e-infrastructures
austria - Deliverable

Classification Categories

GENERAL ONLINE AGROVOC - Multilingual agricultural thesaurus
CLASSIFICATIONS Eurovoc - EU's multilingual thesaurus

STW Thesaurus for Economics

UNESCO Thesaurus

GENERAL LOCAL ACM 1998 - The ACM Computing Classification System [1998 Version]
CLASSIFICATIONS Basisklassifikation

BIC Standard Subject Categories

BIC Standard Subject Qualifiers

COAR Resource Type Vocabulary

Dewey Decimal Classification

Eurovoc - EU's multilingual thesaurus

Getty AAT - Art & Architecture Thesaurus (slow)

GND Subject Categories

OFO0S 2002

OFO0S 2012 (Juli 2015)

Physics and Astronomy Classification Scheme

STW Thesaurus for Economics

UNESCO Thesaurus

PHAIDRA'S LOCAL Phaidra's controlled vocabularies
CLASSIFICATIONS Phaidra's custom classifications

Classification Server

e-infrastructures
austria

Classification Server

Work-Package- Cluster I: Metadata
Cluster:

Susanne Blumesberger Universitatsbibliothek Wien

Head of Cluster: o
susanne.blumesberger@univie.ac.at

Datum: 03.06.2016
Version 2.1
Authors: Sandor Kopacsi Zentraler Informatikdienst, Universitdt Wien

sandor.kopacsi@univie.ac.at

Rastislav Hudak Zentraler Informatikdienst, Universitat Wien
rastislav.hudak@univie.ac.at

José Luis Preza Zentraler Informatikdienst, Universitat Wien
jose.luis.preza@univie.ac.at

Dieses Werk bzw. dieser Inhalt steht unter einer Creative Commons office@e-infrastructures.at
v Namensnennung 4.0 International Lizenz. www.e-infrastructures.at
http:// creativecommons.org/licenses/by/4.0/

Kurzbeschreibung In diesem Deliverable beschreiben wir die
(Deutsch): Implementierung eines Klassifikationsservers fiir den
Metadatenabgleich bei einer Implementierung eines
Langzeitarchivierungssystems fiir digitale Objekte.
Nach einer kurzen Einfiihrung in Klassifikationen und
Wissensorganisationen stellen wir die Anforderungen
an das zu implementierende System vor. Wir werden
samtliche SKOS (Simple Knowledge Organization
System) Management Tools, die wir untersucht haben,
beschreiben, auch Skosmos, die Ldsung, die wir fir
unser internes System verwenden. Skosmos ist ein
open source, webbasierter SKOS Browser, basierend
auf einen Jena Fuseki SPARQL Server. Wir werden
einige entscheidende Schritte wahrend der Installation
der ausgewahlten Tools diskutieren und zum Schluss
sowohl die potentiell auftretenden Probleme mit den
verwendeten Klassifikationen als auch mdgliche
Losungen prasentieren.

Description (English): In this deliverable we will describe the implementation
of a Classification Server to assist with metadata
harmonization when implementing a long term
preservation system of digital objects. After a short
introduction to classifications and knowledge
organization we will set up the requirements of the
system to be implemented. We will describe several
SKOS (Simple Knowledge Organization System)
management tools that we have examined, including
Skosmos, the solution we have selected for our internal
use. Skosmos is an open source, web-based SKOS
browser based on Jena Fuseki SPARQL server. We will
also discuss some crucial steps that occurred during the
installation of the selected tools, and finally we will
show potential problems with the classifications to be
used, as well as possible solutions.

Schlagwérter (Deutsch): Langzeitarchivierung, Metadaten, Klassifikation, SKOS,

Jena Fuseki, Skosmos

Keywords (English): long term preservation, metadata, classification, SKOS,
Jena Fuseki, Skosmos

Dieses Werk bzw. dieser Inhalt steht unter einer Creative Commons office@e-infrastructures.at
oy Namensnennung 4.0 International Lizenz. WWwWWw.e-infrastructures.at
http:// creativecommons.org/licenses/by/4.0/

