehead graph contains the complete graph, so it is
connected without cut vertices. By Lemma 4.2, F does not split freely relative to w.

Proposition 5.4. If γ ⊂ T is a line and w is full, then W(γ) is connected.

Proof. For K ⊂ γ compact, let C± be the components of T \K containing the rest of γ.
Let VK be the vertex set of W(K). Define W (K) to be the full subgraph of W(K) on vertices
VK\{C±}.

Notice that for K ⊆ K ′ we have W (K) ⊆ W (K ′), and moreover W(γ) = lim−→W (K). The
following claim thus suffices to establish the proposition.

Claim. W (K) is connected, for any nonempty compact subsegment K ⊂ γ.
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Proof of Claim. We may suppose that γ is parametrized to have unit speed, so that γ sends
integers to vertices of T . For z ∈ Z, let sz ∈ x± be the label of the edge γ|[z,z+1].

The segment K is equal to γ|[p,q] for some integers p, q. Each vertex C of W (K) is a
component of T \K, and there is a unique edge eC of T starting on K and ending in C.
We define nC ∈ Z, sC ∈ x± so that the initial point of eC is γ(nC), and the label of eC is sC .
The pair (nC , sC) completely determines C, so we can also refer to the vertices of W (K) by
these pairs. Namely, (n, s) ∈ Z× x± is a vertex of W (K) if and only if

p 6 n 6 q and s /∈ {sn−1, sn}.

Two vertices (n, s) and (n, t) of W (K) are connected by an edge if and only if one of st or ts
is a subword of w∞. Since w is full, (n, s) and (n, t) are indeed connected by an edge. Two
vertices (n, s) and (n+ 1, t) are connected if and only if ssnt or its inverse occurs in some w∞.
Again, since w is full, all of these edges occur. It follows that W (K) is connected. ♦

Corollary 5.5. The group F does not split freely or cyclically relative to a full word.

Proof. Let w be a full word. Lemma 5.3 tells us there is no free splitting.
Suppose that F splits over 〈v〉 relative to w. Then by Lemma 4.3 the Whitehead graph

W([v̄∞, v∞]) has more than one connected component. But this contradicts Proposition 5.4.

In particular, fullness gives an easily verifiable, combinatorial condition implying that a word
is filling, giving another answer to Kapovich and Lustig’s question.

Corollary 5.6. A full word in F is filling.

6. Virtual geometricity is rare

Definition 6.1. For xi ∈ x and w ∈ F, an xi-syllable is a maximal subword of w equal to
a power of xi or xi. A subword is a syllable if it is an xi-syllable for some i.

Lemma 6.2 [2, Lemma p. 18]. Let w be unramified, cyclically reduced, Whitehead minimal
and either geometric or non-orientably geometric. Suppose that x1 and x1 do not form a
separating pair of vertices in W(∗), and suppose that no w ∈ w begins and ends with distinct
x1-syllables. Up to absolute value, at most three different powers of x1 appear as syllables of
elements of w.

Proof. Using a theorem of Zieschang [2, Theorem p. 11] one can show that if there were four
we would be able to find four non-intersecting parallelism classes of properly embedded arcs
in a punctured torus or punctured Klein bottle. An Euler characteristic argument shows that
there are at most three such classes.

Remark. Berge’s [2] results are stated for orientable handlebodies, but the proofs of
[2, Lemma p. 18] and Zieschang’s theorem [2, Theorem p. 11] do not require orientability.

Theorem 6.3. Let B be either F or C. Let VG(l) be the probability that a word chosen
randomly with uniform probability from the set of words of B of length at most l is virtually
geometric. There exist a > 0 and b ∈ R such that VG(l) 6 exp(b − al) for all sufficiently
large l.
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Proof. Let v′ be a reduced word with first letter x1 and last letter x2 that contains every
word in (x±)3. Let v = x11x2x

2
1x2x

3
1x2x

4
1x2v

′.
Let C be the subset of B consisting of words that are not proper powers and whose cyclic

reduction is Whitehead minimal; C is exponentially generic in B by Theorem 2.2.
Let w′ be a word in C whose cyclic reduction w contains v as a subword. Then w is full, so,

by Corollary 5.5, F does not admit free or cyclic splittings relative to w. In particular, the JSJ
decomposition of F relative to w is trivial, so [3] implies w is virtually geometric if and only
if it is either orientably or non-orientably geometric. However, W(∗) contains the complete
subgraph on its vertices, so it has no separating pairs of vertices. By Lemma 6.2, w cannot
be geometric or non-orientably geometric, since at least four distinct powers of x1 appear as
syllables of w. Therefore, w and w′ are not virtually geometric.

