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Abstract The aim of this paper is to generalize certain volume comparison theorems
(Bishop-Gromov and a recent result of Treude and Grant, Ann Global Anal Geom, 43:233–
251, 2013) for smooth Riemannian or Lorentzian manifolds to metrics that are only C1,1
(differentiable with Lipschitz continuous derivatives). In particular we establish (using
approximation methods) a volume monotonicity result for the evolution of a compact subset
of a spacelike, acausal, future causally complete (i.e., the intersection of any past causal cone
with the hypersurface is relatively compact) hypersurface with an upper bound on the mean
curvature in a globally hyperbolic spacetime with a C1,1-metric with a lower bound on the
timelike Ricci curvature, provided all timelike geodesics starting in this compact set exist
long enough. As an intermediate step, we also show that the cut locus of such a hypersur-
face still has measure zero in this regularity—generalizing the well-known result for smooth
metrics. To show that these volume comparison results have some very nice applications, we
then give a proof of Myers’ theorem, of a simple singularity theorem for globally hyperbolic
spacetimes, and of Hawking’s singularity theorem directly in this regularity.

Keywords Lorentzian manifolds · Riemannian manifolds · Comparison geometry · Low
regularity · Singularity theorems
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1 Introduction

There are many similarities between the ideas used in the proof of Riemannian comparison
theorems (in particularMyers’ theorem) and the singularity theorems in Lorentzian geometry.
Both use curvature conditions to obtain that in some sense the maximal length of a geodesic
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without conjugate points is bounded: in the case of Myers’ theorem, one assumes complete-
ness and obtains a bound on the diameter of the manifold (as the distance between two points
is given by the length of a minimizing geodesic, which can not have conjugate points) and
in the case of, e.g., the Hawking singularity theorem, the assumptions together with geo-
desic completeness would imply compactness of a certain Cauchy horizon which then gives
a contradiction. While there has been some interest in developing Lorentzian analogues to
many results from Riemannian comparison geometry in general (see e.g. [1,2,10]) this close
connection to the singularity theorems was explored further by Treude and Grant in their
recent paper [25], where they use Riccati comparison techniques to prove area and volume
monotonicity theorems in Lorentzian geometry (with respect to fixed Lorentzian warped
product manifolds). These are then applied to give a new proof of the classical Hawking
singularity theorem.

We will show that many of these results carry over to C1,1 (locally Lipschitz continuous
first derivatives) regularity by showing volume monotonicity results for both Riemannian
and Lorentzian C1,1-metrics with appropriate curvature bounds and applying them to prove
a version of Myers’ theorem and Hawking’s singularity theorem, respectively.

In general, for a (semi-)Riemannian metric, the class C1,1 is the lowest differentiability
class of the metric where one still has local existence and uniqueness of solutions of the
geodesic equation. Also by Rademacher’s theorem, all curvature terms still exist almost
everywhere and are locally bounded, which allows the definition of curvature bounds in the
following way. We say that the Ricci curvature tensor Ric is bounded from below (by κ) if
for every smooth, local vector field X ∈ X(U ) for some open and relatively compactU ⊂ M
one has that the function

p �→ Ric(p)(X p, X p)− (n − 1)κg(p)(X p, X p) (1)

is non-negative as an element of L∞(U ) (i.e., is non-negative almost everywhere). If M is
Lorentzian, we say that the timelike Ricci curvature is bounded from below (by −κ) if the
above holds for any smooth, local timelike vector field. Clearly this coincides with the usual
notion for smooth metrics.

As further motivation for studying metrics of this regularity, we give a brief overview
about the specific situations in the Riemannian and the Lorentzian setting.

In Riemannian geometry there are ways to generalize curvature bounds to even lower
regularity, however this requires—at first glance—very different definitions (see, e.g., [16,
24], where metric measure spaces with lower bounds on the Ricci curvature are studied).
While these definitions are equivalent for smooth metrics this has not yet been shown for
C1,1-metrics, so at least for now those two approaches are independent.

In Lorentzian geometry, there has recently been an increased interest and many advances
in the understanding of low regularity spacetimes (i.e. C1,1- instead of C2-metrics, see [7,12,
13,18]), which allowed the proof of both the Hawking and the Penrose singularity theorem
in this regularity (see [14,15]), a problem that had been open for a long time (cf. [22]). From
the viewpoint of general relativity, the importance of this regularity is that it allows for a finite
jump in the matter variables via the Einstein equations. It is also worth noting that many of
the standard results fail dramatically when lowering the regularity further, for example it is
shown in [7] that for any α ∈ (0, 1) there exist ‘bubbling metrics’ (of regularity C0,α), whose
lightcones have nonempty interior.

The plan of the paper is as follows. In Sect. 2 we study Riemannian manifolds with
C1,1-metrics with a lower bound on the Ricci curvature and show a C1,1 version of the
Bishop-Gromov volume comparison theorem for Riemannian manifolds with a lower bound
on the Ricci curvature. This also serves as a preparation for the Lorentzian case as it requires
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significantly less technical details but the ideas remain largely the same. In section 3 we
first give the definition of the cosmological comparison condition (as introduced in [25])
and a brief overview of relevant results from causality theory for C1,1-metrics, in particular
concerning global hyperbolicity and maximizing geodesics to a subset. Then we show the
existence of suitable approximating metrics (using results from [7,13,14]) and in section 3.3
we show that for C1,1-metrics the cut locus still has measure zero. As a last preparation, we
define our comparison spacetimes (again introduced in [25]) as Robertson-Walker spacetimes
with constant Ricci curvature and study their dependence on the curvature quantities κ and
β. This then allows us to show (as a generalization of [25, Thm. 9] to C1,1-metrics)

Theorem 1.1 (Volume comparison)Letκ, β ∈ R, g ∈ C1,1 andassume (M, g, �) is globally
hyperbolic and satisfiesCCC(κ, β) (seeDef. 3.9). Let A ⊂ � be compact withμ�(∂A) = 0,
B ⊂ �κ,β (with finite, non-zero area) and T > 0 such that all timelike, future directed, unit-
speed geodesics starting orthogonally to A exist until at least T . Then the function

t �→ vol B+A (t)

volκ,βB
+
B (t)

is nonincreasing on [0, T ].

Finally, in Sect. 4, as applications we give a proof of a C1,1-Myers’ theorem in the Rie-
mannian and two C1,1-singularity theorems (one of them being an alternative proof of the
C1,1-version of Hawking’s theorem proved in [14, Thm. 1.1]) in the Lorentzian case.

Notation Throughout M will always be a connected, Hausdorff and second countable
smooth manifold of dimension n ≥ 2. For a semi-Riemannian metric g on M the curva-
ture tensor of the metric is defined with the convention R(X, Y )Z = (

[∇X ,∇Y ]− ∇[X,Y ]
)
Z

and we denote the Ricci tensor of g by Ric.

2 Volume comparison for Riemannian C1,1-metrics

The goal of this first section is to show a C1,1 version of the Bishop-Gromov volume com-
parison theorem.

Theorem 2.1 (Bishop-Gromov) Suppose (M, g) (with g smooth) is a complete Riemannian
manifold with Ric ≥ (n − 1)κg for some κ ∈ R. Then

r �→ volBp(r)

volκ Bκ (r)
,

where Bκ (r) denotes any ball of radius r in the n-dimensional simply connected Riemannian
manifold with constant sectional curvature equal to κ , is a nonincreasing function on (0,∞)

and volBp(r) ≤ volκ Bκ (r).

Aproof of the classical result (for smoothmetrics) can be found, e.g., in [26, Cor. 3.3]. The
idea of the proof for C1,1-metrics is to apply the classical result to some smooth approximating
metrics, so we first have to show that we can find approximations such that (M, gε) is a
complete Riemannian manifold and that for any compact K ⊂ M and δ > 0 we have
Ricε|K ≥ (n − 1) (κ − δ)gε|K (where Ricε denotes the Ricci tensor of gε) for ε small
enough.
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Lemma 2.2 Let g ∈ C1,1 be a (geodesically) complete Riemannian metric on M. Then
there exist smooth complete Riemannian metrics gε on M such that gε → g in C1, the
approximations have locally uniformly bounded second derivatives and

d(g, gε) := sup
p∈M

sup
0 
=X,Y∈TpM

|g(X, Y )− gε(X, Y )|
|X |g |Y |g → 0. (2)

Proof It is well known that one can construct smooth, symmetric (0, 2)-tensor fields g̃ε ∈
T 0
2 (M) with g̃ε → g in C1 and locally uniformly bounded second derivatives by gluing

together componentwise convolutions via a partition of unity: Let (Uα, ψα) be a (countable)
atlas and {χα} a partition of unity subordinate to the Uα and choose functions ζα ∈ C∞(Uα)

with compact support in Uα such that 0 ≤ ζα ≤ 1 and ζα ≡ 1 on an open neighborhood of
supp(χα) in Uα . Given a locally integrable (p, q)-tensor field T we set

T̃ε =
∑

α

ζα · ψ∗α
((

χ̃α T α
) ∗ ρε

)
, (3)

where T α ∈ L1
loc

(
ψα(Uα),Rn p+q)

denotes the chart representation of T , χ̃α := χα ◦ ψ−1α

and the convolution is to be understood componentwise. Note that this construction also
ensures that the map (ε, p) �→ g̃ε(p) is smooth.

Now let δ > 0. By locally uniform convergence we get that for any K ⊂ M compact,
w.l.o.g. K ⊂ Uα for some chart domain Uα (otherwise we may cover K by finitely many of
those), there exists εK such that

sup
p∈K

sup
0 
=X,Y∈TpM

|g(X, Y )− g̃ε(X, Y )|
|X |g |Y |g

≤ sup
p∈K

sup
0 
=X,Y∈TpM

∥∥(gi j − g̃ε,i j
)
X j
∥∥
e ‖Y‖e

|X |g |Y |g
≤ nC2 sup

i, j≤n
sup
p∈K

∣∣gi j (p)− g̃ε,i j (p)
∣∣ < δ (4)

for all ε ≤ εK (here ‖.‖e denotes the Euclidean norm onRn and we used Cauchy’s inequality,
‖AX‖e ≤ n maxi, j≤n |Ai j | ‖X‖e and that ‖X‖e|X |g < C ,whereC= sup{X∈T M|K :|X |g=1} ‖X‖e <

∞, for any X ∈ T M |K ). But then the globalization lemma [13, Lem. 2.4] allows us to
construct (new) approximations gε : p �→ g̃u(ε,p)(p) such that for each compact set K ⊂ M
there exists εK such that gε(p) = g̃ε(p) for all ε ≤ εK and p ∈ K (in particular the gε still
satisfy gε → g in C1 and have locally uniformly bounded second derivatives) and such that
for each δ > 0 there exists ε0(δ) such that d(g, gε) < δ for all ε ≤ ε0, i.e., d(g, gε) → 0.