Content

INErOAUCHION ceeireeeeeecteteeeeccree et e e eenere e e e ssssaneeeessessnneasesssssnneessssssssssesssssssssaessssssnnnasssssnns 5
(@ =T33 1= T o] o O 6
Knowledge Organization Systems and Linked Data.........cooeeenieieniinieiiniiniciciecnecicnene, 6
Application of the Classification SErver........iiininiiiiiicicnen 7
Requirements of the Classification Server.........vininiiiiicicc e 7
General reqQUIFEMENTSccviviiiiiiiniiictct et be s sbe s s ss b sae s 7
Technical reqQUIreMENLS ...cueiuviiiiiiiiicccc s 7
Testing some available tools for classification.......coeveeeveeieeiiiiiciciiiccce 8
TRMANAZET «.vvititieiiteciictetecctc e b e bbb b b e a e as 8
LIS 10 1L (<1 8
SKOS SHULLIE wevevveveereeecteeeeeesseese s ssesssssssssssssssssssessssssssssssasssssnsassassasssssssassassasans 9
0T o =] 9
PrOTEZE ...ttt 10
Skosmos With Jena FUSEKIccuerueiiiiiiiiiiiiciicicctcctccctcccccrccrc e 10
Overall evaluation and tool selection ... 11
Implementation of the Classification Server........iniiiniciceccccce 1
Installation of Skosmos and Jena FUSEKIcoeveeuiruiniiiiiiiniiiiiinicicicnccicsentcncsenens 11
Configuration of SKOSMOS anNd FUSEKi......ceeeeuerriiiiiiiriitititiicicrcicicccrc e 12
Configuration Of SKOSMOS....ccuiviiiiiiiiiitititctctcrcce e 12
Configuration Of FUSEKIoveuerviiiiiiciiititittctctccctcc e 13
TIMEOUL SEEHINGS veeteeteeteeteeeeec e 13
Getting and setting vOCabUIArIes ...c.coveveeiiiiiiiiiictctccttcctc e 14
Downloading and converting vocabularies ...t 14
Uploading files tO FUSEKi.....coueviieiiictiitititcicticicttctctectctctctccccrese s 14
Setting VOCADUIAIIES ...uveceeeiiieetettctc s 15
Some examples and problems of adding individual vocabularies..........ccccceuvrvvvinennnee. 17
Getty VOCADUIANES. .ottt 17
COAR Resource Type VOCabularyuceueveeniiiiiiiiniiniiniinniineinnecsnecnsecsnecsaecenes 17
OFOS ettt sttt ettt sttt s et atassaes 18
Available classifications and operation of the Classification Serverccocceecevvervircucnnnenes 18
Starting Fuseki and SKOSMOS......cviiiiiiiiiitictcttctctecttce e 18
Available services and usage of the Classification Server.......cccvvninivviininecsncnncnneenne. 18
Connecting Phaidra to the Classification Server ..., 19
RETEIEINCES ..ttt ettt ettt e st s s st e s se s e sse e s se e s se e s see s seesseessseesanes 19

Introduction

Long term preservation of digital objects is today a key issue for libraries and research
institutes, because they need to ensure that the digital content of books, documents,
pictures, research data, etc. remains accessible and usable within a required period of
time [1]. Digital preservation includes planning, resource allocation, and application of
preservation methods and technologies [2].

When we store digital objects in an archiving system, it is very important to assign well-
defined metadata, to make the discoverability of the object easier. Metadata can be
considered as information about information, which can provide the title, the authors and
keywords, and other information about a document. Metadata also stores the technical
details on the format and structure, the ownership and access rights information, as well
as the history of the preservation activities of the digital object.

When the data provider of the digital object has to add standardized values as metadata,
it could prove challenging to find the appropriate keywords, a process that at times
requires guessing. If we want to avoid ambiguities, misspellings, etc. it is better to select
the terms from pre-defined controlled vocabularies.

Controlled vocabularies, or rather classifications in multiple topics are available in several
data sources, among which we can select. If we want to provide all relevant
classifications to our archiving system and make them accessible to the users for adding
metadata information so they can select terms during upload or search, a Classification
Server that handles our relevant vocabularies and classifications seems to be the ideal
solution.

In a Classification Server the information should be stored according to classification- or
knowledge organization schemas, usually in the structure of Resource Description
Framework (RDF) or as Simple Knowledge Organization System (SKOS), and should be
organized as Linked Data.

The University of Vienna has developed its own solution, called Phaidra’, for archiving
digital objects, also in use at several other institutions. To make the services of Phaidra
more comfortable and more reliable, we can apply the Classification Server from which
the user can select terms by accessing controlled vocabularies and classifications. We can
consider Phaidra as a use case of the Classification Server that can be used in other
preservation systems of digital objects.

1

https://phaidra.univie.ac.at/

Classifications

Classification is a form of categorization, that groups objects or items according to their
subjects usually arranged in a hierarchical tree structure. This knowledge organization
technique can take many forms that will be discussed below.

Controlled vocabulary is a closed list of words or terms that have been included explicitly,
which can be used for classification. It is controlled because only terms from the list may
be used, and because there is control over who adds terms to the list, when and how.
Taxonomy is a collection of controlled vocabulary terms organized into a hierarchical
structure by applying parent-child (broader/narrower) relationship. Each termin a
taxonomy is in one or more relationships (e.g. whole-part, type-instance) to other terms
in the taxonomy.

Thesaurus is more structured, much richer taxonomy, that uses associative relationships
(like "related term") in addition to parent-child relationships.

Ontology is a more complex type of thesaurus expressed in an ontology representation
language that consists of a set of types, properties and relationship types. In ontology
instead of simply having "related term" relationship, there are various customized
relationship pairs that contain specific meaning, such as "owns" and its reciprocal "is
owned by".

Knowledge Organization Systems and Linked Data

Classifications can be considered as a collection of organised knowledge, therefore the
technical background of classification is based on knowledge organisation systems. In
knowledge organisation systems we usually store the knowledge in form of triplets, as
subject-predicate-object, or object-attribute-value.

Classifications can be represented in Simple Knowledge Organization Systems (SKOS) [3]
as a Resource Description Framework (RDF) vocabulary. Simple Knowledge Organization
System (SKOS) is a W3C recommendation designed for representation of thesauri,
classification schemes, taxonomies, subject-heading systems, or any other type of
structured controlled vocabulary.