We have shown that v is exponentially generically poison to virtual geometricity in B, so
the theorem follows from Corollary 2.10.

Theorem 6.3 is stated for single words. For multiwords, there are different models of
genericity, but the presence of a single non-virtually geometric word in a multiword implies
that the multiword is non-virtually geometric. Thus, virtual geometricity will be rare for any
model in which a random multiword contains a long random word. We state corollaries for
two popular models.

Corollary 6.4 (‘Few Relators Model’ of [1]). Let B be either F or C. For any k > 1,
let VG(l) be the probability that a multiword consisting of k randomly chosen words in B
of length at most l, selected independently and uniformly, is virtually geometric. There exist
a > 0 and b ∈ R such that VG(l) 6 exp(b− al) for all sufficiently large l.

Corollary 6.5 (‘Density Model’ of [9]). Let B be either F or C. For any density 0 6 d 6 1,
let VG(l) be the probability that a multiword consisting of (2 · rank(F)−1)dl randomly chosen
words in B of length at most l, selected independently and uniformly, is virtually geometric.
There exist a > 0 and b ∈ R such that VG(l) 6 exp(b− al) for all sufficiently large l.

Finally, we extract from the proof of Theorem 6.3 a non-virtual geometricity criterion.

Corollary 6.6. Let w be an unramified, Whitehead minimal, cyclically reduced multiword.
If w is full and at least four distinct powers (up to absolute value) of some basis element occur
as syllables of elements of w, then w is not virtually geometric.

7. Experimental estimates

We wrote some computer scripts [5] to determine if a given multiword is virtually geometric
or not. The underlying theory was developed in [3, 4, 15]. We used these computer scripts
to run computer experiments testing random words for virtual geometricity. The results are
presented in this section. Let us first give a brief account of how the scripts work.

Given a multiword w and a word v, there is a way to determine if F splits over 〈v〉 relative
to w by considering connectivity of certain finite generalized Whitehead graphs. (We improve
Lemma 4.3 to only consider a bounded subsegment of [v−∞, v∞].)

More specifically, we implement the algorithm of [4, Theorem 4.17] to search for splitting
words. There are two ideas behind this search algorithm. First, there is a bound, depending
on w, of the maximal length of a cyclically reduced word v such that the splitting of F over 〈v〉
relative to w is universal, that is, such that every other splitting word is elliptic with respect
to this splitting.
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Figure 1. Geometricity, virtual geometricity, and full words.

Second, for a cyclically reduced splitting word, the generalized Whitehead graph over every
prefix p has a cut pair of a particular type, and this cut pair gives directions for finding the
next letter of the splitting word. Thus, we can search inductively starting with short words v
and checking their generalized Whitehead graphs for these special cut pairs. If we find one,
take the extensions px for x ∈ x± suggested by the cut pairs.

The worst case estimates for the length of such a search are horrendous, but on generic
multiwords it can be done effectively in low rank, because we quickly see that most short
words can not be a prefix of a splitting word.

If F splits over 〈v〉, we deduce whether a second word v′ is hyperbolic or elliptic in the
splitting over 〈v〉 by adding edges corresponding to v′ to the Whitehead graph over v and
checking if the number of connected components stays the same or decreases. We do this for
all pairs of words found by the search algorithm to find the universal splitting words.

Given the list of conjugacy classes of universal splitting words, we compute the JSJ
decomposition of F relative to w, again using combinatorics of generalized Whitehead graphs.
The main result of [3] says that w is virtually geometric if and only if the induced multiword
in each vertex of the relative JSJ decomposition is orientably or non-orientably geometric. The
induced multiword in a vertex group consists of conjugates of elements of w contained in that
vertex group plus the image of a generator of each incident edge group.

The induced multiwords for quadratically hanging vertices of the relative JSJ decomposition
are always geometric, so virtual geometricity of w is reduced to checking geometricity of the
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Figure 2. Geometricity and virtual geometricity.

induced multiword in each rigid vertex of the relative JSJ decomposition. For this we use
Berge’s program heegaard [2]. Berge shows that geometricity is equivalent to the existence of
a planar embedding of the Whitehead graph of the multiword that satisfies an additional
consistency requirement. The fact that we start with rigid vertices implies that such a
Whitehead graph is 3-connected, so there is a unique planar embedding, if one exists. The
heegaard program checks whether there exists a planar embedding, and, if so, finds it and
checks the consistency conditions.

