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Results  MQ of lower extremities significantly increased 
in the RT group (+14 %) and RTS group (+12 %) after 
6  months. Performance improved in the RT and RTS 
groups for chair stand test (RT: +18  %; RTS: +15  %). 
Follistatin increased only in the RT group (+18  %) in 
the latter phase of the intervention, accompanied by a 
decrease in the activin A-to-follistatin ratio (−7 %). IGF-
1, myostatin and GDF-15 levels were not affected by the 
intervention.
Conclusion  Our data confirm that strength training 
improves physical performance and MQ even in very old 
institutionalized women. This amelioration appears to be 
mediated by blocking muscle degradation pathways via 
follistatin rather than inducing muscle growth through the 
IGF-1 pathway. As plasma levels of biomarkers reflect an 
overall status of various organ systems, future studies of 
tissue levels are suggested.

Keywords  Circulating myokines · Sarcopenia · Strength 
training · Ageing · Blood-based biomarkers · Essential 
amino acids
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BIA	� Bioelectric impedance analysis
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CT	� Cognitive training
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IGF-1	� Insulin-like growth factor-1
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Abstract 
Purpose  Regular resistance exercise training and a 
balanced diet may counteract the age-related muscular 
decline on a molecular level. The aim of this study was 
to investigate the influence of elastic band resistance 
training and nutritional supplementation on circulating 
muscle growth and degradation factors, physical per-
formance and muscle quality (MQ) of institutionalized 
elderly.
Methods  Within the Vienna Active Ageing Study, 91 
women aged 83.6 (65.0–92.2) years were randomly 
assigned to one of the three intervention groups (RT, 
resistance training; RTS, resistance training plus nutri-
tional supplementation; CT, cognitive training). Circu-
lating levels of myostatin, activin A, follistatin, IGF-1 
and GDF-15, as well as MQ and functional parameters 
were tested at baseline as well as after 3 and 6 months of 
intervention.
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Introduction

Muscle weakness induced by old age is associated with a 
higher risk for functional impairment and loss of independ-
ence (Rantanen et  al. 2002), falls (Scott et  al. 2014) and 
even mortality (Metter et  al. 2002; Rantanen et  al. 2003). 
Although skeletal muscle mass correlates with skeletal 
muscle strength (Chen et  al. 2013), strength and power 
decline more rapidly than muscle mass (Goodpaster et al. 
2006). Therefore, determination of both muscle mass and 
strength are necessary for the assessment of sarcopenia 
(Cruz-Jentoft et al. 2010). More recently, the term muscle 
quality (MQ) has been suggested in the clinical setting to 
describe muscle strength or power per unit of muscle mass 
(Barbat-Artigas et  al. 2012b). In this respect, MQ can be 
regarded as a marker of muscle efficiency. Kennis et  al. 
(2014) showed that although the quantity of muscle even 
increased in middle-aged men within a period of 9.5 years, 
their strength- and power-generating capacity strongly 
declined resulting in a loss of MQ of 1.5–2.4 % per year. 
Several studies reveal that strength training programmes 
improve MQ even in elderly (Fragala et al. 2014; Radaelli 
et al. 2014; Ring-Dimitriou et al. 2009), but general knowl-
edge about the association of MQ with biochemical mark-
ers of muscle growth and degradation is scarce.

Skeletal muscle is a highly malleable tissue, whereby 
muscle mass is determined by a fine-tuned network of mus-
cle growth and degradation pathways. While the activation 
of the phosphoinositide 3-kinase (PI3K)/Akt pathway by 
insulin-like growth factor-1 (IGF-1) induces muscle hyper-
trophy, its inhibition by myostatin, a member of the trans-
forming growth factor-β (TGF-β) family, generally leads to 
muscle atrophy and inhibits muscle differentiation (Glass 
2010). Also other TGF-β family members such as activin 
A and growth differentiation factor-15 (GDF-15) seem to 
have a negative impact on skeletal muscle growth (Bloch 
et al. 2015; Han et al. 2013).

With these aspects in mind it is not surprising that many 
of these molecules are suggested as blood-based biomark-
ers for the clinical determination of sarcopenia (Kalinko-
vich and Livshits 2015). In older women, IGF-1 correlates 
negatively with age and positively with muscle mass while 
GDF-15 is positively associated with age and negatively 
with muscle mass (Hofmann et  al. 2015). Contrasting 
results have been detected for myostatin levels which are 
negatively correlated to muscle mass in male patients with 
chronic obstructive pulmonary disease (Ju and Chen 2012) 
and to handgrip strength in hemodialysis patients (Han 
et al. 2011). For healthy individuals data are still inconsist-
ent as some studies did not detect any association with lean 
body mass in old men (Lakshman et al. 2009) and women 
(Hofmann et al. 2015), while others have found an inverse 
correlation of circulating myostatin with fat free mass and 

muscle mass (Yarasheski et al. 2002). As blocking myosta-
tin using antibodies has been shown to beneficially affect 
muscle mass and grip strength in mice (Whittemore et al. 
2003) and lean body mass and some functional parameters 
in old weak persons (Becker et al. 2015) it is not surpris-
ing that myostatin is consistently included in any suggested 
set of biomarkers for sarcopenia (Kalinkovich and Livshits 
2015).