Using RDF allows knowledge organization systems to be used in distributed,
decentralised metadata applications. Decentralised metadata is becoming a typical
scenario, where service providers want to add value to metadata harvested from multiple
sources. [4]

Each SKOS concept is defined as an RDF resource, and each concept can have RDF
properties attached, which include one or more preferred terms, alternative terms or
synonyms, and language specific definitions and notes. Established semantic
relationships are expressed in SKOS and intended to emphasize concepts rather than
terms/labels. [5]

It is clear, that SKOS - as a modern well established standard - can (potentially) support
formal alignments and hierarchical grouping of concepts using different SKOS relations
(e.g. skos:exactMatch, skos:closeMatch, skos:narrower, skos:broader, skos:related),
translation of concept labels, and URI-based mapping to similar concepts in other KOS.
These technologies (RDF, SKOS, etc.) provides the possibility that data can be queried,
and inferences can be drawn from the datasets stored in Knowledge Organization
Systems. It is also important to make available the relationships among data even in

different classifications, to create a collection of interrelated datasets on the We b that is
referred as Linked Data.

Application of the Classification Server

The Classification Server will be tested in Phaidra®, the Digital Asset Management
Platform with long-term archiving functionality developed by the University of Vienna,
therefore it is important to collect the requirements from the Phaidra’s side, as well
Phaidra is an acronym for Permanent Hosting, Archiving and Indexing of Digital
Resources and Assets, that is implemented at several local Austrian institutions and also
internationally, including universities in Serbia, Montenegro and Italy. It provides
academic, research- and management staff the possibility to archive objects and to
permanently secure them, to create them systematically, to supplement them with
metadata, as well as to archive objects for an unlimited period of time - and provides
world-wide access to them.

We are going to apply the Classification Server during the ingestion phase, when the user
of Phaidra uploads new items to the archiving system and wants to assign metadata to it
from controlled vocabularies, and also when the user searches for items supplying terms
from existing classifications. We also need it for resolving the terms saved in objects
when displaying them.

Requirements of the Classification server

General requirements

Generally, we are developing a Classification Server for preservation systems that
supports classifications and controlled vocabularies. It should resolve the URIs of the
different terms, it should support multiple languages, it should support multiple versions
of classifications, it should return the list of subterms (narrower concepts), and it should
be independent from the preservation system.

The preservation system should have no assumptions about the contents, which means
that the set of classifications can differ on instances that are locally managed.

We were looking for solutions that do not require too much development efforts and
have lower costs.

Technical requirements

Technically, we expect the Classification Server to return the terms in multiple formats
(such as XML, JSON, RDF, TTL). It should support standard import formats for
vocabularies (e.g. SKOS/RDF, TTL, N-TRIPLES), and should support Linked Data (in
SKOS/RDF/XML formats). The Classification Server should provide a SPARQL endpoint,
and it should offer a comprehensive search needed for the preservation system. It should
also support classifications/vocabularies that do not yet support linked data (do not have
URISs).

It would be nice if it was possible to use external terminology services, e.g. dewey.info, so
that we do not necessarily have to import it locally.

2

https://phaidra.univie.ac.at/

Testing some available tools for classification

In this section we describe several relevant solutions that we evaluated for implementing
a Classification Server. We have also collected information about other tools (like HIVE,
iQvoc, CATCH), but they did not fit our initial requirements, thus they are not described in
this document.

ThManager

ThManager’ is an open source tool for creating and visualizing SKOS RDF vocabularies.
ThManager was developed by the Advanced Information Systems Laboratory of the
University of Zaragoza. It was implemented in Java using Apache Jena, and facilitates the
management of thesauri and other types of controlled vocabularies such as taxonomies
or classification schemes. ThManager allows for selecting and filtering the thesauri stored
in the local repository. Description of thesauri by means of metadata is in compliance
with a Dublin Core based application profile for thesaurus.

ThManager runs on Windows and Unix, and only requires having a Java Virtual Machine
installed on the system. The application is multilingual. The application supports out of
the box Spanish and English languages, but with little effort other languages can be
implemented.

The main features include the visualization of thesaurus concepts (alphabetically, in
hierarchical structure, properties of selected concepts), ability to search concepts
("equals", "starts with" and "contains"), editing thesaurus content (creation of concepts,
deletion of concepts, and update of concept properties), export of thesauri (including
thesaurus metadata) in SKOS format.

Available vocabularies in ThManager include AGROVOC, DCType, GEMET, ISO639, and
UNESCO.

Unfortunately, the latest version of ThManager was launched in 2006, and we cannot
expect any updates. Another drawback of ThManager is that it does not provide a
SPARQL endpoint for accessing the managed vocabularies.

TemaTres

TemaTres® is an open source vocabulary server developed in Argentina. It includes a web
application to manage and exploit vocabularies, thesauri, taxonomies and formal
representations of knowledge stored in a MySQL database, and provides the created
thesauri in SKOS format. TemaTres requires PHP, MySQL and a HTTP Web server.
TemaTres provides a SPARQL endpoint. Exporting and publishing controlled vocabularies
is possible in many metadata schemas (SKOS-Core, Dublin Core, MADS, JSON, etc.). It can
import data in SKOS-Core format and has a utility to import thesauri from tabulated text
files.

It has an advanced search with search terms suggestions, and a systematic or alphabetic
navigation. TemaTres has a special vocabulary harmonization feature where it can find
equivalent, no equivalent, and partial terms against other vocabularies.