It remains to show completeness and that the gε are Riemannian. This follows from (2.1):
For any δ > 0 there exists ε0 such that for all ε ≤ ε0 one has |g(X, X)− gε(X, X)| <

δg(X, X) for all X ∈ T M , X 
= 0, hence

(1− δ) g(X, X) ≤ gε(X, X) ≤ (1+ δ) g(X, X). (5)

From this, it immediately follows that for ε small enough positive definiteness of g implies
positive definiteness of gε , hence the approximations are Riemannian, and it also immediately
gives

√
1− δLg(γ ) ≤ Lgε (γ ) ≤ √1+ δLg(γ ) for any (locally Lipschitz) curve γ . But this

implies that for ε ≤ ε0 we have√
1− δ dg(p, q) ≤ dgε (p, q) ≤ √1+ δ dg(p, q) (6)

and thus Bε,p(r) ⊂ Bp(
r√
1−δ

) ⊂ expp(
r√
1−δ

· {v ∈ TpM : |v|g = 1}) is relatively compact

for all p ∈ M and r > 0, so (M, gε) is a complete Riemannian manifold by the Hopf-Rinov
theorem. ��
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The next lemma deals with the Ricci curvature estimate and its proof is largely analogous
to the Lorentzian version shown in [14, Lem. 3.2] for κ = 0, but a bit less involved.

Lemma 2.3 Let g ∈ C1,1 be a complete Riemannian metric on M that satisfies Ric ≥
(n − 1) κg. Then there exist smooth approximations gε with all properties of the previous
lemma and such that for any compact K ⊂ M and δ > 0 there exists ε0 such that

Ricε|K ≥ (n − 1) (κ − δ) gε|K
for any ε ≤ ε0.

Proof We first note that

Ricε − R̃icε → 0 uniformly on compact sets, (7)

where R̃icε is defined as in (3). This is established by the same arguments as in the proof of
[14, Lem. 3.2]: Clearly the only problematic terms are the ones involving second derivatives
of the metric (all other terms converge to the respective ones of Ric in C0). Now on every
compact set gε = g̃ε for ε small enough by construction, so the terms involving second
derivatives of g are dealt with using a variant of the Friedrichs lemma, showing that for any
f ∈ C0(Rn) and g ∈ L∞loc the difference fε(h ∗ ρε)− ( f h) ∗ ρε → 0 if fε → f in C0 (cf.
[14, Lem. 3.2]).

Now let δ > 0 and K ⊂ M compact (and w.l.o.g. contained in some chart domain). If we
define Aε := Ricε− (n − 1) κgε and A := Ric− (n − 1) κg, then clearly also Aε− Ãε → 0
uniformly on K . So for any X ∈ T M |K
∣∣∣Aε(X, X)− Ãε(X, X)

∣∣∣ ≤ n C2|X |2g sup
i, j≤n

sup
p∈K

∣∣∣Aε,i j (p)− Ãε,i j (p)
∣∣∣ ≤ δ (n − 1) g(X, X)

for ε small [this follows by similar estimates as in (4)]. So if we can show that Ãε(X, X) ≥ 0
for all X ∈ T M |K the claim follows. By construction Ãε|K is a finite sum of terms of the
form ζαψ∗α((χ̃αAi j ) ∗ ρε) (see (3)) so it suffices to show that

(
(χ̃αAi j ) ∗ ρε

)
(p) is a positive

semi-definite matrix for any p ∈ ψα(suppζα) (note that (χ̃αAi j ) ∗ ρε is well defined on an
open neighborhood U of ψα(suppζα) contained in ψα(Uα) for ε small enough). Now let
p ∈ ψα(suppζα) and X p ∈ R

n and let X̃ be the constant vector field x �→ X p on ψα(Uα).
Then

(
(χ̃αAi j ) ∗ ρε

)
(p)Xi

p X
j
p = ((χ̃αAi j X

i
p X

j
p) ∗ ρε)(p) ≥ 0

since x �→ χ̃α(x)Ai j (x)X̃ i (x)X̃ j (x) = χ̃α(x)Ai j (x)Xi
p X

j
p is non-negative in L∞loc by

assumption and ρε ≥ 0. ��
These preparations now enable us to show:

Theorem 2.4 (Volume comparison) Let (M, g) be a complete Riemannian manifold with
g ∈ C1,1 and Ric ≥ (n − 1) κ g. Then

r �→ volBp(r)

volκ Bκ (r)

is a nonincreasing function on (0,∞) and volBp(r) ≤ volκ Bκ (r).

Proof Let p ∈ M and 0 < r1 < r2 < R. Using the approximating metrics gε constructed
in Lemma 2.2 and 2.3 we see that for any δ > 0 there exists some ε0 such that

(
Bp(R), gε

)
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(as a submanifold of M) satisfies the conditions of the classical Bishop-Gromov volume
comparison (Thm. 2.1) with Ricε ≥ (n − 1) (κ − δ) gε for all ε ≤ ε0. This gives us

1 ≥ volεBp(r1)

volκ−δBκ−δ(r1)
≥ volεBp(r2)

volκ−δBκ−δ(r2)
.

Now by (6) from the proof of Lemma 2.2 it follows that dgε (p, q)→ dg(p, q) and hence for
any r > 0 one has that χBε,p(r) → χBp(r) almost everywhere (because the sphere Sp(r) ⊂
expp(r · {v ∈ TpM : |v|g = 1}), which has measure zero since expp is still locally Lipschitz
and r · {v ∈ TpM : |v|g = 1} ⊂ TpM has measure zero). So by dominated convergence
(note that Bε,p(r) ⊂ Bp(

r√
1−δ

) by (6) for ε small, hence the support of all characteristic

functions is contained in a common compact set) volεBp(r) → volBp(r) for all r > 0.
Calculating the volumes of balls in the comparison spaces shows that volκ−δBκ−δ(r) =
c
∫ r
0 snκ−δ(s)n−1ds → c

∫ r
0 snκ (s)n−1ds = volκ Bκ (r), where

snκ (s) :=

⎧
⎪⎪⎨

⎪⎪⎩

1√
κ
sin(
√

κs) κ > 0

s κ = 0
1√|κ| sinh(

√|κ|s) κ < 0,

for δ → 0. Altogether this proves the theorem. ��

3 The Lorentzian case

In this section the goal is to use volume comparison results (as developed in [25]) for smooth,
globally hyperbolic spacetimes M with timelike Ricci curvature bounded from below and
containing a spacelike hypersurface� (satisfying some additional causality and completeness
conditions) that has mean curvature bounded from above to establish analogous results for
C1,1-metrics. It should be noted that these conditions are very similar to those of the Hawking
singularity theorem and [25] includes proofs of this theorem using the new comparison
techniques therein. So one of the motivations of this paper was to also give an alternative
proof of Hawking’s singularity theorem in C1,1-regularity (which was first shown in [14]).
This will be done in Sect. 4.2.

However, there are some additional difficulties (compared to the Riemannian result from
the previous section) arising due to the metric being Lorentzian: First, one has to be more
careful when choosing approximating metrics and simple convolution is no longer sufficient
since it neednot preserve the causal structure.Here the pioneeringworkwasdonebyChruściel
and Grant in [7], and from there on causality theory for C1,1 metrics has been developed (see,
e.g., [13,14,18]). Additionally, the concept of global hyperbolicity for continuous metrics
has recently been explored in [21]. This will be helpful in establishing certain results from
causality theory for globally hyperbolic spacetimes with a C1,1-metric in Sect. 3.1.

Second, while there is no assumption of (geodesic) completeness needed for the smooth
result, an assumption on the minimal time of existence of geodesics starting orthogonally
to the hypersurface with unit speed has to be made to ensure that everything plays out in
relatively compact sets.

Third, showing that the volumes of the balls in the approximatingmetrics actually converge
to the volumes in the C1,1-metric is a bit more involved and will need a result regarding the
cut locus of � with respect to the C1,1-metric, namely that it has measure zero. This will be
shown in Sect. 3.3.
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3.1 Basic definitions and results

Throughout this section M will always be a Lorentzian manifold with a time orientation.
While we will generally assume C1,1 regularity of the metric, we will often include this
assumption explicitly to highlight its importance (many of our results will be both well-
known in higher and not true, or at least unproven, in lower regularity). We also fix once and
for all a (complete) Riemannian background metric h on M .

As in, e.g., [3,6]we define causal (timelike) curves to be locally Lipschitz continuousmaps
γ : I → M (I being an interval) with γ̇ 
= 0 and g(γ̇ , γ̇ ) ≤ 0 (< 0) almost everywhere. A
causal curve is called future (past) directed if γ̇ is future (past) pointing almost everywhere.

For p, q ∈ M we write p � q if there exists a future directed (f.d.) timelike curve from p
to q and p ≤ q if either p = q or there exists a f.d. causal curve from p to q . We also define

I+(p) : = {q ∈ M : p � q}
J+(p) : = {q ∈ M : p ≤ q}.

I− and J− are defined analogously. Note that for a C1,1-metric it does not matter whether
one allows Lipschitz causal curves or one requires causal curves to be piecewise C1 (or even
broken geodesics) in the definition of I+ and J+ (see [18, Thm.1.27] or [13, Cor.3.10]).
Note also that most results from smooth causality theory carry over to C1,1-metrics, we refer
to [13,18] and [14, Appendix A] for an overview.

We will mainly work with globally hyperbolic manifolds and as for smooth metrics one
may use any of the following equivalent properties as definition.

Proposition 3.1 (Global hyperbolicity) Let (M, g) be a spacetime with C1,1-metric g. Then
the following properties are equivalent:

1. (M, g) is causal and for all p, q ∈ M the set J (p, q) := J+(p) ∩ J−(q) is compact,
2. there exists a Cauchy hypersurface S for M (i.e. a set S ⊂ M that is met exactly once by

every inextendible timelike curve) and
3. (M, g) is causal and C(p, q) (the space of equivalence classes of future directed causal

curves from p to q with the compact-open topology) is compact

If any of these conditions holds, we say that (M, g) is globally hyperbolic.