Results of the Vienna Active Ageing Study (VAAS) pre-
viously demonstrated that resistance training using elastic 
bands for 6  months led to an increase in functional per-
formance of lower and upper extremities, and improved 
genome stability and resistance against DNA damage of 
very old adults (Franzke et  al. 2015a; Oesen et  al. 2015). 
However, the supplementation of a drink rich in proteins, 
vitamin D, B2, and B12 had no additional effect on func-
tional performance (Oesen et al. 2015), but reduced chro-
mosomal damage (Franzke et al. 2015b).

Using these findings as a starting point, the aim of the 
current study was to investigate whether this type of train-
ing and nutritional supplementation affects MQ as well as 
serum markers involved in muscle growth and degradation 
in elderly women (IGF-1, myostatin, follistatin, GDF-15, 
and activin A).

Methods

Study design

VAAS was a randomized, controlled intervention study 
which was designed to test whether 6 months of a super-
vised, progressive resistance exercise training using elastic 
bands with and without nutrient supplementation were able 
to influence physical fitness of institutionalized elderly men 
and women (Oesen et al. 2015). Eligible participants were 
randomly, but stratified by gender, assigned to one of the 
three intervention groups: resistance exercise training (RT), 
RT plus nutritional supplementation (RTS), or cognitive 
training (CT), the latter serving as control group. The inter-
ventions started immediately following the baseline tests 
(T1), which were repeated after 3 (T2) and 6 months (T3).

Subjects

Inclusion and exclusion criteria have been described pre-
viously (Oesen et al. 2015). Briefly, the participants were 
untrained, over 65 years old and free of any medical condi-
tion which would impair their participation in a resistance 
training class. Mini-mental state scores were  ≥22 (Fol-
stein et al. 1975). Written informed consent was obtained 
from all participants. The present study was conducted 
in accordance to the Austrian laws (including Doctors 
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Act, CISA, Data Protection Act), the Declaration of Hel-
sinki (as revised in Edinburgh 2000), and in analogous 
accordance with ICH-GCP guidelines. The study has been 
approved by the ethics committee of the City of Vienna 
(EK-11-151-0811) and registered at ClinicalTrials.gov 
(NCT01775111).

From a total of 117 participants of the VAAS, only those 
were initially included in the current study where data on 
MQ and serum markers were available (n = 104). Due to 
the low sample size of men (n = 13) these were addition-
ally excluded from the presented analyses. Blood samples 
were available from all women (n = 91) at baseline (T1), 
from 76 women after 3 months (T2), and from 70 women 
after 6 months (T3). Additionally, MQ of both upper and 
lower extremities could be assessed from 77 women at T1, 
from 68 women at T2, and from 59 women at T3 (Fig. 1).

Interventions

All intervention groups met twice a week for about 60 min 
in small groups of not more than 10 people. The groups 
were supervised by experienced sports scientists. The 
resistance exercise programme was designed to train all 
major muscle groups based on guidelines provided by the 
American College of Sports Medicine (ACSM) for older 

adults (Nelson et al. 2007). Following an adaptation phase 
of 4 weeks using low external resistance (1 set of 15 rep-
etitions per exercise, yellow Thera-Band® (The Hygenic 
Corporation, Akron, OH, USA), exercise intensity was 
progressively increased by adapting the resistance of the 
elastic band (based on the Thera-Band® force–elonga-
tion table) (Page and Ellenbecker 2011) from yellow to 
red and further to black. The exercise volume was further 
enhanced by increasing the number of sets from one to two. 
The RTS group followed the same training protocol as the 
RT group. Additionally, a nutrient supplement drink (For-
tiFit, NUTRICIA GmbH, Vienna, Austria) was provided 
every morning after breakfast, as well as immediately after 
each training session. Each drink supplied a total energy of 
150 kcal and contained 20.7 g protein (3 g leucine, >10 g 
essential amino acids), 9.3  g carbohydrates, 3  g fat, vita-
mins (800 IU vitamin D, 2.9 mg vitamin B6, 3 μg vitamin 
B12) and minerals. A research dietician distributed the 
supplements and monitored adherence. Participants were 
instructed to maintain their regular food intake. The CT 
group served as control participating in activities includ-
ing cognitive tasks (memory training) and coordinative 
tasks (such as manual dexterity) twice weekly to provide a 
timely effort which was equal to those of the RT and RTS 
group (Oesen et al. 2015).