3
4

http://thmanager.sourceforge.net/
http://www.vocabularyserver.com/

It supports multilingual thesaurus, multilingual terminology mapping, and includes a
multilingual interface. It exposes vocabularies with powerful web services. TemaTres
displays terms in multiple deep levels in the same screen. It also provides quality
assurance functions (duplicates and free terms, illegal relations). The main drawback of
TemaTres is that not all documentation is available in English.

SKOS Shuttle

SKOS Shuttle® is a multi-user/multi-tenant online Thesaurus Service developed by
Semweb LLC (Switzerland). It supports building, maintaining and operating of SKOS
thesauri. SKOS Shuttle allows operating on an internal own RDF repository and on any
external SESAME compliant RDF repositories and it easily allows direct editing of RDF
statements (triples) without restrictions.

The user interface is intuitive. SKOS Shuttle also integrates a full REST API to create,
manage and navigate thesauri. It accesses securely all information through SSL
transported authentication. It provides industrial security (Rights, Groups, User and
Project Management) and a smart "Orphan Concept Analysis" together with an assistant
for direct concept “deorphanization” without using one single line of SPARQL code.
With its “systematics assistant”, several base URI’s can be used inside one single
thesaurus. RDF Import/Export and whole RDF snapshots are possible in 6 different
formats (N3, N-Triples, TRIG, Turtle, NQuads, RDF/XML).

SKOS Shuttles allows to download/upload a full RDF snapshot preserving versioning of
each thesaurus. SKOS language tags can be added/removed “on the fly” while editing the
thesaurus, speeding up maintenance tasks. SKOS Shuttle allows quick filtering on any
thesaurus language, and also during concepts navigation, this permits to find out missing
labels during navigation.

The SKOS Shuttle REST API provides a full range of selections / commands that are
embeddable into any application using three output formats: JSSON, XML and YAML. The
APl access requires the same secured authentication as the application to provide online
services.

SKOS Shuttle seems to be a very promising tool. SKOS Shuttle is available as a service and
is already being used by several Universities. SKOS Shuttle is not an open source product.
Pricing is not yet known but SKOS Shuttle will be provided as a commercial service for
small thesauri and as a free service for universities (up to a larger extent).

Poolparty

PoolParty® is a commercial semantic technology suite, developed by Semantic Web
Company that offers solutions to your knowledge organization and content business
problems.

As a semantic middleware, PoolParty enriches your information with metadata and
automatically links your business and content assets.

The PoolParty Taxonomy & Thesaurus Manager is a powerful tool to build and maintain
your information architecture. The PoolParty thesaurus manager enables practitioners to

5
6

https://ch.semweb.ch/leistungen/thesaurus-services/en-thesauri/?ucl=en
https://www.poolparty.biz/

start their work with limited training. Subject matter experts can model their fields of
expertise without IT support.

PoolParty taxonomy management software applies SKOS knowledge graphs. With
PoolParty, you can import existing taxonomies and thesauri (e.g. from Excel) and export
them in different standard formats. In addition to basic SKOS querying, the API also
supports the import of RDF data, SPARQL update and a service to push candidate terms
into a thesaurus.

Protégé

Protégé’ is a free, open-source ontology editor and framework for building intelligent
systems. Protégé was developed by the Stanford Center for Biomedical Informatics
Research at the Stanford University School of Medicine. Protégé is supported by a strong
community of academic, government, and corporate users, who use Protégé to build
knowledge-based solutions in areas as diverse as biomedicine, e-commerce, and
organizational modelling.

With the web-based ontology development environment of Protégé, called WebProtégé,
it is easy to create, upload, modify, and share ontologies for collaborative viewing and
editing. The highly configurable user interface provides suitable environment for
beginners and experts. Collaboration features abound, including sharing and permissions,
threaded notes and discussions, watches and e-mail notifications. RDF/XML, Turtle,
OWL/XML, OBO, and other formats are available for ontology upload and download.
Although it is a very good tool, it is too complex for editing and visualizing such a simple
model as SKOS, and provides too many options not specifically adapted for the type of
relationships used in SKOS.

Skosmos with Jena Fuseki

Skosmos®, developed by the National Library of Finland, is an open source web
application for browsing controlled vocabularies. Skosmos was built on the basis of prior
development (ONKI, ONKI Light) for developing vocabulary publishing tools in the
FinnONTO (2003-2012) research initiative from the Semantic Computing Research Group.
Skosmos is a web-based tool for accessing controlled vocabularies used by indexers
describing documents, and by users searching for suitable keywords. Vocabularies are
accessed via SPARQL endpoints containing SKOS vocabularies.

Skosmos provides a multilingual user interface for browsing vocabularies. The languages
currently supported in the user interface are English, Finnish, German, Norwegian, and
Swedish. However, vocabularies in any language can be searched, browsed and
visualized, as long as proper language tags for labels and documentation properties have
been provided in the data.

Skosmos provides an easy to use REST API for read only access to the vocabulary data.
The return format is mostly JSON-LD, but some methods return RDF/XML, Turtle,
RDF/JSON with the appropriate MIME type. These methods can be used to publish the
vocabulary data as Linked Data. The API can also be used to integrate vocabularies into
third party software. For example, the search method can be used to provide

7 http://protege.stanford.edu/
http://skosmos.org/

10

autocomplete support and the 1ookup method can be used to convert term references
to concept URIs. [6]

The developers of Skosmos recommend using the Jena Fuseki triple store with the Jena
text index for large vocabularies. In addition to using a text index, caching of requests to
the SPARQL endpoint with a standard HTTP proxy cache such as Varnish can be used to
achieve better performance for repeated queries, such as those used to generate index
view.