Proof In [21], it was shown that these are equivalent even for continuous metrics, if one
replaces causality with the slightly stronger assumption of (M, g) being non-totally impris-
oning. So it only remains to show that for a C1,1-metric both (1) and (3) already imply M
being non-totally imprisoning. This follows as for smooth metrics so we will only present a
brief outline: From compactness of J (p, q) (respectively C(p, q)) one obtains that J±(p)
is closed for all p, see [19, Prop. 3.71], respectively [21, Prop. 3.3] (note that the proof only
actually uses compactness of C(p, q)). Since g ∈ C1,1 one can still use the exponential map
to show that then already J±(p) = I±(p) [13, Cor. 3.16]. Thus (M, g) is distinguishing and
reflective [19, Prop. 3.64 and 3.65], hence strongly causal (Prop. 3.41, 3.47 and Thm. 3.51 in
[19] show the existence of a time function and Prop. 3.57 gives strong causality). That strong
causality is stronger than non-totally imprisoning follows again as in the smooth case (see
e.g. [20, Lem. 14.13]) as was already remarked in [15]. ��

Remark 3.2 The previous proof also shows that for C1,1-metrics this definition of global
hyperbolicity is equivalent to the one in [21].
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Definition 3.3 (Future time separation) Let p ∈ M . Then for q ∈ M the (future) time
separation to p is defined by

τ(p, q) := sup({L(γ ) : γ is a f.d. causal curve form p to q} ∪ {0}), (8)

where L(γ ) denotes the Lorentzian arc-length of γ , i.e., for a curve γ : (t1, t2) → M one

has L(γ ) := ∫ t2
t1

√
|g( ˙γ (t), ˙γ (t))|dt . Similarly one defines the future time separation to a

subset � by

τ�(p) := sup
q∈�

τ(q, p). (9)

If M is globally hyperbolic with a continuous metric then any two causally related points can
be connected by a maximizing curve [21, Prop. 6.4], hence the supremum in definition (3.1)
is attained, so τ : M × M → [0,∞] is finite-valued. It is also lower semi-continuous (this
holds even if M is not globally hyperbolic, see [14, Lem. A.16]). We want to show a similar
statement for the time separation to a subset �. This requires some additional properties of
� ([25, Def. 2]).

Definition 3.4 (Future causally complete) A subset � ⊂ M is called future causally com-
plete (FCC) if for any p ∈ J+(�) the set J−(p) ∩� has compact relative closure in �.

Remark 3.5 In a globally hyperbolic manifold the sets J±(p) are closed [21, Prop. 3.3] and
hence for any FCC subset � and p ∈ J+(�) we have that J−(p) ∩ � is compact and �

itself is closed. Furthermore, from [21, Cor. 3.4], it then follows that

J−(p) ∩ J+(J−(p) ∩�) is compact. (10)

As a preparation for Prop. 3.7 we prove the following limit-curve lemma (that will also
be needed again later on), which is a slight modification of Thm. 1.5 in [21] (which is in turn
based on [17]):

Lemma 3.6 Let M be globally hyperbolic and γn : [0, 1] → M be a sequence of causal
curves and K ⊂ M compact such that γn ⊂ K for all n ∈ N. Then there exists a
subsequence γnk that converges (h-)uniformly to a causal curve γ : [0, 1] → M (i.e.
supt∈[0,1] dh(γnk (t), γ (t)) → 0) with

L(γ ) ≥ lim sup
k→∞

L(γnk ). (11)

In particular, if the γn are maximizing, then γ is as well.

Proof By [21, Lem. 2.7] we get an upper bound on the Lipschitz constants of the γn . And
so, since the sequence must have an accumulation point, the convergence result follows from
Thm. 1.5 of [21].

It remains to show (11) and that γ is maximizing if the γn are. By [21, Thm. 6.3] the
length functional L : {γ ∈ C ([0, 1] , K ) : γ causal} → [0,∞) is upper semi-continuous
w.r.t. h-uniform convergence as defined above (note that while the statement there only deals
with a special subset of causal curves defined on [0, 1], the proof works for any set of such
curves with an upper bound on the Lipschitz constants), so L(γ ) ≥ lim sup L(γnk ). Using
this and lower semi-continuity of τ (see [14, Lem. A.16]) gives

L(γ ) ≥ lim sup L(γnk ) = lim sup τ(γnk (0), γnk (1)) ≥ τ (γ (0), γ (1)) ,

so γ is maximizing. ��
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For an acausal, spacelike FCC hypersurface in a globally hyperbolic manifold the follow-
ing holds (which is shown largely analogous to the smooth case ([25, Thm. 2]), only using
Lemma 3.6 instead of other limit curve results, we nevertheless include a complete proof):

Proposition 3.7 Let (M, g) with g ∈ C1,1 be globally hyperbolic and let � ⊂ M be an
acausal, FCC subset. Then the future time separation τ� to � is finite-valued and contin-
uous on M and for any p ∈ J+(�) \ � there exists q ∈ � and a causal curve γ from q
to p with τ�(p) = τ(q, p) = L(γ ). Any such maximizing curve γ has to be a (reparame-
trization of) a geodesic, which is timelike for p ∈ I+(�) and null otherwise. If � ⊂ M is,
additionally, a spacelike hypersurface, then for p ∈ I+(�) any maximizing geodesic has to
start orthogonally to �.

Proof If p /∈ I+(�) then τ�(p) = 0. Now let p ∈ J+(�) \ �. Then there exists a causal
curve γ from p to q ∈ � and if p /∈ I+(�) then clearly L(γ ) ≤ τ�(p) = 0 ≤ L(γ ). So
assume p ∈ I+(�). By definition of τ� there exist qn ∈ � such that τ(qn, p) → τ�(p).
Since p ∈ I+(�) we have τ�(p) > 0 and hence τ(qn, p) > 0 for n large, so qn and p are
causally related and can be connected by amaximizing curve γn (see [21, Prop. 6.4]). Because
qn ∈ J−(p) ∩ �, all the γn are contained in J−(p) ∩ J+(J−(p) ∩ �), which is compact
by Remark 3.5. Therefore (after maybe reparametrizing and passing to a subsequence),
Lemma 3.6 gives a uniform limit curve γ that is causal, satisfies q = γ (0) ∈ � (note that �
is closed by Remark 3.5) and p = γ (1) and is maximizing, so by upper semi-continuity of
the length functional we get

τ(p, q) = L(γ ) ≥ lim sup L(γn) = lim sup τ(qn, p) = τ�(p).

Consequently, γ maximizes the distance from � to p and τ�(p) is finite.
Regarding continuity we show lower and upper semi-continuity separately, starting with

lower semi-continuity. Let p ∈ M . We have to show that for every ε there exists a neighbor-
hood Uε of p such that for all q ∈ Uε

τ�(q) ≥ τ�(p)− ε.

If τ�(p) = 0, there is nothing to prove due to non-negativity of τ� . Let γ : [0, 1]→ M be
a causal curve from p0 ∈ � to p such that L(γ ) = τ(p0, p) = τ�(p) > 0. Now for any
ε > 0 there exists tε such that L(γ |[tε,1]) < ε. Then Uε := I+(γ (tε)) is a neighborhood of
p such that for all q ∈ Uε

τ�(q) ≥ L(γ |[0,tε]) = τ�(p)− L(γ |[tε,1]) ≥ τ�(p)− ε.

Next we show upper semi-continuity, i.e., for every ε there exists a neighborhood Uε of p
such that for all q ∈ Uε

τ�(q) ≤ τ�(p)+ ε.

Assume to the contrary that there exists ε > 0 and pn → p such that

τ�(pn) > τ�(p)+ ε

and let γpn : [0, 1] → M be causal curves from � to pn with τ�(pn) = L(γpn ) (such
curves exist, since τ�(pn) > τ�(p) + ε > 0 and so pn ∈ I+(�)). Let p+ ∈ I+(p), then
pn ∈ J−(p+) eventually and thus γpn ⊂ J−(p+)∩ J+(J−(p+)∩�), which is compact by
Remark 3.5. So, we can apply Lemma 3.6 to obtain (after passing to a subsequence) a curve
γ from � to p = lim pn with

τ�(p) ≥ L(γ ) ≥ lim sup
n→∞

L(γpn ) = lim sup
n→∞

τ�(pn) ≥ τ�(p)+ ε

which is a contradiction.
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Since causal geodesics are locally maximizing (by [18, Thm. 6]), any maximizing curve
must be (a reparametrization of) a geodesic and if p ∈ I+(�) then τ�(p) > 0, so it has to
be timelike.

Now let� be an acausal, FCC, spacelike hypersurface.We show that all timelike geodesics
that start in � and maximize the distance to � must start orthogonally: First note that if
γ : [0, b]→ M maximizes the distance then also γ |[0,ε] must maximize the distance to �,
so this is a local question and we may assume that M = R

n , � ⊂ R
n is a hypersurface and

γ : [0, 1] → R
n is a timelike unit-speed geodesic with γ (0) = 0 ∈ � that maximizes the

distance to �. Now for any v ∈ T0� we can find a smooth curve α : [0, ε]→ � such that
α̇(0) = v and α(0) = 0. We use this to define a C2,1 (note that γ is a geodesic, hence C2,1
by the geodesic equation) variation

σ : [0, 1]× [0, ε]→ R
n

σ(t, s) = γ (t)+ (1− t)α(s).

Since γ is timelike, this is a timelike variation for small enough ε and we may use the first
variation of arc-length (see [20, Prop. 10.2] and note that s �→ L(σ (., s)) is still C1) to obtain

0 = L ′(0) =
∫ 1

0
g(γ̈ (t), (∂sσ)(t, 0))dt + g(v, γ̇ (0)) = g(v, γ̇ (0)).

This shows that γ̇ (0) ⊥ v for all v ∈ T0�, so γ starts orthogonally. ��
Note that the part of the proof that shows that γ has to start orthogonally to � really only

works for p ∈ I+(�) and not for p ∈ J+(�) since in that case one could not guarantee that
the constructed variation consists only of timelike curves. However, the next remark shows
that J+(�) \ (� ∪ I+(�)

) = ∅ anyways.
Remark 3.8 If � is an acausal, FCC hypersurface then actually J+(�) \ � = I+(�).
The argument is the same as for smooth metrics: First, any FCC set must be closed (by
Remark 3.5) and then [20, Cor. 14.26] shows that edge(�) = ∅. By Proposition 3.7 any
p ∈ J+(�) \ (� ∪ I+(�)

)
is the future endpoint of a lightlike geodesic γ starting in

γ (0) ∈ �. Now ifγ (0) /∈ edge(�) then for ε small enoughγ (ε) ∈ I+(�) (since by definition
of edge(�) [20, Def. 14.23] there must exist a q− ∈ I−(γ (0)) such that any timelike curve
connecting q− to γ (ε) meets �) contradicting p /∈ I+(�). But since edge(�) = ∅ this
shows that J+(�) \ (� ∪ I+(�)

) = ∅.
Finally, we will specify the curvature conditions, introduced in [25, Def. 5], (M, g) has

to satisfy for the volume comparison theorem (Theorem 1.1) we are going to show.