Fig. 1   Participant Flow. CT cognitive training, RT resistance training, RTS resistance training and supplementation, MQ upper muscle quality of 
upper extremities, MQ lower muscle quality of lower extremities
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Anthropometrical measurements

Standing height was measured without shoes to the nearest 
0.5  cm using a commercial stadiometer (Seca, Hamburg, 
Germany) with the shoulders kept in a relaxed position 
and arms allowed to hang freely. Body mass was evaluated 
with a digital scale (BWB 700, Tanita, Amsterdam, Neth-
erlands) to the nearest 0.1 kg with subjects lightly dressed 
and barefoot. Body mass index (BMI) was calculated as the 
ratio between the weight (kg) and height squared (m). To 
determine body composition bioelectric impedance analy-
sis (BIA) was used, which has been shown to provide relia-
ble data of body composition in comparison to dual-energy 
X-ray absorptiometry (DXA) (Roubenoff et  al. 1997). 
BIA was performed in the morning after an overnight fast 
using a BIA Analyzer 2000-S (Data-Input GmbH, Darm-
stadt, Germany). Skeletal muscle mass was determined 
using the equation of Janssen et al. (2000): Skeletal mus-
cle mass (kg) = [height2/R × 0.401) + (gender × 3.825)–
(age × 0.071)] + 5.102, where height is measured in cen-
timeters; R is BIA resistance in ohms; for gender, men = 1 
and women = 0; and age is in years.

Physical performance

Chair stand test

Chair stand performance is influenced by strength and 
power of the lower extremities. For this test the maxi-
mum number of completed cycles of unsupported chair 
rises (from a seated to a fully erected position (hip and 
knees straightened) completed within 30 s was counted. A 
straight-back chair with a seat height of 46 cm was placed 
against a wall for support and safety purposes. Partici-
pants performed a 2–3 repetition practice trial to familiar-
ize with the technique. They were instructed to keep their 
arms crossed at the wrists and held them against the chest 
and place their feet flat on the floor approximately shoul-
der-width apart. The number of stands executed correctly 
within 30  s were counted by the tester and used for data 
analyses (Oesen et al. 2015; Rikli and Jones 2013).

Handgrip strength

Handgrip strength of the right hand was measured to the 
nearest kilogram (kg) using a Jamar hand dynamometer 
(Sammsons Preston, Inc. Bolingbrook IL, USA). Sub-
jects were seated with their elbow unsupported and bent at 
an angle of 90°. Prior to data collection, the width of the 
dynamometer handle was adjusted to the individual hand 
size and participants performed two sub maximal trials 
to get acquainted with the instrument and measurement 

procedure. Finally, participants were encouraged to per-
form a maximal contraction within approximately 4–5  s. 
After a rest of 60  s, participants were asked to perform a 
second trial. The highest score of maximum voluntary con-
traction was used for data analyses (Mijnarends et al. 2013; 
Oesen et al. 2015).

Muscle quality

MQ was determined as the ratio of muscle strength or 
power and muscle mass as suggested by Barbat-Artigas 
et  al. (2012b). The MQ score of upper extremities was 
calculated based on handgrip strength measured by hand 
dynamometer (kg) divided by muscle mass calculated 
using the BIA equation of Janssen et  al. (2000). To cal-
culate power for MQ of lower extremities the equation 
for peak power (W) [−715.218 +  13.915 ×  body weight 
(kg) + 33.425 × stand in 20 s] of Smith et al. (2010) pre-
dicting lower-body muscle power in older adults using 30-s 
chair stand test was used. The calculated power was then 
divided by muscle mass.

Serum parameters

Venous blood samples were taken in the morning between 
06:30 and 08:00 after an overnight fast. Z Serum Sep 
Clot Activator collection tubes (Vacuette, Kremsmünster, 
Austria) were used to obtain about 8 ml of venous blood. 
Between 30 and 90  min after collection, the tubes were 
centrifuged (10 min, 3000×g) and the obtained serum was 
stored in aliquots at −80  °C until further analysis. Com-
mercial enzyme-linked immunosorbent assays for myosta-
tin (Immundiagnostik, Bensheim, Germany, K1012), fol-
listatin (R&D Systems, Abingdon, UK, DFN00), activin A 
(R&D Systems, Abingdon, UK, DY338), GDF-15 (R&D 
Systems, Abingdon, UK, DY957) and IGF-1 (Mediagnost, 
Reutlingen, Germany, E20) were performed. The analyses 
were carried out according to the manufacturers’ protocols 
and on a 1420 Multilabel Counter (Victor3, Perkin Elmer, 
Waltham, MA, USA).

Statistical analysis

Statistical analyses were performed with IBM SPSS Statis-
tics 22 (IBM Corporation, New York, USA). The number of 
participants chosen for the VAAS was based on power esti-
mation (G*Power 3.1.0), which estimated the sample size 
to be 86 using isokinetic peak torque as primary endpoint 
(Faul et al. 2007; Oesen et al. 2015). Although men were 
excluded for this secondary analysis, a total of 91 women 
participated in the current study still representing a higher 
sample size as anticipated.
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For all secondary endpoints as included into the current 
analyses Shapiro–Wilk test was used to check for normal 
distribution which was violated for most of the blood-based 
parameters. Therefore, differences between groups at base-
line were determined by Kruskal–Wallis test followed by 
Bonferroni-corrected Mann–Whitney tests for post hoc 
analyses. To analyse for time effects, Friedman tests were 
applied and if significant followed by Wilcoxon tests with 
Bonferroni corrections. Effect sizes (r) were calculated 
by dividing the standardized test statistics (z score) by the 
square root of the total observations. Potential correlations 
between functional parameters and blood-based biomark-
ers were assessed using Spearman’s rank correlation coef-
ficient. Data are shown as median (minimum–maximum) 
and a p value of less than 0.05 was considered significant.