Overall evaluation and tool selection

All of the tested tools have advantages and disadvantages, but the most important
selection criteria for us were to find an open source tool that is based on the stable and
widespread Jena technology which can also provide a SPARQL endpoint and access via
REST API.

For these selection criteria, Skosmos with Jena Fuseki seemed to be the best solution;
therefore we have selected it for implementing our Classification Server.

Implementation of the Classification Server

The classification server will be implemented using Skosmos as a frontend for handling
SKOS vocabularies, and Jena Fuseki as a SPARQL endpoint storing the SKOS vocabulary
data (see Fig.1.).

Alternatively, we could use any other SPARQL 1.1 compliant RDF store, but the
performance will likely not be very good with large vocabularies since there is no text
index support in generic SPARQL 1.1.

SKOS
file '

\

Fig. 1. System architecture (Source: [7])

Installation of Skosmos and Jena Fuseki

Skosmos and Fuseki require Apache and PHP running on the server. We have installed
them on a Windows 7 environment (Professional 64 bit, Service Pack 1, Intel Core i7-
56000 CPU, 2.6 GHz, 16 GB RAM) using Java 1.8 (jre1.8.0_40), with installed XAMPP
(xampp-win32-1-8-3-4-VC11), as well as on a CENTOS 6.5 virtual machine (Intel Xeon CPU
E5-2670 0 @ 2.60GHz), but we are going to implement the final version on Ubuntu 16.04.
A detailed installation guide can be found on Github™ for the Linux version, but there are
some deviations on the Windows version, as well as there are some important issues that
are worth highlighting.

9

10

https://jena.apache.org/documentation/serving_data/
https://github.com/NatLibFi/Skosmos/wiki/Installation

11

Before installing Skosmos, it is advisable to make sure that Apache works and PHP is
enabled. After installing PHP, you may need to restart Apache. If you are using Windows
you need to install git for cloning, pulling as well as for the setting the dependencies for
PHP.

You can either clone the code of Skosmos from Github" or download the zipped version.
It is worth using the current stable version (maintenance branch), and it is better to clone
from Github because you can then easily upgrade to newer versions using git pull.
Skosmos requires several PHP libraries which will be installed using a dependency
manager called Composer™. For this, you have to first download the Composer (on
Windows you have to set it up as well), and then install the dependencies with the
install --no-dev option. After downloading a new version of Skosmos you may need to
update the dependencies with the update --no-dev option.

In Linux it may be required to set up Apache to access Skosmos under
http://localhost/skomos by adding a symbolic link to the skosmos folder (e.g.
opt/skosmos) into the DocumentRoot (e.g. /var/www/) and/or also you will need to give
Apache permissions to perform network connections to allow Skosmos access to
SPARQL endpoints.

The default PHP configuration is probably sufficient for Skosmos, but you may want to
check php.ini just in case. Make sure that the date.timezone setting is configured
correctly, otherwise Skosmos pages displaying date values may not work at all. If you use
vocabularies with potentially large number of triples, you may need to adjust the
memory_limit setting. The default is usually 128 M but the recommended setting is 256 M.
JenaFusekiis a SPARQL server and triple store, which is the recommended backend for
Skosmos. The Jena text extension can be used for faster text search. Simply download
the latest Fuseki distribution and unpack the downloaded file to the intended folder of
Fuseki.

Configuration of Skosmos and Fuseki

Configuration of Skosmos

Skosmos can be configured basically in two files, config.inc for setting some general
parameters, and vocabularies.ttl is used to configure the vocabularies shown in Skosmos.
In config.inc you can set the name of the vocabularies file, change the timeout settings,
set interface languages, set the default SPARQL endpoint, and set the SPARQL dialect if
you want to use Jena text index.

Vocabularies are managed in the RDF store accessed by Skosmos via SPARQL. The
available vocabularies are configured in the vocabularies.ttl file that is an RDF file in Turtle
syntax.

Each vocabulary is expressed as a skosmos : Vocabulary instance (subclass of
void:Dataset). The local name of the instance determines the vocabulary identifier used
within Skosmos (e.g. as part of URLs). The vocabulary instance has the following
properties: title of vocabulary (in different languages), the URI namespace for vocabulary
objects, language(s) and the default language that the vocabulary supports, URI of the

" https://github.com/NatLibFi/Skosmos
” https://getcomposer.org/

12

SPARQL endpoint containing the vocabulary, and the name of the graph within the
SPARQL endpoint containing the data of the individual vocabulary.

In addition to vocabularies, the vocabularies.ttl file also contains a classification for the
vocabularies expressed as SKOS. The categorization is used to group the vocabularies
shown in the front page of Skosmos. You can also set the content of the About page in
about.inc, and add additional boxes to the left or to the right of the front page in left.inc
or right.inc.

Configuration of Fuseki

Fuseki stores data in files. It is also possible to configure Fuseki for in-memory use only,
but with a large dataset, this will require a lot of memory. The in-memory use of Fuseki is
usually faster.

The jena text enabled configuration file specifies the directories where Fuseki stores its
data. The default locations are /tmp/tdb and /tmp/lucene. To flush the data from Fuseki,
simply clear/remove these directories.