Definition 3.9 (Cosmological comparison condition) Let κ, β ∈ R. We say that a spacetime
(M, g, �) satisfies the cosmological comparison condition CCC(κ, β) if

1. � ⊂ M is a smooth, spacelike, acausal, FCC hypersurface and the mean curvature H of
� satisfies H ≤ β and

2. Ric(X, X) ≥ − (n − 1) κ g(X, X) in L∞loc for any local, smooth timelike vector field X
(i.e., the timelike Ricci curvature is bounded from below by κ in the sense of (1))

Remark 3.10 Following [20] our sign conventions regarding the mean curvature are as fol-
lows: Let � be a spacelike hypersurface and n be the f.d. timelike unit normal vector field to
�. We define the shape operator Sn : T� → T� of � by Sn(V ) := tan�∇V n, where tan�

denotes the tangential projection T M |� → T�. Using the shape operator we can write the
mean curvature as H = trg|T�

Sn, where g|T� denotes the metric on � induced by g.
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Note that even though basically all of the upcoming results (except for the C1,1 version
of Hawking’s theorem at the very end, see Theorem 4.5) will additionally require global
hyperbolicity, we choose not to include this in the definition of the comparison condition.

3.2 Construction and properties of the approximating metrics

We need to establish some properties of suitable approximations for a C1,1-metric g with a
hypersurface � satisfying CCC(κ, β). This is done in the following three lemmas. To start
with, we use approximations as constructed in [7], i.e., we have (using the formulation of
[13, Prop. 2.5]):

Proposition 3.11 Let (M, g) be a spacetime with a continuous Lorentzian metric, and h
some smooth background Riemannian metric on M. Then for any ε > 0, there exist smooth
Lorentzian metrics ǧε and ĝε on M such that ǧε ≺ g ≺ ĝε , i.e.

∀X ∈ T M : ǧε(X, X) ≤ 0 �⇒ g(X, X) < 0 and g(X, X) ≤ 0 �⇒ ĝε(X, X) < 0,

and dh(ǧε, g)+ dh(ĝε, g) < ε, where

dh(g1, g2) := sup
p∈M

sup
0 
=X,Y∈TpM

|g1(X, Y )− g2(X, Y )|
‖X‖h ‖Y‖h .

Moreover, ǧε and ĝε depend smoothly on ε, and if g ∈ C1,1 then ǧε and ĝε additionally satisfy

1. They converge to g in the C1-topology as ε → 0 and
2. The second derivatives are bounded, uniformly in ε, on compact sets.

Now we show that we may additionally demand the following:

Lemma 3.12 Let (M, g) be globally hyperbolic with g ∈ C1,1 and let � ⊂ M be a smooth
acausal, spacelike FCC hypersurface. Then there exist smooth approximations gε such that
the approximations (M, gε) are globally hyperbolic and � ⊂ M is a smooth acausal,
spacelike FCC hypersurface (w.r.t. gε).

Proof We first show that we can construct approximations gε that retain the properties of the
ǧε from above but additionally satisfy that� is gε spacelike for ε small, i.e. gε|T� is positive
definite. To do this, we show that for every compact set K ⊂ � there exists εK such that this
holds for the ǧε for all ε ≤ εK and then apply the globalization lemma [13, Lem. 2.4]. This
gives us metrics gε(p) := ǧε̃(ε,p)(p) that satisfy gε|K = ǧε|K for all ε ≤ εK and gε|T� is
positive definite. Since g|T� is a Riemannian metric on� we have that g(X, X) = 1 implies
‖X‖h ≤ C for all X ∈ T�|K and hence sup{X∈T�|K :g(X,X)=1} ǧε(X, X)− g(X, X)→ 0 by
the previous proposition. So ǧε(X, X) > c g(X, X) > 0 for any nonzero X ∈ T�|K for all
ε small (depending on K ), showing positive definiteness.

The other properties follow because by the above construction gε ≺ g (since gε(p) =
ǧε̃(ε,p)(p) and ǧε ≺ g): By Proposition 3.1, global hyperbolicity is equivalent to the existence
of a Cauchy hypersurface and by definition any Cauchy hypersurface for g also has to be
a Cauchy hypersurface for any g′ ≺ g. This shows that (M, gε) is globally hyperbolic.
Similarly � being g-FCC implies gε-FCC and g-acausality of � implies gε-acausality. ��

Fromnowon gε will always denote smooth approximatingmetrics as constructed above, in
particular satisfying Proposition 3.11, Lemma 3.12 and gε ≺ g. The next lemma shows prop-
erties of the Ricci curvature Ricε of this approximations (which is basically [14, Lem. 3.2],
except also explicitly covering the case κ 
= 0, and the proof proceeds similarly).
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Lemma 3.13 Let g ∈ C1,1 and h be a background Riemannian metric. Suppose that
Ricg(X, X) ≥ −n κ g(X, X) for any local smooth g-timelike vector field X ∈ X(U ). Then
for any compact set K ⊂ M, C > 0 and δ > 0 there exists ε0 = ε0(K ,C, δ) such that

Ricε(X, X) ≥ (n − 1) (κ − δ) ∀X ∈ T M |K with gε(X, X) = −1 and ‖X‖h < C (12)

for all ε < ε0.

Proof Fix K ⊂ M (w.l.o.g. contained in a chart domain), C > 0 and δ > 0. As in the
proof of Lemma 2.3 we proceed similarly to [14, Lem. 3.2]. By the argument given there
gε − g̃ε → 0 in C2 (note that by construction gε = ǧε on K for ε small). As in (7) we have
Ricg̃ε

− R̃icε → 0 uniformly on compact sets and so

Ricε − R̃icε → 0 uniformly on compact sets. (13)

Nowwedefine Aε := Ricε−(n − 1) κgε and A := Ric−(n − 1) κg. Clearly Aε− Ãε → 0
uniformly on compact sets and thus (for ε small enough)

∣
∣
∣Aε(X, X)− Ãε(X, X)

∣
∣
∣ ≤ c sup

i, j≤n
sup
p∈K

∣
∣
∣Ai j (p)− Ãε,i j (p)

∣
∣
∣ < δ(n − 1)

for all X ∈ T M |K with ‖X‖h ≤ C . So if we can show that Ãε(X, X) ≥ 0 for all X ∈ T M |K
with ‖X‖h ≤ C and gε(X, X) = −1 the claim follows.

As in Lemma 2.3 it now suffices to show this for every term of Ãε of the form
ζαψ∗α((χ̃αAi j ) ∗ ρε). Again we may assume M = R

n and Ãε = A ∗ ρε. Now choose
ε0 such that |gε(X, X)− g (X, X)| < 1

2 for all X ∈ T M |K with ‖X‖h ≤ C and
all ε < ε0. Since g is uniformly continuous on K there exists some ε0 > r > 0
such that for any p, x ∈ K with ‖x − p‖h < r and any X p ∈ TpM = R

n with∥∥X p
∥∥
h ≤ C we have

∣∣g(p)(X p, X p)− g(x)(X p, X p)
∣∣ < 1

2 . This implies that for any
p ∈ K and X p ∈ R

n with
∥∥X p

∥∥
h ≤ C and gε(p)(X p, X p) = −1 the constant vector

field X̃ : x �→ X p is g timelike on on the open ball Bp(r) and thus by our assumption
A(X̃ , X̃) = Ric(X̃ , X̃)− (n − 1) κg(X̃ , X̃) ≥ 0 almost everywhere on Bp(r). So for ε < r
we get

Ãε(p)(X p, X p) = (A ∗ ρε)(p)(X p, X p) = (A(X̃ , X̃) ∗ ρε)(p) ≥ 0,

since ρε ≥ 0 and suppρε ⊂ B0(ε). ��
Remark 3.14 Note that the condition ‖X‖h < C in the inequality (12) was not necessary
in the Riemannian case (see Lemma 2.3) since g itself was Riemannian, but is vital for
Lorentzian metrics and without it, the result is probably not true: For example, if M = R

3

with g = diag(−1, 1, 1) and gε = diag(−1 − εx2y2z2, 1, 1) then gε → g even in C∞
and Ricg(X, X) ≥ 0, but for p = (1, 1, 1) ∈ M , N ∈ N and any ε > 0 there exists
X = X (N , ε) ∈ TpM = R

3 such that gε(p)(X, X) = −1 but still

Ricgε (p)(X, X) < −N .

However, these X (N , ε) do not satisfy ‖X (N , ε)‖h < C for any C > 0 independent of ε

and N . A straightforward calculation gives

Ricgε (p) =
1

(1+ ε)2

⎛

⎝
(1+ ε) 2ε 0 0

0 −ε −ε (2+ ε)

0 −ε (2+ ε) −ε

⎞

⎠ .
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Now let X = (x, y, y) ∈ TpM and demand−1 = gε(p)(X, X) = (−1− ε) x2+ 2y2. Then

Ricgε (p)(X, X) = 2ε

(1+ ε)2

[
1− (1+ ε)y2

]

which diverges to −∞ as y →∞ for any fixed ε.

Lemma 3.15 Let g ∈ C1,1 and assume that the mean curvature of � ⊂ M is bounded from
above by β. Then there exist approximations gε such that for any compact set A ⊂ � and
η > 0 there exists ε0 such that Hε|A < β + η for all ε < ε0.

Proof Since H = trg|T�
Sn (see Remark 3.10) and the Christoffel symbols of gε converge

to those of g uniformly on compact sets it suffices to show that the the gε unit normal vector
field nε to � converges to n in C1. Because � is a smooth hypersurface it is locally given as
the zero set of a submersion f : U → R

n−1 and hence

nε = gradε f∣
∣gradε f

∣
∣
gε

→ grad f

|grad f |g
= n (14)

in C1, proving the claim. ��
We need two further properties of this approximations.

Proposition 3.16 Let K ⊂ T M be compact and T > 0 such that all g-geodesics starting in
K exist for all t ≤ T . Then there exists ε0 > 0 such that for all ε0 ≥ ε ≥ 0 every gε-geodesic
starting in K exists until at least time T and the function

f : [0, ε0]× [0, T ]× K → T M

(ε, t, v) �→ γ̇ ε
v (t),

where γ ε
v denotes the gε-geodesic with γ̇ ε

v (0) = v, is continuous.