Results

Baseline characteristics

The women (n =  91) which were included in the current 
analysis were distributed nearly equally between interven-
tion groups (CT: 33  %, RT: 36  %, RTS: 31  %). At base-
line the intervention groups did not differ in age, weight, 

BMI, muscle mass, fat mass and MMST (p > 0.05). Com-
parisons between groups revealed differences for MQ of 
upper extremities [H(2)  =  6.81, p  =  0.033] and IGF-1 
[H(2)  =  6.71, p  =  0.035] at baseline. However, pair-
wise comparisons with adjusted p values have confirmed 
a difference just for MQ of upper extremities which was 
slightly higher in the RT group as compared to the CT 
group (+24 %, p = 0.029, r = 0.326) (Table 1).

Intervention effects

Physical function and skeletal muscle mass

Strength of lower extremities as assessed by chair stand test 
increased significantly over time in both strength training 
groups [RT: χ2(2) = 10.634, p = 0.005; RTS: χ2(2) = 9.973, 
p  =  0.007] while performance in chair stand test was 
unchanged in CT [χ2(2) = 0.237, p = 0.888]. To follow up 
these findings Wilcoxon tests with Bonferroni corrections 
were used. Significant improvements were detected between 
T1 and T2 (RT: +17 %, r = −0.357, p =  0.026) and T1 
and T3 (RT: +18 %, r = −0.407, p = 0.010; RTS: +15 %, 
r = −0.464, p = 0.008). These changes in functional perfor-
mance were paralleled by ameliorations in power as calcu-
lated from chair stand test using the formula by Smith et al. 

Table 1   Baseline characteristics

Data are shown as median (minimum–maximum)

CT cognitive training, RT resistance training, RTS resistance training +  nutrient supplementation, BMI body mass index, IGF-1 insulin-like 
growth factor-1, GDF-15 growth and differentiation factor-15

p values are calculated using Kruskal–Wallis and if significant followed by Bonferroni-corrected post hoc analyses (* p < 0.05 vs CT)

Parameter All CT RT RTS p value

Subjects (number) 91 30 33 28

Age (years) 83.6 (65.0–92.2) 84.5 (69.4–91.8) 82.9 (71.7–92.2) 83.9 (65.0–92.2) 0.931

Weight (kg) 71.2 (46.2–112.4) 71.9 (46.2–102.0) 71.7 (54.0–89.6) 68.1 (56.3–112.4) 0.962

BMI (kg/m2) 29.2 (18.1–50.0) 29.7 (18.1–36.9) 29.0 (22.7–40.2) 28.7 (22.9–50.0) 0.980

Muscle mass (kg) 17.5 (12.3–30.6) 17.3 (12.9–30.6) 17.7 (12.3–21.5) 18.2 (12.8–28.9) 0.578

Fat mass (kg) 25.7 (6.3–54.3) 27.8 (6.3–48.2) 24.8 (13.4–39.8) 25.6 (14.8–54.3) 0.967

Mini-mental state (points) 28 (22–30) 28 (23–30) 27 (22–30) 28 (22–30) 0.198

Muscle quality

Muscle quality upper (kg/kg) 0.98 (0.16–1.64) 0.87 (0.16–1.64) 1.09 (0.26–1.49)* 0.98 (0.52–1.32) 0.033

Muscle quality lower (W/kg) 30.11 (8.97–54.69) 28.91 (12.62–50.86) 31.32 (12.31–47.14) 29.81 (8.97–54.69) 0.738

Blood-based parameters

Follistatin (ng/ml) 2.06 (1.34–3.52) 2.13 (1.35–3.52) 1.92 (1.38–2.86) 2.07 (1.34–3.34) 0.385

IGF-1 (ng/ml) 123 (46–249) 131 (58–231) 114 (50–224) 137 (46–249) 0.035

Myostatin (ng/ml) 2.20 (0.10–12.03) 2.56 (0.10–12.03) 2.09 (1.23–7.51) 2.30 (0.93–5.36) 0.990

Activin A (ng/ml) 0.30 (0.10–5.42) 0.45 (0.12–4.89) 0.28 (0.10–5.42) 0.29 (0.10–3.18) 0.191

GDF-15 (ng/ml) 1.42 (0.54–3.02) 1.42 (0.54–2.87) 1.25 (0.61–2.57) 1.52 (0.76–3.02) 0.238

Activin A-to-follistatin ratio (−) 0.16 (0.04–3.47) 0.23 (0.04–2.91) 0.15 (0.04–3.47) 0.13 (0.05–1.49) 0.337

Myostatin-to-follistatin ratio (−) 1.07 (0.06–8.62) 1.08 (0.06–8.62) 1.12 (0.45–4.56) 1.00 (0.55–2.33) 0.817
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(2010) [CT: χ2(2) = 1.059, p = 0.915; RT: χ2(2) = 6.000, 
p = 0.050; RTS: χ2(2) = 10.000, p = 0.007]. However, sig-
nificant changes in post hoc analyses were detected only for 
the RTS group between T1 and T3 (+ 18 %, r = −0.488, 
p = 0.005) (data not shown).