There is a slight complication that heegaard only checks the consistency conditions for
orientable geometricity. To work around this issue, if heegaard says an induced multiword in
a rigid vertex group is not geometric, we also check the lifts to all index 2 subgroups.

In the figures below we present findings of our computer experiments on the proportions of
random words which are geometric, virtually geometric, and not full in ranks 2, 3, and 4.
(IPython [18] was used in the development of the computer scripts and in running the
experiments. Scripts for testing virtual geometricity and reproducing our experiments can
be found at https://bitbucket.org/christopher cashen/virtuallygeometric.) Experiments on
geometricity and virtual geometricity were performed before we found the proof of Theorem 6.3;
the experiments on fullness were inspired by the proof.

We see in Figure 1 that while the proportion of not full words provides an exponentially
decaying upper bound for the proportion of virtually geometric words, it is not very sharp.

https://bitbucket.org/christopher_cashen/virtuallygeometric


454 c. h. cashen and j. f. manning

Fit curves are computed for each data series by taking the subseries that comes after the first
word length for which the proportion of words falls below 50%, taking logarithms, computing
a best fit line by weighted least squares approximation, and then exponentiating.

Figure 2 plots logarithm (proportion ± standard error) and omits the full words data. The
number of trials increases with the word length so that the quantity

log

(
proportion + standard error

proportion− standard error

)
stays small. Generating graphs with this amount of precision took about two months of
continuous running time on a circa 2010 dual core desktop computer.

Acknowledgements. Thanks to Nathan Dunfield for pointing out Lemma 6.2, to John
Mackay for explaining the note in Proposition 2.3, and to the referee for helpful comments and
the reference to Solie’s paper [20].
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18. F. Pérez and B. E. Granger, ‘IPython: a system for interactive scientific computing’, Comput. Sci. Eng.
9 (2007) no. 3, 21–29, doi:10.1109/MCSE.2007.53.

19. P. Scott, ‘Subgroups of surface groups are almost geometric’, J. Lond. Math. Soc. (2) 17 (1978) no. 3,
555–565, MR 0494062 (58 #12996).

20. B. B. Solie, ‘Genericity of filling elements’, Int. J. Algebra Comput. 22 (2012) no. 2, doi:10.1142/S02181
96711006741; MR 2903743.