Proof This follows from a local argument using a standard result on the comparison of
solutions toODE [8, 10.5.6 and 10.5.6.1]: Note that the�k

g,i j are locally Lipschitz continuous,

the �k
ε,i j (p) depend smoothly on ε and p for ε > 0 and �k

ε,i j → �k
g,i j locally uniformly

for ε → 0. Given any v ∈ K we choose chart domains Ui ⊂ T M (i = 0, . . . ,m) covering
γ̇v([0, T ]) and times ti such that γ̇v([ti , ti+1]) ⊂ Ui . Let ki be an upper bound for theLipschitz
constants of the derivatives of g and gε inUi and αi be chosen such that |�k

ε,l j −�k
g,l j | < αi

on Ui . Then by [8, 10.5.6 and 10.5.6.1] for any ṽ ∈ U0 ∩ K with
∥∥v0 − ṽ0

∥∥
e < μ0 one has

that for μ0 and α0 sufficiently small γ̇ ε,0 exists until at least t1 and
∥∥∥γ̇ 0

v (t)− γ̇
ε,0
ṽ

(t)
∥∥∥
e
≤

μetk + α etk−1
k for all t ∈ [0, t1]. Continuing this in U1 (with initial data γ̇v(t1) and γ̇ ε

ṽ
(t1),

which will be close if v and ṽ were), U2 and so forth gives the claim. ��
Definition 3.17 (Unit normal bundle)We write S+N� (or sometimes also S+0 N0�) for the
(future) unit normal bundle to �, i.e.

S+N� := {
v ∈ T M |� : v f.p., g(v,w) = 0 ∀w ∈ Tπ(v)� and g(v, v) = −1} ⊂ T M |�

and analogously S+ε Nε� for the (future) unit normal bundle to� w.r.t. the metric gε. For any
A ⊂ � we further define S+N A ≡ S+0 N0A :=

{
v ∈ S+N� : π(v) ∈ A

}
and analogously

S+ε NεA.
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For compact A ⊂ � each S+ε NεA is compact for any ε ≥ 0 (since the respective future
pointing unit normal vector fields nε are continuous and S+ε NεA = nε(A) by definition).
The following lemma shows that this remains true for their union over 0 ≤ ε ≤ ε0.

Lemma 3.18 Let A ⊂ � be compact. Then for any neighborhood U of S+N A in T M |�
there exists ε0(U, A) > 0 such that

⋃

0≤ε≤ε0

S+ε NεA ⊂ U ⊂ T M |�

and is compact.

Proof By definition of the unit normal bundles S+ε NεA we have
⋃

0≤ε≤ε0
S+ε NεA =

n([0, ε0], A) where n : [0, 1]×� → T M |� is defined by n(ε, p) := nε(p), so the assertion
follows from continuity of n (which in turn follows directly from (14)).

3.3 The cut locus of � has measure zero

As a further preparation we will now show that for an acausal, spacelike, FCC hypersurface
� in a globally hyperbolic spacetime with C1,1-metric the (future) cut locus Cut+(�) ⊂ M
has measure zero. This will be vital in the proof of Lemma 3.31.

Definition 3.19 (Cut function) Let (M, g)with g ∈ C1,1 be globally hyperbolic and� ⊂ M
be an acausal, spacelike, FCC hypersurface. The function

s+� : S+N� → R̄

s+�(v) := sup
{
t > 0 : τ�(γv(t)) = L(γv|[0,t])

}

is called the cut function.

We first show measurability of the cut function.

Lemma 3.20 (Measurability of the cut function) The cut function is measurable with respect
to the completion Bμg of the Borel-σ -algebra of S

+N� w.r.t. the measure μg induced by the
metric g.

Proof To begin with we rewrite the cut function in a form that makes it possible to use
Proposition A.6. Define the set-valued map F : S+N� → P(R) by

F(v) := {
t ∈ R : (v, t) ∈ D and τ�(γv(t)) = L(γv|[0,t])

}
,

where D denotes the maximal domain of definition of the flow of the (normal) exponential
map. Note that D is open. Then (using Proposition 3.7)

s+�(v) = sup {t : t ∈ F(v)} .
Since R is a Suslin space (see Example A.3) and f = pr

R
: S+N� ×R→ R is continuous

(so in particular measurable) it only remains to show that

graph(F) = {
(v, t) ∈ D : τ�(γv(t)) = L(γv|[0,t])

}

is measurable. This in turn follows immediately if we can show that both the map (v, t) �→
τ�(γv(t)) and (v, t) �→ L(γv|[0,t]) are continuous on D. The first continuity follows from
continuity of τ� onM (see Lemma 3.7) and continuity of (v, t) �→ γv(t) onD (by continuous
dependence of ODE solutions on the initial data). For the second one, note that (v, t) �→∫ t
0 g(γv(τ ))(γ̇v(τ ), γ̇v(τ ))dτ is continuous because the integrand is. ��
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Remark 3.21 Note that Bμg is actually independent of g: If g̃ is any other semi-Riemannian
metric on M then Bμg = Bμg̃because the Borel sets of measure zero are the same for μg and
μg̃ as locally any such measure is given by the Lebesque measure multiplied by a positive
function (cf. [9, 16.22.2]).

Also, for smooth metrics measurability is a direct consequence of lower semi-continuity
of the cut function, but the proof of lower semi-continuity uses the characterization of the
cut points as either conjugate points or meeting points of two maximizing geodesics (see,
e.g., [3, Prop. 9.7]), which one does not have in the C1,1 case and it is unclear whether lower
semi-continuity even remains true for C1,1-metrics.

Definition 3.22 (Cut locus) The tangential (future) cut locus is defined as

Cut+T (�) := {
s+�(v)v : v ∈ S+N� and

(
v, s+�(v)

) ∈ D
} ⊂ N�.

The (future) cut locus is defined as the image of the tangential cut locus under the normal
exponential map:

Cut+(�) := expN (Cut+T (�)).

Proposition 3.23 Let (M, g) with g ∈ C1,1 be globally hyperbolic and � ⊂ M be an
acausal, spacelike, FCC hypersurface. Then the future cut locusCut+(�) ⊂ M has measure
zero.

Proof First note that S+N�× (0,∞) ∼= N� \ {0} via (v, t) �→ tv. Using this identification
we have

Cut+T (�) = {(
v, s+�(v)

) : v ∈ S+N� and
(
v, s+�(v)

) ∈ D
} = graph(s+�) ∩D.

So frommeasurability of the cut function (Lemma 3.20) and Proposition A.7 and Proposition
A.8 from the appendix, we obtain that the tangential cut locus Cut+T (�) ⊂ N� has measure
zero.

Now the normal exponential map expN : N� → M is a locally Lipschitz continuous map
from the n− 1+ 1 = n-dimensional manifold N� to the n-dimensional manifold M , hence
its chart representations (with relatively compact domains) can be extended to Lipschitz
continuous maps from R

n → R
n . Using a compact exhaustion Kn of N� and covering each

Kn by finitely many charts (with relatively compact domains) we see from Proposition A.9
that expN (Kn ∩ Cut+T (�)) has measure zero. Thus Cut+(�) = ⋃

n exp
N (Kn ∩ Cut+T (�))

has measure zero. ��
3.4 The comparison manifolds

For any given κ, β we use the comparison manifolds Mκ,β defined in [25, Sec. 4.2]. To make
this work more self-contained, we will briefly review their definition and properties.

These comparison manifolds were constructed to satisfyCCC(κ, β)with equality in both
the Ricci as well as the mean curvature estimates and are given by certain warped products
Mκ,β =

(
aκ,β, bκ,β

)×Nκ,β for 0 ∈ (aκ,β , bκ,β) ⊂ R, where Nκ,β is the (n−1)-dimensional
simply connected Riemannian manifold with constant sectional curvature of 0, 1, or −1,
depending on κ and β (so eitherRn−1, the unit sphere Sn−1, or hyperbolic space Hn−1), with
metric

gκ,β = −dt2 + fκ,β(t)2h,

where h denotes the standard Riemannian metric on Nκ,β and fκ,β :
(
aκ,β , bκ,β

)→ R is a
positive smooth function.
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Table 1 Warping functions for different values of κ, β

κ β Nκ,β b fκ,β (t) bκ,β

κ < 0 |β|
(n−1)√|κ| < 1 Sn−1 tanh−1( β

(n−1)√|κ| )
1√|κ| cosh(

√|κ|t + b) ∞
|β|

(n−1)√|κ| = 1 R
n−1 0 exp(sgn(β)

√|κ|t) ∞
β

(n−1)√|κ| > 1 Hn−1 coth−1( β

(n−1)√|κ| )
1√|κ| sinh(

√|κ|t + b) ∞
β

(n−1)√|κ| < −1 Hn−1 coth−1( β

(n−1)√|κ| )
1√|κ| sinh(

√|κ|t + b) − b√|κ|
κ = 0 β = 0 R

n−1 0 1 ∞
β > 0 Hn−1 n−1

β
t + b ∞

β < 0 Hn−1 n−1
β t + b − n−1

β

κ > 0 β ∈ R \ {0} Hn−1 cot−1( β

(n−1)√κ
) 1√

κ
sin(
√

κt + b)
−b+ π

2 (1+sgn(β))√
κ

β = 0 Hn−1 π
2

1√
κ
cos(

√
κt) π

2
√

κ

The warping functions for each pair κ, β are summarized in the table below, which is
based on [25, Table 1], but we use that the mean curvature H0 of the hypersurface �κ,β :=
{0}× Nκ,β ⊂ Mκ,β is equal to β to express their constant b in terms of β and we also include
the respective constants bκ,β that specify the upper bound of the interval where f 2κ,β > 0.Also
note that our basemanifold is assumed to be n-dimensional (whereas it is (n+1)-dimensional
in [25]) and for notational simplicity some of the fκ,β listed in Table 1 are strictly negative
instead of positive. (Of course one may replace them with − fκ,β to obtain positive warping
functions).

Since limt↗bκ,β fκ,β(t) = 0 if bκ,β < ∞ we may define continuous functions f̃κ,β :
[0,∞) → R by extending fκ,β by zero if necessary, so

f̃κ,β(t) :=
{
fκ,β(t) t < bκ,β

0 t ≥ bκ,β .
(15)

We now investigate some of the circumstances under which convergence of κ ↗ κ0 and
β ↘ β0 (since the approximating metrics we will use satisfy Lemma 3.13 and Lemma
3.15) implies pointwise convergence of the corresponding f̃κ,β or at least of the functions

t �→ f̃κ,β (t)
fκ,β (0) . Clearly the map (κ, β) �→ f̃κ,β is continuous (w.r.t. pointwise convergence) on

(R>0 × R \ {0}) ∪ {(κ, β) ∈ R
2 : κ < 0 and |β| 
= (n − 1)

√|κ|}. For the remaining points,
simple calculations show the following:

Lemma 3.24 If either

1. κ0 = 0, β0 
= 0 and κ ↗ 0 and β → β0,
2. κ0 = 0, β0 = 0 and κ ↗ 0 and β := (n − 1)

√|κ| ↘ 0, or
3. κ0 > 0, β0 = 0 and κ → κ0 and β ↘ 0,
4. κ0 < 0, β0 = (n − 1)

√|κ0| and κ ↗ κ0 and β := (n − 1)
√|κ| ↘ β0

then f̃κ,β → f̃κ0,β0 pointwise. And if

κ0 < 0, β0 = −(n − 1)
√|κ0| and κ ↗ κ0 and β ↘ β0
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then f̃κ,β 
→ f̃κ0,β0 but still
f̃κ,β (t)
fκ,β (0) →

f̃κ0,β0 (t)
fκ0,β0 (0) for all t ≥ 0.