Skeletal muscle mass [CT: χ2(2) = 1.059, p = 0.589; RT: 
χ2(2) = 0.900, p = 0.638; RTS: χ2(2) = 4.000, p = 0.135] 
and handgrip strength [CT: χ2(2) = 0.295, p = 0.863; RT: 
χ2(2) = 3.455, p = 0.178; RTS: χ2(2) = 0.295, p = 0.824] 
did not change over 6 months of intervention in any of the 
intervention groups (data not shown).

Muscle quality

MQ of lower extremities changed significantly over 
time in the RT group [χ2(2)  =  10.300, p  =  0.006] and 
the RTS group [χ2(2) = 8.444, p = 0.015] but not in CT 
[χ2(2) = 0.118, p = 0.943]. Bonferroni-corrected post hoc 
analyses revealed a significant increase from T1 to T3 in 
RT (+14 %, r = −0.435, p = 0.005), whereas differences 
in the RTS group were detected only between T1 and T2 
(+12 %, r = −0.377, p = 0.023). MQ of upper extremi-
ties was not influenced by any of the interventions [CT: 
χ2(2) = 4.308, p = 0.116; RT: χ2(2) = 1.600, p = 0.449; 
RTS: χ2(2) = 2.333, p = 0.311] (Table 2).

Blood‑based parameters

Overall analyses for positive regulators of muscle mass 
revealed significant time effects for follistatin in the RT 
group [χ2(2)  =  9.750, p  =  0.008] while in the other 
intervention groups follistatin was unaffected [CT: 
χ2(2) = 4.957, p = 0.084; RTS: χ2(2) = 0.667, p = 0.717]. 
Post hoc analysis for the RT group observed that follista-
tin increased in the latter phase of intervention between T2 
and T3 (+18 %, r = −0.420, p = 0.007). Another positive 
regulator of muscle mass, IGF-1, was not altered in any of 
the intervention groups [CT: χ2(2) = 0.087, p = 0.957; RT: 
χ2(2) = 0.750, p = 0.687; RTS: χ2(2) = 3.524, p = 0.172] 
(Table 2).

With respect to the negative regulators of muscle mass, 
activin A levels were not affected by strength training 
alone or combined with the nutritional supplement [RT: 
χ2(2) = 0.628, p = 0.731; RTS: χ2(2) = 3.818, p = 0.148]. 
Surprisingly, activin A levels decreased in the CT group 
[χ2(2) = 8.205, p = 0.017]. Post hoc analyses revealed dif-
ferences between T1 and T3 (−7 %, r = 0.402, p = 0.019). 
In contrast, GDF-15 [CT: χ2(2) =  1.130, p =  0.568; RT: 
χ2(2) = 1.750, p = 0.417; RTS: χ2(2) = 4.667, p = 0.097] 
and myostatin [CT: χ2(2)  =  1.130, p  =  0.568; RT: 
χ2(2) = 3.739, p = 0.154; RTS: χ2(2) = 3.660, p = 0.165] 

levels were not affected by any of the interventions 
(Table 2).

As follistatin can inhibit the function of both, 
activin A and myostatin, the activin A-to-follistatin and 
myostatin-to-follistatin ratios were calculated. Interest-
ingly, the activin A-to-follistatin ratio was significantly 
altered in the RT group [χ2(2)  =  6.750, p  =  0.034] 
while it was unaffected in the RTS and CT groups 
[RTS: χ2(2)  =  4.095, p  =  0.129; CT: χ2(2)  =  1.652, 
p  =  0.438]. Detailed analyses showed that the activin 
A-to-follistatin ratio decreased in the RT group between 
T2 and T3 (−7  %, r =  0.360, p =  0.028). Differently 
to these findings, the myostatin-to-follistatin ratio was 
not affected in any of the groups [CT: χ2(2) =  5.304, 
p  =  5.304; RT: χ2(2)  =  1.130, p  =  0.568; RTS: 
χ2(2) = 3.700, p = 0.157].

Association between serum markers and MQ  
or physical function

As partially shown previously (Hofmann et  al. 2015), 
baseline levels of GDF-15 correlated negatively with 
fat mass (ρ  =  −0.258; p  =  0.016), skeletal muscle 
mass (ρ  =  −0.234; p  =  0.032), MQ of upper extremi-
ties (ρ  =  −0.259; p  =  0.023), and handgrip strength 
(ρ = −0.381; p < 0.001). Activin A levels were negatively 
associated with MQ of lower extremities (ρ  =  −0.282; 
p = 0.009). IGF-1 correlated positively with muscle mass 
(ρ = 0.313; p = 0.004) and handgrip strength (ρ = 0.224; 
p  =  0.046) but not with MQ of either upper or lower 
extremities.