The jena text extension can be used for faster text search, and Skosmos simply needs to
have a text index to work with vocabularies of medium to large size. The limit is a few
thousand concepts, depending on the performance of the endpoint / triple store and how
much latency is acceptable to the users.

If you start Fuseki in the TDB with . /fuseki-server --config config.ttl it will run
using text index. To use Fuseki in TDB, you have to configure the TDB location and for
jena text index, and the lucene text directory in config.ttl. If you start fusekiin memory
with ./fuseki-server --update --mem /ds, then there is no text indexing by default.
It is also possible to use in-memory TDB and text index, but you need a Fuseki
configuration file (config.ttl) with special "file names" that are actually in-memory (for
TDB: tdb:location "--mem--";and forjenatext: text:directory "mem";

Timeout settings

If there is more data than Skosmos is able to handle, some queries can take very long
time. The slow queries are probably the statistical queries (number of concepts per type,
number of labels per language) as well as the alphabetical index.

Short execution timeout for PHP scripts can trigger Runtime 10 Exception. To change the
timeout values, check PHP and Apache's time out settings (e.g. in php.ini the
max_execution_time). It is highly recommended to find this setting and change it to a
higher value (say to 5 or 10 minutes).

Skosmos also has a HTTP_TIMEOUT setting in config.inc, that should only be used for
external URI requests, not for regular SPARQL queries, but there may be unknown side-
effects. The EasyRdf HTTP client has a default timeout of 10 seconds. It is also
recommended to change this value.

It is suggested to change the timeout value from the browsers where you are planning to
access Skosmos. In Internet Explorer you can do it with regedit to change the Internet
settings. You have to add a new DWORD value that is the KeepAliveTimeout and set the
appropriate timeout value in milliseconds.

In Firefox there are two ways to change the timeout. You can extend it, or you can totally
disable timeout. Depending on the way you use Firefox, either option may be helpful.
Type about :config in your search bar on the top, and in the list of preferences find
Timeout. Here is where you can either set the "enabletimeout" value to false, or you can
enter a new value of "CountTimeout", which sets the timeout.

13

You can't change the timeout setting in Google Chrome.

Getting and setting vocabularies

The basic usage of our Classification Server is to store the classifications locally (if its
access time is acceptable), and we also provide the links to the remote SPARQL
endpoints of the classifications, if they are available.

If you want to use certain vocabularies locally, you have to get it in the right format, and
upload it to the local SPARQL server, that is to Jena Fuseki.

Downloading and converting vocabularies

Vocabularies can be downloaded from the original dataset provider (e.g. from Getty,
COAR, Statistics Austria, etc.), or in case of a small dataset, it can be created manually.
The vocabulary needs to be expressed using SKOS Core representation in order to publish
it via Skosmos, but SKOS-XL representation or even files in Excel can be also easily
converted to SKOS Core. For the SKOS-XL to SKOS Core conversion you can use for
example the owlart converter13. You can also convert SKOS-XL labels to SKOS Core labels
by executing SPARQL Update queries. If you have your classification in Excel, you can
write VBA macros to convert it to SKOS Core structures.

The format of the file that is accepted by Fuseki can be rdf/xml (.rdf or .xml), turtle (.ttl)
or N-Triples (.nt).

When the SKOS file was downloaded from external resources or it has been converted
from other formats, it is recommended that you pre-process your vocabularies using a
SKOS proofing tool, like Skosify'. This will ensure, e.g., that the broader/narrower
relations work in both directions, and that related relationships are symmetric. Skosify
will report and try to correct lots of potential problems in SKOS vocabularies. It can also
be used to convert non-SKOS RDF data into SKOS. An online version of the Skosify tool is
available, where you can simply use the default options after selecting the vocabulary to
be checked.

Uploading files to Fuseki

If you want to use Skosmos for accessing classifications in your local SPARQL triple store
you have to upload the datasets to Fuseki. First, you have to consider if Fuseki will run
either in memory or in a predefined folder, usually called TDB. If you run Fuseki in
memory, then all uploads and updates (if you allow that) will be temporary. If you run
Fusekiin the TDB, then the uploads and updates will remain there even if we exit from
Fuseki and restart it.

You also have to consider that in a SPARQL triple store there is always a default
(unnamed) graph, and there can also be multiple named graphs. In other words, there is
only one default graph (with no name), but there can be any number of named graphs on
a SPARQL endpoint/dataset. The URI namespaces can be used as graph names. E.g.
http://vocab.getty.edu/tgn/ would store Getty's TGN data.

You can upload datasets to Fuseki online, when Fuseki is running, or offline, when Fuseki
is not running. To upload online you can use the control panel of the web interface of

13
14

https://bitbucket.org/art-uniroma2/owlart/downloads
https://code.google.com/p/skosify/

14

Fuseki or you can use command line instructions. To upload offline you can upload
datasets directly to the TDB.

When uploading datasets online to Fuseki through its control panel, you can set the
Graph to “default” or provide a graph name. If you use a graph name when uploading a
dataset to Fuseki, you have to make sure of giving the same graph name to this dataset in
skosmos : sparglGraph (e.g. http://vocab.getty.edu/tgn/) by setting Skomos vocabularies
in vocabularies.ttl.