Furthermore, for any κ ≤ 0 and β ∈ R one has

∣
∣
∣
∣
f̃κ,β (t)
fκ,β (0)

∣
∣
∣
∣ ≤ max

{∣∣
∣
∣
f̃κ,β (T )

fκ,β (0)

∣
∣
∣
∣ , 1

}
for all

t ≤ T because
∣
∣
∣ f̃κ,β

∣
∣
∣ ismonotone or convex and for κ > 0 andβ ∈ Rwehave

∣
∣
∣ f̃κ,β(t)

∣
∣
∣ ≤ 1√

κ

for all t ∈ R.

This convergence result can be used to show convergence of areas and volumes of future
spheres and balls in Mκ,β above a subset of�κ,β = {0}× Nκ,β ⊂ Mκ,β (which is an acausal,
spacelike, FCC hypersurface in Mκ,β ).

Definition 3.25 (Future spheres and balls) For any t > 0 and A ⊂ � we define the spheres
S+A (t) and balls B+A (t) of time t above A by

S+A (t) : = {p ∈ I+(�) : ∃q ∈ Awith d(q, p) = τ�(p) = t} and
B+A (t) : =

⋃

s∈(0,t)

S+A (s)

Using these definitions and Lemma 3.24 we show:

Corollary 3.26 For any (κ, β) ∈ R
2 there exist sequences δn > 0 and ηn > 0 converging

to zero such that

areaκ−δn ,β+ηn S
+
Bn

(t)

areaκ−δn ,β+ηn Bn
→ areaκ,β S

+
B (t)

areaκ,βB
(16)

and

volκ−δn ,β+ηn B
+
Bn

(t)

areaκ−δn ,β+ηn Bn
→ volκ,βB

+
B (t)

areaκ,βB
(17)

for all t > 0 and any measurable Bn ⊂ �κ−δn ,β+ηn and measurable B ⊂ �κ,β .

Proof The first statement is an immediate consequence of the previous lemma and
areaκ,β S

+
B (t)

areaκ,β B
= (

f̃κ,β (t)
fκ,β (0) )

n−1 for any κ, β (see [25, eq. (15)] and note that S+B (t) = ∅ for

t ≥ bκ,β ). For (17) note that and volκ,βB
+
B (t) = ∫ t

0 areaκ,β S
+
B (τ )dτ and that we may apply

dominated convergence since for κ ≤ 0 and β ∈ R one has
∣∣∣∣∣
f̃κ−δn ,β+ηn (τ )

fκ−δn ,β+ηn (0)

∣∣∣∣∣
≤ max

{∣∣∣∣∣
f̃κ−δn ,β+ηn (T )

fκ−δn ,β+ηn (0)

∣∣∣∣∣
, 1

}

→ max

{∣∣∣∣∣
f̃κ,β(T )

fκ,β(0)

∣∣∣∣∣
, 1

}

for all τ ≤ t and for κ > 0, β ∈ R one has

∣∣∣∣
f̃κ−δn ,β+ηn (τ )

fκ−δn ,β+ηn (0)

∣∣∣∣ ≤ (κ−δn)
− 1
2

| fκ−δn ,β+ηn (0)| → 1√
κ| fκ,β (0)| .

��
Remark 3.27 The reason we only show this for specific sequences δn and ηn lies in our
somewhat incomplete treatment of the dependence of f̃κ,β/ f̃κ,β(0) on κ, β in Lemma 3.24:
While it does seem reasonable that the result remains true for all such sequences, that would
require many additional cases of possible convergence to be checked in Lemma 3.24, which
is rather tedious and completely unnecessary for the rest of this work.
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3.5 Volume comparison

We first need to show area and volume comparison statements for the approximating metrics
and to do so we need to define future spheres that avoid the cut locus.

Definition 3.28 For t > 0 let

S+A(t) := S+A (t) \ Cut+(�).

Similarly, but using the approximations gε (from Sect. 3.2), the gε-time separation τε,� and
the ε-cut locus, we define S+ε,A(t).

Using results from [25] we are now able to prove area and volume comparison statements
for the approximating metrics.

Proposition 3.29 (Area comparison for approximations) Let κ, β ∈ R, g ∈ C1,1 and assume
(M, g, �) is globally hyperbolic and satisfies CCC(κ, β). Let A ⊂ � be compact, η, δ > 0,
B ⊂ �κ−δ,β+η (with finite, non-zero area) and T > 0 such that all timelike, f.d. unit speed
g-geodesics starting in A orthogonally to � exist until at least T . Then there exists ε0 > 0
(depending on η, δ, A, T ) such that for all ε < ε0 the function

t �→ areaε S
+
ε,A(t)

areaκ−δ,β+ηS
+
B (t)

,

is nonincreasing on (0, T ] if T < bκ−δ,β+η or on (0, bκ−δ,β+η) if T ≥ bκ−δ,β+η.

Proof We would like to use [25, Thm. 8], however, we have to argue that the bounds on
Ricci and mean curvature from Lemma 3.13 and 3.15 are sufficient to show this for smooth
metrics ([25] requires global bounds while we only have them on compact subsets of T M
respectively �).

First we note that by compactness of S+N A there exists a neighborhood U of S+N A
in T M such that all g-geodesics starting in U exist until at least T . Then by Lemma 3.18,
for ε0 small the set Kε0 :=

⋃
0≤ε≤ε0

S+ε NεA ⊂ T M is compact and contained in U , hence
any g-geodesic starting in it exists until T . So by Prop. 3.16 there exists ε0 > ε̃0 > 0 such
that f

([
0, ε̃0

]× [0, T ]× Kε0

) =: K̃ ⊂ T M is compact, in particular h-norm bounded by
a constant C .

From here the proof proceeds analogously to [25, Thm. 8]. Let 0 < t1 < t2 <

min(T, bκ−δ,β+η) and choose a sequence of compact sets Kε, j ⊂ S+ε,A(t2) with area Kε, j ↗
area S+ε,A(t2). Now, as in [25], we get sets

Kε, j (t) := �ε,t−t2(Kε, j ) ⊂ S+ε,Ki
(t),

where � is the flow of −grad(τε,�), and

d

dt
log(area Kε, j (t)) = 1

area Kε, j (t)

∫

Kε, j (t)
Hε,t (q)dμε,t (q).

Next we show that for ε small enough (depending on η, δ, A and K̃ )

Hε,t (q) ≤ Hκ−δ,β+η(t) (18)

for all q ∈ Kε, j (t). This proceeds similarly to [25, Thm. 7]: For any q ∈ S+ε,K j
(t) the unique,

maximizing, unit-speed gε-geodesic γε connecting q to � satisfies γ̇ε(0) ∈ S+ε NεA and we
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have H(γ (0)) ≤ β + η (by Lemma 3.15) and γ̇ε ⊂ K̃ and hence Ricε(γ̇ε(s), γ̇ε(s)) ≥
n (κ − δ) for all s ∈ [0, t] (by Lemma 3.13). Note that this is all that is needed to apply the
Riccati comparison argument used in the proof of Thm. 7 and it is the only place where the
curvature estimates enter the proof. So we get (18). The remainder of the proof is completely
analogous to [25, Thm. 8]. ��
Proposition 3.30 (Volume comparison for approximations) Let κ, β ∈ R, g ∈ C1,1 and
assume (M, g, �) is globally hyperbolic and satisfies CCC(κ, β). Let A ⊂ � be compact,
η, δ > 0, B ⊂ �κ−δ,β+η (with finite, non-zero area) and T > 0 such that all timelike, f.d.
unit speed geodesics starting orthogonally to A exist until at least T . Then there exists ε0 > 0
(depending on η, δ, A, T ) such that for all ε < ε0 the function

t �→ volε B
+
ε,A(t)

volκ−δ,β+ηB
+
B (t)

is nonincreasing on (0, T ] if T < bκ−δ,β+η and on (0,∞) if T ≥ bκ−δ,β+η.

Proof For T < bκ−δ,β+η this follows from the area comparison result by using the coarea
formula (see [25, Thm. 9] for details). Since bκ−δ,β+η is defined by being the upper bound
of the maximal interval of positivity of the warping function fκ−δ,β+η, we either have
bκ−δ,β+η = ∞ or bκ−δ,β+η < ∞ and limt↗bκ−δ,β+η fκ−δ,β+η(t) = 0. In the second case
an argument completely analogous to the area comparison proof of [25, Thm. 10] shows
that S+ε,�(t) = ∅ for t > bκ−δ,β+η. Hence by the coarea formula (see [25, Prop. 3] )

t �→ volε(B
+
ε,A(t)) remains constant for t > bκ−δ,β+η and thus

volε B+ε,A(t)

volκ−δ,β+ηB
+
B (t)

remains

nonincreasing for t > bκ−δ,β+η. ��
The plan is now to use Proposition 3.30 and first let ε → 0 and then δ, η → 0. To make

the proof more readable, we first show that volε B
+
ε,A(t)→ vol B+A (t) in a separate lemma.

Lemma 3.31 (Volume convergence) Let g ∈ C1,1, assume (M, g) is globally hyperbolic
and let � ⊂ M be an acausal, spacelike, FCC hypersurface. Let A ⊂ � be compact with
μ�(∂A) = 0 (where ∂A is the boundary of A in �) and T > 0 such that all timelike, f.d.,
unit-speed geodesics starting orthogonally to A exist until at least T . Then for any 0 < t ≤ T
we have

volε B
+
ε,A(t)→ vol B+A (t)

for ε → 0.

Proof From Proposition 3.16 and Lemma 3.18 it follows in a similar way as in the beginning
of the proof of Proposition 3.29 that

⋃
0≤ε≤ε0

B̄+ε,A(T ) (where B̄+A (t) := {p ∈ I+(�) : ∃q ∈
A s.t. τ�(p) = d(p, q) ≤ t} for t > 0) is contained in the compact set K = f ([0, ε0] ×
[0, T ]×Kε0) (with f as in Proposition 3.16). Now fix 0 < t ≤ T then B+ε,A(t) ⊂ B̄+ε,A(T ) ⊂
K for all 0 ≤ ε ≤ ε0 and B+ε,A(t) ⊂ I+ε (�) ⊂ I+(�) (note that we chose gε such that gε ≺
g). So it only remains to show that the functions χB+ε,A(t)

√∣∣det gε,i j
∣∣ → χB+A (t)

√∣∣det gi j
∣∣

pointwise almost everywhere on K ∩ I+(�) and then apply dominated convergence. This is

clear for
√∣∣det gε,i j

∣∣, so we only have to look at the characteristic functions.