Interestingly, lower levels of myostatin but higher lev-
els of activin A as well as higher activin A-to-follista-
tin ratios at baseline T1 were associated with a smaller 
increase in muscle mass between T1 and T3 or even mus-
cle loss (myostatin: ρ = 0.336; p = 0.010 Fig. 2a, activin 
A: ρ = −0.268 Fig. 2b; p = 0.042, activin A-to-follistatin 
ratio: ρ = −0.345; p = 0.008). On the other hand, perfor-
mance in chair stand test at T1 correlated negatively with 
differences in GDF-15 between T and T3 (ρ = −0.243; 
p = 0.043) (Fig. 3).

As valuable blood-based biomarkers should be sensitive 
to changes in skeletal muscle mass or function, associa-
tions between the respective differences between T1 and T3 
were calculated. In this respect, changes in follistatin cor-
related positively with changes in muscle mass (ρ = 0.367; 
p =  0.005) while changes in myostatin or activin A were 
not associated with skeletal muscle mass alterations 
(Fig.  2d–f). We did not detect any correlations between 
changes in blood-based biomarkers and changes in func-
tional parameters or MQ.
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Discussion

To our knowledge this is the first study investigating the 
influence of a strength training intervention—either alone 
or in combination with a nutritional supplement—on 
blood-based biomarkers of skeletal muscle degradation 
and growth as well as on MQ. Our results confirm that 
in women the MQ of lower extremities can be increased 
with elastic band resistance training even at an older age, 
whereas an additional supplementation with proteins and 
vitamins seems to be ineffective in exerting an additive 
effect. These changes were associated with an increase in 
follistatin and a decrease of activin A-to-follistatin ratio in 
the RT group while activin A levels were decreased only in 
the CT group.

Intervention effects on muscle quality

In this study the MQ of lower, but not that of upper extrem-
ities increased in both training groups (RT and RTS). As 

whole body skeletal muscle mass was used for the deter-
mination of both the MQ of upper and lower extremities, 
this observation might indirectly reflect the amelioration 
in chair stand test while handgrip strength was not affected 
by the strength training programme. Interestingly, the elas-
tic band resistance training that we have used in our study 
seems to have more pronounced effects on functional per-
formance than on strength as the arm lifting test and chair 
stand test showed improvements while handgrip strength 
and isokinetic peak torque measurements of knee exten-
sors and flexors were not affected (Oesen et al. 2015). Fur-
thermore, it is noteworthy that leg muscles suffer greater 
losses in strength and MQ than arm muscles with ageing 
(Frontera et al. 2000; Lynch et al. 1999). If we assume that 
our strength training programme was designed to challenge 
upper and lower extremities in a similar way, the adapta-
tion capacity of the lower extremities to strength train-
ing could have been higher leading to more pronounced 
effects, although this is in contrast to another study show-
ing that strength gains are higher for upper extremities as 

Fig. 2   Associations between changes of T3-T1 in muscle mass and 
serum levels of myostatin (a), activin A (b) and follistatin (c) at base-
line (T1). Correlations between pre and post intervention differences 
in muscle mass and changes in myostatin (d), activin A (e) and fol-
listatin (f). Different symbols represent the assignment to the inter-

vention groups (asterisk, CT cognitive training; filled triangle, RT 
resistance training; filled circle, RTS resistance training and supple-
mentation) Linear fitting lines are shown for significant correlations 
(ρ Spearman rho correlation coefficient)
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the muscles of the lower limbs are elicited more frequently 
and therefore, have a smaller potential to gain strength at 
older age (Sousa et al. 2011). Another factor that influences 
the determination of MQ is the lack of a uniform consen-
sus which parameters to include in the calculation of MQ. 
While some studies including ours used whole body skel-
etal mass determined by BIA or DXA (Barbat-Artigas et al. 
2012a; Schroeder et  al. 2012), others determined skeletal 
muscle mass separately for upper and lower body by means 
of DXA or ultrasound (Kennis et  al. 2014; Radaelli et  al. 
2014; Straight et  al. 2015). In addition, several formulas 
are used to determine muscle mass by BIA, whereby it is 
recommended to use equations derived from a similar age 
group, which is what we ensured by using the formula of 
Janssen et  al. (2000). This formula has been developed 
in a multiethnic sample of 388 men and women, aged 
18–86  years and includes age and gender as parameters. 
Furthermore, we checked the quality of BIA measure-
ments by a parallel assessment of muscle mass by DXA in 
a smaller subgroup of the participants (n = 45). Statistical 
analyses revealed a high correlation between DXA and BIA 
(ρ = 0.847, p < 0.001). The situation is even more complex 
for assessing strength or power as a variety of methods is 
available. Therefore, we decided to use chair stand test and 
handgrip test as suggested by Barbat-Artigas et al. (2012b), 
but future studies evaluating the impact of these different 
methods on the assessment of MQ and on its influence on 
clinically relevant outcomes are highly recommended.