http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://dx.doi.org/10.1007/BF02308683
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.ams.org/mathscinet-getitem?mr=1445193
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.math.uic.edu/~t3m
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://www.arxiv.org/abs/1009.2492v4
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://dx.doi.org/10.2140/gt.2011.15.1419
http://www.ams.org/mathscinet-getitem?mr=2825316
http://www.ams.org/mathscinet-getitem?mr=2825316
http://www.ams.org/mathscinet-getitem?mr=2825316
http://www.ams.org/mathscinet-getitem?mr=2825316
http://www.ams.org/mathscinet-getitem?mr=2825316
http://www.ams.org/mathscinet-getitem?mr=2825316
http://www.ams.org/mathscinet-getitem?mr=2825316
http://www.ams.org/mathscinet-getitem?mr=2825316
http://www.ams.org/mathscinet-getitem?mr=2825316
http://www.ams.org/mathscinet-getitem?mr=2825316
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
https://bitbucket.org/christopher_cashen/virtuallygeometric
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://www.arxiv.org/abs/0902.3693v1
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://dx.doi.org/10.1112/jlms/jdq007
http://www.ams.org/mathscinet-getitem?mr=2669638
http://www.ams.org/mathscinet-getitem?mr=2669638
http://www.ams.org/mathscinet-getitem?mr=2669638
http://www.ams.org/mathscinet-getitem?mr=2669638
http://www.ams.org/mathscinet-getitem?mr=2669638
http://www.ams.org/mathscinet-getitem?mr=2669638
http://www.ams.org/mathscinet-getitem?mr=2669638
http://www.ams.org/mathscinet-getitem?mr=2669638
http://www.ams.org/mathscinet-getitem?mr=2669638
http://www.ams.org/mathscinet-getitem?mr=2669638
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1436550
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://dx.doi.org/10.1007/s000140050047
http://www.ams.org/mathscinet-getitem?mr=1610591
http://www.ams.org/mathscinet-getitem?mr=1610591
http://www.ams.org/mathscinet-getitem?mr=1610591
http://www.ams.org/mathscinet-getitem?mr=1610591
http://www.ams.org/mathscinet-getitem?mr=1610591
http://www.ams.org/mathscinet-getitem?mr=1610591
http://www.ams.org/mathscinet-getitem?mr=1610591
http://www.ams.org/mathscinet-getitem?mr=1610591
http://www.ams.org/mathscinet-getitem?mr=1610591
http://www.ams.org/mathscinet-getitem?mr=1610591
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://dx.doi.org/10.1007/s00039-009-0041-3
http://www.ams.org/mathscinet-getitem?mr=2585579
http://www.ams.org/mathscinet-getitem?mr=2585579
http://www.ams.org/mathscinet-getitem?mr=2585579
http://www.ams.org/mathscinet-getitem?mr=2585579
http://www.ams.org/mathscinet-getitem?mr=2585579
http://www.ams.org/mathscinet-getitem?mr=2585579
http://www.ams.org/mathscinet-getitem?mr=2585579
http://www.ams.org/mathscinet-getitem?mr=2585579
http://www.ams.org/mathscinet-getitem?mr=2585579
http://www.ams.org/mathscinet-getitem?mr=2585579
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://dx.doi.org/10.2140/pjm.2006.223.113
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=2221020
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511626302
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://www.ams.org/mathscinet-getitem?mr=1369092
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://dx.doi.org/10.1007/s00039-012-0153-z
http://www.ams.org/mathscinet-getitem?mr=2899687
http://www.ams.org/mathscinet-getitem?mr=2899687
http://www.ams.org/mathscinet-getitem?mr=2899687
http://www.ams.org/mathscinet-getitem?mr=2899687
http://www.ams.org/mathscinet-getitem?mr=2899687
http://www.ams.org/mathscinet-getitem?mr=2899687
http://www.ams.org/mathscinet-getitem?mr=2899687
http://www.ams.org/mathscinet-getitem?mr=2899687
http://www.ams.org/mathscinet-getitem?mr=2899687
http://www.ams.org/mathscinet-getitem?mr=2899687
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a9
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=2727618
http://www.ams.org/mathscinet-getitem?mr=2727618
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://dx.doi.org/10.1112/jlms/s2-46.1.123
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=1180888
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.ams.org/mathscinet-getitem?mr=0090053
http://www.ams.org/mathscinet-getitem?mr=0090053
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=0494062
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://dx.doi.org/10.1142/S0218196711006741
http://www.ams.org/mathscinet-getitem?mr=2903743
http://www.ams.org/mathscinet-getitem?mr=2903743
http://www.ams.org/mathscinet-getitem?mr=2903743
http://www.ams.org/mathscinet-getitem?mr=2903743
http://www.ams.org/mathscinet-getitem?mr=2903743
http://www.ams.org/mathscinet-getitem?mr=2903743
http://www.ams.org/mathscinet-getitem?mr=2903743
http://www.ams.org/mathscinet-getitem?mr=2903743
http://www.ams.org/mathscinet-getitem?mr=2903743
http://www.ams.org/mathscinet-getitem?mr=2903743


virtual geometricity is rare 455

21. J. R. Stallings, ‘Whitehead graphs on handlebodies’, Geometric group theory down under (Canberra,
1996) (de Gruyter, Berlin, 1999) 317–330; MR 1714852 (2001i:57028).

22. R. Stong, ‘Diskbusting elements of the free group’, Math. Res. Lett. 4 (1997) no. 2, 201–210; MR 14530
54 (98h:20049).

23. J. H. C. Whitehead, ‘On equivalent sets of elements in a free group’, Ann. of Math. (2) 37 (1936) no. 4,
782–800, http://www.jstor.org/stable/1968618; MR 1503309.

Christopher H. Cashen
Fakultät für Mathematik
Universität Wien
Oskar-Morgenstern-Platz 1
1090 Vienna
Austria

christopher.cashen@univie.ac.at

Jason F. Manning
Department of Mathematics
310 Malott Hall
Cornell University
Ithaca, NY 14853
USA

jfmanning@math.cornell.edu

http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1714852
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.ams.org/mathscinet-getitem?mr=1453054
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.jstor.org/stable/1968618
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=1503309
http://www.ams.org/mathscinet-getitem?mr=1503309

	1 Introduction
	2 Generic sets
	3 Whitehead graphs
	4 Relative splittings
	5 Filling words and full words
	6 Virtual geometricity is rare
	7 Experimental estimates
	References