First note that μ(Cut+(�)) = 0 by Proposition 3.23, so it suffices to show convergence
a.e. on (K ∩ I+(�)) \Cut+(�). For any p ∈ (K ∩ I+(�)) \Cut+(�) there exists a unique
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(up to reparametrization) causal curve γ p maximizing the distance from p to � (and this
curve is a geodesic starting orthogonally to �): Existence follows from Lemma 3.7 and
if there were two different maximizing geodesics none of them could be maximizing past
p (since locally any maximizing timelike curve has to be an unbroken geodesic, see [18,
Thm. 6]) and hence p ∈ Cut+(�) by the definition of the cut locus. This allows us to split
(K ∩ I+(�)) \ Cut+(�) into five (not necessarily mutually distinct) subsets:

1. we have L (γ p) < t and γ p(0) ∈ A◦ (where A◦ is the interior of A as a subset of �),
i.e. p ∈ B+A◦(t), or

2. L (γ p) arbitrary and γ p(0) /∈ A, in particular p /∈ B̄+A (t), or
3. L (γ p) > t and γ p(0) arbitrary, so again p /∈ B̄+A (t), or
4. L (γ p) = t and γ p(0) ∈ A, i.e. p ∈ S+A (t), or
5. L (γ p) ≤ t and γ p(0) ∈ ∂A = A \ A◦, i.e. p ∈ B̄+∂A(t)

We now show that in cases (1)− (3) the characteristic functions converge in p:
In case (3) we have Lg(γ

p) > t . But then for ε small this γ p is also gε timelike and
Lemma 4.2 from [14] gives that for any small δ > 0 there exists ε0 such that for all ε ≤ ε0

τε,�(p) ≥ Lε(γ
p) > Lg(γ

p)− δ > t. (19)

Thus p /∈ B̄+ε,A(t) for ε small.

Now for case (1), let p ∈ B+A◦(t) ⊂ B+A (t). Let γε be a gε-geodesic between qε ∈ � and p
with Lε(γε) = τε,�(p). From qε ∈ J−(p)∩�, it follows that γε ⊂ J−(p)∩ J+(J−(p)∩�)

for all ε, which is compact by Remark 3.5. This allows us to use Lemma 4.2 from [14] to
obtain that for any small δ > 0 there exists ε0 such that

τε,�(p) = Lε(γε) < Lg(γε)+ δ ≤ τ�(p)+ δ. (20)

for all ε ≤ ε0. This shows that if τ�(p) < t , then τε,�(p) < t for small ε. Now let U ⊂ A◦
be a neighborhood of γ p(0) in �. It remains to show that qε ∈ U ⊂ A◦ for small ε. Assume
the contrary and let γε j be a subsequence with qε j /∈ U . By our limit curve Lemma 3.6, we
may assume (after reparametrizing and passing to a further subsequence) that γε j converges
to a causal curve γ̃ from q := γ̃ (0) = lim qε j /∈ U to p with Lg(γ̃ ) ≥ lim sup j→∞ Lg(γε j ).
Using (20) and (19) gives

Lg(γ̃ ) ≥ lim sup
j→∞

Lg(γε j ) ≥ lim sup
j→∞

τε j ,�(p)− δ ≥ Lg(γ
p)− 2δ = τ�(p)− 2δ

for any δ > 0 and letting δ → 0 shows that γ̃ is also maximizing the distance between p and
�, giving a contradiction, since γ̃ (0) 
= γ p(0) but γ p is the unique causal curve realizing
the distance from � to p by definition. Altogether, p ∈ B+ε,A◦(t) ⊂ B+ε,A(t) for small enough
ε.

Next we look at case (2), i.e., γ p(0) /∈ A (and thus p /∈ B+A (t)). LetU be a neighborhood
of γ p(0) in � with U ∩ A = ∅ (this exists since A is closed). By the argument presented
when dealing with case (1), we have that for ε small enough γε(0) ∈ U , hence not in A and
so p /∈ B+ε,A(t).

It remains deal with cases (4) and (5). Here we show that both S+A (t) and B̄+∂A(t) are
contained in sets of measure zero.

Regarding S+A (t), let ñ be a C1,1-extension of n to some small neighborhood U of A (in
M) and consider the map h : p �→ expp(t ñ(p)). For U small enough this is well defined
on U (by a standard ODE argument) and because the exponential map is locally Lipschitz
continuous, this map is as well. Now since S+A (t) ⊂ h(A), μ(A) = 0 (because A ⊂ �), A
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is compact and any Lipschitz map from R
n → R

n maps sets of (Lebesgue-)measure zero to
sets of measure zero (see Proposition A.9 in the appendix), we have that h(A) has measure
zero.

Finally, for B̄+∂A(t), note that ∂A ⊂ A and hence all f.d., unit-speed, normal geodesics
starting in ∂A exist until at least T ≥ t , so ∂A×[0, t] ⊂ D and B̄+∂A(t) ⊂ expN ([0, t] · ∂A).
Now since [0, t] · ∂A ⊂ N� has measure zero (because by assumption μ�(∂A) = 0) and
is compact (by compactness of A) and expN is locally Lipschitz, the desired result follows
again from Prop. A.9.

Altogether, this shows that indeed χB+ε,A(t) → χB+A (t) pointwise almost everywhere. ��

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let 0 < t1 < t2 ≤ T . It suffices to show that

vol B+A (t2) ≤ vol B+A (t1)
volκ,βB

+
B (t2)

volκ,βB
+
B (t1)

.

By Lemma 3.31 we have

volε B
+
ε,A(t)→ vol B+A (t)

for all t ∈ (0, T ]. So using Proposition 3.30 and letting ε → 0 shows that for all η, δ > 0
and Bδ,η ⊂ �κ−δ,β+η (with 0 < areaκ−δ,β+ηBδ,η <∞)

vol B+A (t2) ≤ vol B+A (t1)
volκ−δ,β+ηB

+
Bδ,η

(t2)

volκ−δ,β+ηB
+
Bδ,η

(t1)

Now by (17) there exist sequences δn, ηn → 0 such that

volκ−δn ,β+ηn B
+
Bn

(t) → volκ,βB
+
B (t)

areaκ−δn ,β+ηn Bn

areaκ,βB
,

for all t > 0 which implies

volκ−δn ,β+ηn B
+
Bn

(t2)

volκ−δn ,β+ηn B
+
Bn

(t1)
→ volκ,βB

+
B (t2)

volκ,βB
+
B (t1)

.

So t �→ vol B+A (t)

volκ,β B
+
B (t)

is indeed nonincreasing on (0, T ]. ��

4 Applications

4.1 Myers’ theorem for C1,1-metrics

We will use the volume comparison result Theorem 2.4 to give a proof of Myers’ theorem
for C1,1-metrics.

Theorem 4.1 Let (M, g) be a complete n-dimensional Riemannian manifold with C1,1-
metric g such that Ric ≥ (n − 1) κ g for some κ > 0. Then diam (M) ≤ π√

κ
.
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Proof Let Snκ be the n-dimensional sphere of radius κ with the standard metric, then Snκ has
constant sectional curvature κ and diam

(
Snκ
) = π√

κ
. Clearly volκ Bκ (r) is constant in r for

r ≥ π√
κ
. By Theorem 2.4 this implies that also

r �→ volBp(r)

is constant for all r ≥ π√
κ
and all p ∈ M . Fix p and assume there exists q ∈ M with

d(p, q) > π√
k
. Then by continuity of d(., p) we find a neighborhoodU of q with μ(U ) 
= 0

such that d(p, q) + 1 > d(x, p) > π√
κ
for all x ∈ U , so U ⊂ Bp(d(p, q) + 1) and

U ∩ Bp(
π√
κ
) = ∅. But this shows that

volBp(d(p, q)+ 1) > volBp

(
π√
κ

)
,

contradicting r �→ volBp(r) being constant for all r ≥ π√
κ
. ��

This result is not very surprising since it is known that there are generalizations of Myers’
theorem even for metric measure spaces (see Cor. 2.6 in [24]). However, these do not imme-
diately imply Theorem 4.1 above, because for metric measure spaces the needed curvature
bound is (by necessity) defined in a different manner from Ric ≥ (n − 1) κ g in L∞loc.

4.2 Hawking’s singularity theorem for C1,1-metrics

We first show a general result concerning geodesic incompleteness of globally hyperbolic
manifolds.

Theorem 4.2 Assume that (M, g, �) (with g ∈ C1,1) is globally hyperbolic and satisfies the
CCC(κ, β) condition with either

1. κ > 0, β ∈ R,
2. κ = 0, β < 0 or
3. κ < 0, β < 0 such that β

(n−1)√|κ| < −1.
Then τ�(p) ≤ bκ,β < ∞ for all p ∈ I+(�) and (M, g) is timelike future geodesically
incomplete.

Proof First note that for these values of κ and β we have bκ,β < ∞ (see Table 1), so
τ�(p) ≤ bκ,β for all p ∈ I+(�) implies L (γ ) ≤ bκ,β for all timelike, f.d. geodesics γ

starting in �, which implies incompleteness of M .
Now assume to the contrary that there exists p ∈ I+(�) with τ�(p) > bκ,β . We first

argue that we may w.l.o.g. assume p /∈ Cut+(�): By continuity of τ� (see Lemma 3.7) there
is a neighborhood U of p such that τ�(q) > bκ,β for all q ∈ U and since Cut+(�) has
measure zero (see 3.23) but U does not there exists p̃ /∈ Cut+(�) with τ�( p̃) > bκ,β .

Now, if we have p /∈ Cut+(�) then, by the same argument as in the proof of Lemma 3.31,
there exists a unique unit-speed geodesic γ p from γ p(0) ∈ � to p with L (γ p) = τ�(p) >

bκ,β (and this geodesic has to start orthogonally to � by Lemma 3.7). In particular, γ p exists
until at least some T > τ�(p) > bκ,β . Let A be a neighborhood of γ p(0) in � such that
all unit-speed geodesics starting in A orthogonally to � also exist until at least T . We may
choose A to be compact with μ�(∂A) = 0 (e.g. as the pre-image of a small, closed ball in
R
n−1 under a chart of �).
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We now show that there exists a neighborhood U of p such that for any q ∈ Ũ :=
U \ Cut+(�) we have bκ,β < τ�(q) < T (which follows immediately from continuity of
τ�) and that the unique unit-speed geodesic γ q from γ q(0) ∈ � to q with L (γ q) = τ�(q)

satisfies γ q(0) ∈ A. This is done via contradiction in a similar way to case (1) in the proof
of Lemma 3.31: Let p+ ∈ I+(p), then there exists a small neighborhood U of p such
that γ q(0) ∈ J−(p+) ∩ � for all q ∈ Ũ . Assume there exist p j ∈ Ũ with p j → p
but γ p j (0) /∈ A. Then γ p j ⊂ J−(p+) ∩ J+(J−(p+) ∩ �) and since this set is compact
by Remark 3.5 our limit curve Lemma 3.6 shows that there exists γ̃ with p = γ̃ (1) and
γ̃ (0) 
= γ p(0) and

τ(γ̃ (0), p) = L(γ̃ ) ≥ lim sup
j→∞

L(γ p j ) = lim sup
j→∞

τ�(p j ) = τ�(p),

by continuity of τ� (see Lemma 3.7). So γ̃ is also maximizing the distance between p and
�, but this a contradiction since γ̃ 
= γ p and γ p was unique since p /∈ Cut+(�).