Intervention effects on blood‑based parameters

Although performance parameters and MQ were increased 
in both training groups (RT and RTS), follistatin and the 
activin A-to-follistatin ratio were altered in the RT group 
only between T2 and T3 hinting to an adaptive delay in 
the response to training. Follistatin antagonizes myosta-
tin and activin A and as such it is regarded as a positive 
regulator of muscle mass. Animal studies have shown that 
acute and chronic endurance exercises increase follistatin 
mRNA in the liver as well as in skeletal muscles (Hansen 
et  al. 2011; Ziaaldini et  al. 2015). Furthermore, serum 
levels of follistatin increased transiently during an ultra-
marathon (Kerschan-Schindl et  al. 2015). One of the rare 
studies investigating the influence of a comparable training 
setting (endurance or strength training) on follistatin levels 
in blood and muscle biopsies of young men has been pub-
lished by Diel et al. (2010). Similar to our study, follista-
tin remained unchanged in blood and biopsy samples after 
3 months (Diel et al. 2010), but the authors did not investi-
gate long-term effects of training making a conclusion dif-
ficult. Interestingly, follistatin was not altered in the RTS 
group. As the strength training programme was the same in 
both groups, this hints to some direct or indirect effect of 
the nutritional supplement containing proteins and vitamins 
on serum follistatin levels. It has been shown that circulat-
ing follistatin levels increase in response to a fasting period 
while activin A levels decrease (Vamvini et al. 2011). We 
have collected the blood after an overnight fast which was 
the same in all groups. The nutritional intake was assessed 
at T1 and T3. In addition, the nutritional supplementation 
resulted in an increased uptake of vitamin D and folic acid 
but not in protein being between 0.8 and 1.0  g/kg/day in 
the RTS group (Franzke et al. 2015a). Furthermore, plasma 
levels of vitamin B12 and folic acid in erythrocytes were 
enhanced due to supplementation (Franzke et  al. 2015b). 
There is an ongoing discussion of whether antioxidant sup-
plementation may blunt an exercise-induced training effect 
(Peternelj and Coombes 2011). With respect to functional 
performance we did not observe any differences between 
the RT and RTS group while we did in follistatin levels. In 
vitro studies have shown that there could be a direct effect 
of vitamin D administration on follistatin levels as 1α,25-
dihydroxyvitamin D3 decreased follistatin in osteoblasts 
(Woeckel et al. 2013) but increased follistatin in myoblasts 
(Garcia et al. 2011) showing the complex situation in dif-
ferent organ systems. As circulating levels of follistatin rep-
resent an overall measure of all follistatin-generating tis-
sues further studies are needed to elucidate these complex 
interacting networks.

Follistatin regulates both, activin A and myostatin (Lee 
et  al. 2010; Vamvini et  al. 2013). Elevated expression of 
activins promotes muscle wasting and cachexia, whereas 

Fig. 3   Association between difference of T3-T1 in GDF-15 serum 
levels and repetitions of chair stand test. Different symbols repre-
sent the assignment to the intervention groups (Asterisk, CT cogni-
tive training; filled triangle, RT resistance training; filled circle, RTS 
resistance training and supplementation); ρ Spearman rho correlation 
coefficient; GDF-15 growth and differentiation factor-15
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blocking of activin type II receptors induces strong skel-
etal muscle hypertrophy and protects from atrophy (Chen 
et  al. 2014; Lach-Trifilieff et  al. 2014). In addition, Chen 
et al. (2014) showed that increasing circulating activin A in 
mice not only promoted the reduction of body weight and 
muscle mass in a dose-dependent manner, but also reduced 
muscle function highlighting the therapeutic potential of 
activin A inhibitors. Therefore, we would have expected a 
decrease of activin A in the RT and RTS group but instead 
we detected a small decrease in activin A in CT. However, 
concerning age-related changes it is still not clear whether 
activin A levels are influenced by age itself. While some 
studies have revealed increased circulating activin A lev-
els with age (Baccarelli et  al. 2001; Loria et  al. 1998), 
our working group and others did not find any differences 
between young and old women (Hofmann et  al. 2015; 
Klein et al. 2004). Taking a closer look at the data we found 
that most of the activin A levels at baseline were below 
1 ng/ml while only few subjects (n = 12) displayed higher 
levels up to 6 ng/ml. Interestingly, higher levels of activin A 
at baseline were associated with decreases of skeletal mus-
cle mass between T1 and T3 irrespective of the intervention 
group hinting to a more catabolic situation in these indi-
viduals at the beginning of the intervention and potentially 
making it more difficult for them to increase muscle mass 
(Fig. 2b). As activin A function can be inhibited by binding 
of follistatin to activin A, the activin A-to-follistatin ratio 
was determined. We observed that the ratio was lowered 
in the RT group shifting the plasma environment to a more 
follistatin-dominated one while it was unaffected in the 
CT group despite lower levels of activin A in this group. 
This highlights the importance of observing networks of 
biomarkers, such as the follistatin/activin A/myostatin-axis 
rather than single ones.