If you want to upload datasets online to Fuseki from the command line, you have two
options: the s-put and s-post utilities, which are part of Fuseki. You can use s-put, if you
want to add a single data file. Note that s-put clears the dataset first, that is why it may
happen that you overwrite the previous data when loading a new file. If you want to add
new data files to existing data without clearing it, you should use the s-post utility. In
both cases (s-put and s-post) we have to provide the name of the SPARQL-server, the file
name to be uploaded, as well as the name of the graph where the dataset will be
available (according to the skosmos: sparqlGraph name settings in vocabularies.ttl).

The Fuseki file upload handling is not very good at processing large files. It will load them
first into memory, only then to the on-disk TDB database (and also the Lucene/jena text
index). It can to run out of memory on the first step ("OutOfMemoryError: java heap
space" is a typical error message when this happens). If you give several GB memory to
Fuseki (for example Setting JVM heap to 8 GB: export JVM ARGS=-xmx8000M) it should be
able to upload large (several hundreds of MB) files, though it might take a while and you
may want to restart Fuseki afterwards to free some memory.

If you have several and large files to upload to Fuseki, it might be better to do it when
Fuseki is offline. The dataset and the index can be built in two steps using command line
tools: first load the RDF data, second create an index from the existing RDF dataset. You
can load data with tdbloader, part of the Jena distribution, but you may need to
download it separately. Using the tbdloader you have to shut down Fuseki (since only
one process can use the TDB at the same time). For the tdbloader you have to provide a
configuration file, the graph name with which you want access the vocabulary, and the
file name you want to upload. You can use tdbloader for several files in sequence, then
you can build the text index as a separate step with the jena text indexer tool.

If you allow updates to the dataset through Fuseki, the configured index will be
automatically updated on every modification. This means that you do not have to run the
above mentioned jena.textindexer after updates, only when you want to rebuild the
index from scratch.

Setting vocabularies

To set the vocabularies that you are going to use in Skosmos, you have to edit the
vocabularies.ttl file which is an RDF file in Turtle syntax. First, you need to create a
vocabularies.ttl file in the Skosmos directory.

In this file after defining the prefixes (like rdf, skos, dc) you have to create new sessions
for each vocabulary starting with the line :id a skosmos:Vocabulary, void:Dataset;

where id is just an identifier that will be used in the URL after [skosmos]/.
In vocabularies.ttl you have to set the following required parameters:

1.the title of the vocabulary in different languages: dc:title
"title of the vocabulary"@ language; wWhere language can be: en, de, it, etc.

15

2.the category of the vocabulary: dc:subject : category; where category can be:

cat_general, or other defined categories in vocabularies.ttl expressed as SKOS.
The categorization is used to group the vocabularies shown in the front page.

3.the URI namespace for vocabulary objects (these may not overlap): void:urispace

"URI namespace"; When you represent your data as RDF, the best practice is to
coin a new URI namespace for your data set. Then use that as the value of the
urispace setting.

4.the language(s) the vocabulary supports: skosmos:language " language ", "

language ", ... ; wherelanguage can be:: en, de, it, etc.

5.the URI of the SPARQL endpoint containing this vocabulary void:sparglEndpoint

<URI_SPARQL endpoint> ;URI_SPARQL endpoint Can be http://localhost:3030/
if you want to use the vocabulary locally, or the URL of the SPARQL endpoint of the
remote vocabulary

It is recommended to set the following optional parameters:

1.

the default language of the vocabulary, if the vocabulary supports multiple
languageS:skosmos:defaultLanguage " language "; vvherelanguage can be: :
en, de, it, etc.

setting skosmos:showTopConcepts true should display the top level hierarchy -
assuming that the dataset contains the skos:hasTopConcept and/or
skos:topConceptOf relationships that are necessary for this to work. If you want
to enable the Hierarchy tab showing top-level concepts on the vocabulary home
page: skosmos: showTopConcepts should be setto "true";

Group index is meant for thematic groupsClass of resources to display as concept
groups, or as arrays (subdivisions) of sibling concepts (typical values are
skos:Collection or isothes:ConceptGroup) : skosmos:groupClass
isothes:ConceptGroup; If you don't need this tab, simply remove the
skosmos:groupClass setting.

if you do not want Skosmos to query the mapping concept URIs for labels if they
haven't been found at the configured SPARQL endpoint:

skosmos:loadExternalResources "false";
URI of the main skos:Conceptscheme (instance of the current vocabulary) should

be specified if the vocabulary contains multiple skos:Conceptscheme instances
skosmos:mainConceptScheme <main Concept Scheme URI>.

if the vocabulary is relatively small (e.g. 100 concepts) you can show the
alphabetical index with all the concepts instead of showing only the concepts of
one letter at a time: skosmos:fullAlphabeticalIndex "true";. It is not
recommended to use fullalphabeticalIndex forlarge vocabularies

16

Some examples and problems of adding individual
vocabularies

In this chapter we are going to describe some examples for individual vocabularies that
we are using in our Classification Server, that show typical problems and solutions.

Getty vocabularies

Getty vocabularies'™ contain structured terminology for art and other cultural, archival
and bibliographic materials. They provide authoritative information for cataloguers and
researchers, and can be used to enhance access to databases and web sites.

Getty has its own SPARQL endpoint, but it is not responding in the right way. There
seems to be some incompatibility between Skosmos (in practice, the EasyRdf library
which is used to perform SPARQL queries) and the Getty SPARQL endpoint.