We now apply Theorem 1.1 to obtain that

t �→ vol B+A (t)

volκ,βB
+
B (t)

is nonincreasing on (0, T ]. Now the set Ũ from above satisfies μ(Ũ ) 
= 0 and Ũ ⊂ B+A (T )

but Ũ ∩ B+A (bκ,β) = ∅, hence vol B+A (T ) > vol B+A (bκ,β). On the other hand, volκ,βB
+
B (t)

remains constant in t for t ≥ bκ,β by construction of the comparison spaces. But then

vol B+A (T )

volκ,βB
+
B (T )

>
vol B+A (bκ,β)

volκ,βB
+
B (bκ,β)

which is a contradiction to t �→ vol B+A (t)

volκ,β B
+
B (t)

being nonincreasing on (0, T ].

Remark 4.3 IfRic ≥ κ(n−1)g with κ > 0 the mean curvature of � is irrelevant, hence any
globally hyperbolic spacetime satisfying such a curvature bound is necessarily geodesically
incomplete: By [21, Thm. 4.5] there exists a smooth metric g′ $ g such that

(
M, g′

)
is

globally hyperbolic as well and by [4, Thm. 1.1] there exists a smooth, spacelike Cauchy
hypersurface� for g′. This� is then necessarily acausal ([20, Lemma 14.29 and 14.42]) and
FCC (see [25, Rem. 1]) and thus also a smooth, spacelike, acausal, FCCCauchy hypersurface
� for g (by arguments similar to the ones in Lemma 3.12) and τ� ≤ π√

κ
: On every compact

subset A ⊂ � the mean curvature is bounded from above by some β ∈ R (and this is all that
is actually needed to show Theorem 1.1 for this fixed A) and since bκ,β ↗ π√

κ
for β →∞

one arrives at a contradiction by the same construction as in Theorem 4.2. This even shows
that L(γ ) ≤ 2 π√

κ
for any timelike curve γ since any inextendible timelike curve must meet

�. Of course, the smooth version of this result is well-known and can be proven without this
detour [3, Thm. 11.9].

If (M, g) is not globally hyperbolic,we cannot applyTheorem1.1 directly, but if (M, g, �)

satisfies CCC(κ, β) with κ, β as in Theorem 4.2 and � is additionally compact we can still
use it to prove compactness of the Cauchy development D+(�).

Lemma 4.4 Let (M, g, �) with g ∈ C1,1 satisfy CCC(κ, β) with κ, β as in Theorem 4.2
and � compact. If (M, g) is future geodesically complete then D+(�) is relatively compact.
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Proof By [14, Thm. A.22 and Prop. A.23] D(�) = D(�)◦ is globally hyperbolic, so we
may apply Theorem 4.2 to (D(�), g, �), to obtain τ�(p) ≤ bκ,β for all p ∈ D+(�) and
thus D+(�) ⊂ expN ([0, bκ,β ] ·�), which is compact. ��

The case κ = 0, β < 0 of the previous lemma provides an alternative proof of Hawking’s
singularity theorem for C1,1-metrics: Already in the smooth case the proof of Hawking’s
singularity theorem splits into two distinct parts, namely an analytic bit, which shows relative
compactness of D+(�), and a part using causality theory. This second part proceeds in the
same way whether one deals with smooth or merely C1,1 metrics, so we will not repeat it
here (see e.g. [20, Thm. 14.55Aand14.55B] for the smooth case or [14, Thm. 1.1] for the
C1,1 proof1). Thus we obtain:
Theorem 4.5 [14, Thm. 1.1] Let (M, g, �) with g ∈ C1,1 satisfy CCC(κ, β) with κ, β as in
Theorem 4.2 and � compact. Then (M, g) is future geodesically incomplete.

There seem to be several advantages of this new approach. First, it illustrates the inter-
dependence of the two curvature bounds κ and β very nicely (see conditions (1) to (3) in
Theorem 4.2): The parameter β describes the initial focusing (β < 0) or defocusing (β > 0)
of geodesics emanating orthogonally to � (looking at the comparison manifolds in Table
1 we see that

∣
∣ fκ,β

∣
∣ is initially decreasing if β < 0 and increasing if β > 0 and by the

formula for the areas in the proof of (16) the same remains true for areaκ,β S
+
A (t)), while κ

describes a global focusing (κ > 0) or defocusing (κ < 0) effect for timelike geodesics.
Depending on their relative strength there exists a time t = bκ,β where fκ,β becomes zero
(and the comparisonmanifold becomes singular) or not. By the volume comparison Theorem
1.1 (and its application in Theorem 4.5) this time gives a universal bound on the maximal
time of existence of geodesics starting orthogonally to � in globally hyperbolic manifolds
satisfying the respective curvature bounds.While of course this behavior is also present in the
Rauchaudhuri argument used in [14] (and for the smooth case in e.g. [22]) and an analogous
argument would also suffice to show cases (1) and (3) from Theorem 4.2, it seems that it is
somewhat more explicit in the comparison treatment given here.

Second, while the proof of Theorem 1.1 again relies on approximation arguments, the
volume comparison result itself now provides a tool which works directly in C1,1 and allows
us to prove other important results (e.g., Theorem 4.2 and Theorem 4.5) without returning
to the smooth case.

And, perhaps most importantly, the volume comparison Theorem 1.1 itself is of consider-
able interest: As already pointed out by the authors of [25], their results are remarkably close
to the corresponding Riemannian ones and thus might lend themselves to generalizations
of curvature bounds to even lower regularity, a hope that may be strengthened by the C1,1
version of their volume comparison result [25, Thm. 9] proven here.
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5 Some results from measure theory

To show the measurability of the cut function in Lemma 3.20 we need some tools from
measure theory, the main one being the measurable projection theorem (see [5, Thm. III.23]:

Theorem A.1 (Measurable projection)Let (�,A) be a measurable space and S a Suslin
space. If G is measurable in the product σ -algebra A ⊗ B(S) (where B(S) denotes the
Borel-σ -algebra of S), then its projection pr�(G) ⊂ � is universally measurable.

This statement uses the following definitions (see [5, Def. III.17 and III.21]):

Definition A.2 (Suslin and polish spaces) A Suslin space is a Hausdorff topological space
that is the continuous image of a Polish space. A Polish space is a separable completely
metrizable topological space.

Example A.3 Clearly, R is Polish, hence also Suslin.

Definition A.4 (Universal σ -algebra) Let (�,A) be a measurable space. Given any finite
measure μ we denote the completion of A with respect to μ by Aμ. Then the universal
σ -algebra Â is defined as

Â :=
⋂

μ finite

Aμ.

Remark A.5 If μ is a σ -finite measure on (�,A) then there exists an equivalent (i.e., having
the same zero-measure sets) measure μ̃ that is finite. So one has

Â =
⋂

μ σ−finite
Aμ.

This shows that any universally measurable set is measurable with respect to every complete
σ -finite measure μ on (�,A).

This allows us to show the following:

Proposition A.6 Given ameasurable space (�,A), a Suslin space S, a measurable function
f : �×S → R (w.r.t. to the productσ -algebraA⊗B(S) on�×S and theBorel-σ -algebra on
R) and a set-valued map F : �→ P(S) with graph(F) := {(ω, s) ∈ �× S : s ∈ F(ω)} ∈
A⊗ B(S), one has that the map f ∗ : � → R̄ defined by

f ∗(ω) := sup { f (ω, s) : s ∈ F(ω)}
is measurable with respect to the universal σ -algebra Â (and the Borel-σ -algebra on R̄). ��
Proof It clearly suffices to show that {ω : f ∗(ω) > r} ∈ Â for all r ∈ R. This follows
immediately from

{
ω : f ∗(ω) > r

} = pr� (graph(F) ∩ {(ω, s) : f (ω, s) > r}) ,

measurability of f , graph(F) ∈ A⊗ B(S) and the measurable projection theorem A.1. ��
Another statement we need concerns itself with the measurability of the graph of a mea-

surable function (and can, e.g., be found in [23, Prop. 3.1.21])
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Proposition A.7 Let (�,A) be a measurable space and X a second countable topological
space satisfying the T1 separation axiom (for every pair of distinct points there exists a
neighborhood for each that does not contain the other) with Borel-σ -algebra B(X). If f :
�→ X is measurable, then graph( f ) ∈ A⊗ B(X).

Proof Let Un be a countable basis of open sets, then

y 
= f (x)⇐⇒ ∃n : f (x) ∈ Un and y /∈ Un .

So we have

graph( f ) =
[
⋃

n

f −1(Un)×Uc
n

]c
,

hence it is measurable. ��
Furthermore, if the graph of a function between two σ -finite measure spaces is measurable

(and points have measure zero), it has measure zero:

Proposition A.8 Let (�1,A1, μ1) and (�2,A2, μ2) be two σ -finite measure spaces such
that μ2({x}) = 0 for all {x} ∈ A2. Assume f : �1 → �2 has measurable graph, i.e.
graph( f ) ∈ A1 ⊗A2, then μ1 ⊗ μ2(graph( f )) = 0.

Proof We apply Fubini’s theorem to the characteristic function χgraph( f ). This gives that for
any x ∈ �1 the functions

χgraph( f )(x, .) = χ{ f (x)}
from �2 → R are measurable, hence { f (x)} ∈ A2 for all x and so by assumption on μ2 we
have μ2 ({ f (x)}) = 0. But then Fubini gives

μ1 ⊗ μ2(graph( f )) =
∫

�1

∫

�2

χ{ f (x)}(y)dμ2(y)dμ1(x) = 0,

proving the claim. ��
Finally, we will state a result concerning images of sets of measure zero under Lipschitz

continuous functions on R
n (which can be found, e.g., in [11, Prop. 3.2] for differentiable

maps, but the proof only uses the Lipschitz property) that is needed in various proofs of this
work.

Proposition A.9 Let f : Rn → R
n be Lipschitz continuous. If A ⊂ R

n has (Lebesgue-
)measure zero, then f (A) ⊂ R

n has (Lebesgue-)measure zero as well.
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