Both representatives of the TGF-β superfamily, myosta-
tin (also known as GDF-8) and GDF-15 were found to 
be unaffected by the intervention. Because of its distinct 
impact on fat and muscle mass, several studies have dealt 
with muscular myostatin expression in context with acute 
strength exercise (Hulmi et  al. 2008; Jensky et  al. 2010, 
2007) and long-term training (Brooks et  al. 2010; Diel 
et  al. 2010; Suetta et  al. 2013) in young as well as aged 
women and men. One interesting though unexpected find-
ing of our study was that myostatin levels at baseline cor-
related positively with changes in muscle mass. Studies 
investigating circulating levels of myostatin in response to 
training interventions are still contradictory which weak-
ens final statements on the role of circulating myostatin in 
adaptations to resistance training. In this respect it has been 
shown that 10  weeks of high-intensity resistance exercise 
in young healthy men leads to a decrease in circulating 
myostatin (Walker et  al. 2004). On the other hand serum 
myostatin propeptide is not altered in young and healthy 

men performing strength training for 3 months (Diel et al. 
2010), and serum myostatin even increases after a 6-month 
lifestyle intervention programme in obese children (Ehe-
halt et al. 2011). Differences in measurement methods, age, 
training loads and training durations may cause these con-
flicting results. Another hypothesis was provided by Will-
boughby (2004) who suggested that increases in serum lev-
els of the follistatin-like related gene and the concomitant 
down-regulation of the activin IIb receptor would counter-
act even increases in myostatin observed after heavy resist-
ance training. Having these aspects in mind we conclude 
that the beneficial effects of strength training observed for 
MQ and functional parameters in our study might be due to 
blocking of activin A and myostatin by enhanced levels of 
follistatin rather than by lower circulating levels of activin 
A and myostatin.

Similar to myostatin we could not find any changes in 
circulating GDF-15 neither in one of the training groups 
nor in CT over the time of intervention, but GDF-15 lev-
els were negatively associated with MQ of upper extremi-
ties at baseline. Additionally, better performance in the 
chair stand test was negatively associated with changes 
in muscle mass between T1 and T3 confirming the nega-
tive effects of GDF-15 on skeletal muscle (Fig. 3). This is 
similar to a study of patients undergoing cardiac surgery 
in which elevated GDF-15 levels were associated with 
quadriceps muscle atrophy and were elevated after the sur-
gery (Bloch et  al. 2013). Traditionally, this biomarker is 
suggested to reflect the status of cardiac muscle (Sinning 
et al. 2015) or lung tissue (Mutlu et al. 2015) and we sug-
gest further investigation is needed to elucidate its role in 
skeletal muscle.

IGF-1 is considered as an important positive regulator of 
muscle mass which did not change in response to resistance 
training with or without supplementation. Our data confirm 
a previous study in older men and women showing positive 
effects of a 12-week elastic band exercise programme on 
body composition and physical fitness without improving 
IGF-1 levels (So et  al. 2013). Similarly, IGF-1 was unaf-
fected by low-load resistance exercise with blood flow 
restriction in older men (Patterson et  al. 2013). However, 
age seems to be a main determinant in the IGF-1 response 
to exercise training. We have shown that IGF-1 level differ 
between young and old women (Hofmann et al. 2015), and 
young men responded to a strength training programme 
with increased levels of IGF-1 (Takano et al. 2005). There 
is growing evidence that a chronic inflammatory state 
suppresses the GH/IGF1 axis (Andreassen et  al. 2012; 
O’Connor et al. 2008; Pass et al. 2009; Strle et al. 2007). 
According to the ‘inflammageing theory’ elevated levels of 
proinflammatory cytokines are found with ageing (Schmidt 
et al. 2011). As we have shown that hs-CRP concentrations 
in our study population are higher than in young women 
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(Halper et al. 2015), we hypothesize that increased levels of 
proinflammatory mediators could have blunted an increase 
in IGF-1 levels.

Conclusions

Based on our data, we confirm that strength training 
improves physical performance and MQ even in very old 
women, whereas nutritional supplementation seems to 
be ineffective in exerting additive effects. With respect 
to blood-based biomarkers, our main finding was that 
strength training alone enhanced follistatin levels leading 
to a decreased activin A-to-follistatin ratio. Therefore, we 
conclude that the positive effects of strength training in the 
elderly women is mediated by blocking muscle degradation 
pathways via follistatin rather than inducing muscle growth 
by the IGF-1 pathway. However, plasma levels of biomark-
ers are influenced by various organ systems involved in the 
adaptation to exercise such as skeletal muscle, fat, liver tis-
sue and others. Therefore, these biomarkers may reflect an 
overall status rather than the status of skeletal muscle mak-
ing future studies of tissue levels very important. Finally, it 
has to be mentioned that the current study measured resting 
values of blood-based parameters. Therefore, it would be 
interesting for future studies to investigate the influence of 
acute changes of these biomarkers following adaptations to 
exercise training.
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