Even if we could access the Getty SPARQL endpoint, it would most likely be extremely
slow to use it with Skosmos, since it doesn't have a text index that Skosmos could use.
The lack of a text index would most likely prevent any actual use of Skosmos with the
Getty endpoint.

Therefore, we have tried to upload Getty vocabularies to our own local Fuseki SPARQL
endpoint with the jena text index. But unfortunately Getty vocabularies do not work well
in Skosmos due to their very large size.

There are two sets of each Getty vocabulary, the "explicit" set and the "full" set (Total
Exports). With the "explicit" set, which is smaller, we had to configure Fuseki to use
inference so that the data store can infer the missing triples. With the full set this is not
needed, but the data set is much larger so we had difficulties loading it. We could finally
upload the full set of Getty’s vocabularies using the tdbloader utility.

The downloaded export file of the full set includes all statements (explicit and inferred)
of all independent entities. It's a concatenation of the Per-Entity Exports in N-Triples
format. Because it includes all required Inference, it can be loaded to any repository (even
one without RDFS reasoning).

We had to download the External Ontologies (SKOS, SKOS-XL, ISO 25964), from
http://vocab.getty.edu/doc/#External Ontologies to get descriptions of properties,
associative relations, etc. We have downloaded the GVP Ontology from
http://vocab.getty.edu/ontology.rdf.

And finally we have loaded the full.zip export files (aat, tgn and ulan) form
http://vocab.getty.edu/dataset/.

In this way we have made Getty vocabularies available in our Classification Server, but
due to their huge size, they are extremely slow.

COAR Resource Type Vocabulary

COAR Resource Type Vocabulary'® defines concepts to identify the genre of a resource.
Such resources, like publications, research data, audio and video objects, are typically
deposited in institutional and thematic repositories or published in journals.

» http://vocab.getty.edu/
16 https://www.coar-repositories.org/activities/repository-interoperability/ig-controlled-vocabularies-
for-repository-assets/deliverables/

17

The main problem with COAR is that it only represents labels using SKOS XL properties.
Skosmos doesn't support SKOS XL currently. Unfortunately, the remote endpoint of
COARY cannot be used either, because the COAR endpoint data currently is not SKOS
Core, but SKOS-XL. Since we wanted to use COAR data in our Classification Server, we
have converted to SKOS Core labels using owlart (see Downloading and converting
vocabularies).

OF0S18

OFOS is the Austrian version of the Field of Science and Technology Classification (FOS
2007), maintained by Statistics Austria. The Austrian classification scheme for branches of
science (1-character and 2-character) is a further development modified for Austrian data.
OFOS can be downloaded in PDF and CSV format, but neither in SKOS structure (in
xml/rdf, turtle or N-Triples) format, nor Linked Open Data through a SPARQL endpoint is
available.

Since we have received it directly from Statistics Austria in Excel format, the simplest way
of converting it to SKOS was using VBA macros. These macros simply reads the content of
the Excel file, extend them with the appropriate RDF and SKOS labels, and writes the to
the desired xml/rdf or ttl format.

Available classifications and operation of the
Classification Server

Starting Fuseki and Skosmos

Before starting Fuseki it is worth extending the available JVM heap at least up to 8 GB by
typing $export JvM ARGS=-xmx8000M. If you want to use the local vocabularies of the
internal triplestore server, you have to start Fuseki first by typing the command line from
the home folder of Fuseki “Java -jar fuseki-server.jar --config jena-text-
config.ttl”, where jena-text-config.ttl is the configuration file of Fuseki. You can start
Fuseki in memory for making experiments with temporarily uploaded datasets, or you
can use the TDB version where the triplestore will be stored permanently. (See for details
the chapter Configuration of Fuseki). If you want to access external triplestorLes only,
you don’t have to start Fuseki at all.

You can start Skosmos from your web browser by typing in the address bar
http://localhost/skomos Or the domain name that you have assigned to Skosmos.

Available services and usage of the Classification Server

Currently we can access four general on-line classifications from external triplestores
(AGROVOC, Eurovoc, STW, UNESCO), some other general local classifications (e.g. Getty,
GND, OFOS, COAR Resource Type Vocabulary, etc.) and two local, Phaidra specific
classifications. The local classifications had to be uploaded to our local triplestore before
we could access them from Skosmos.

K http://vocabularies.coar-repositories.org/spargl/repositories/coar

8 http://www.statistik.at/KDBWeb/kdb.do?FAM=0OESTERR&&NAV=EN&&KDBtoken=null

18

The operation of the Classification Server is quite simple: from the opening page of
Skosmos we simply have to click on one of the classifications, and the classification will be
opened. We can see its vocabulary information, and we can select basically between
alphabetical and hierarchical view. Depending on the configuration we can see the
change history of the vocabulary or the group of concepts. We can also search specific
contents directly in our entire triplestore server, or simply in the selected classification.

Connecting Phaidra to the Classification Server

Most of the preservation systems will require the Classification Server when the user
ingests new items and wants to add metadata to this from a controlled vocabulary, as
well as when the user searches for some documents classified with some metadata from
a controlled vocabulary and wants to display or resolve them.

The connection between a preservation system and the Classification Server can be
realised using the REST API of Skosmos and/or Fuseki.

Skosmos provides a REST-style APl and Linked Data access to the underlying vocabulary
data. The REST APl is a read-only interface to the data stored in the Classification Server.
REST URLs must begin with [rest/v1. Most of the methods return the data as UTF-8
encoded JSON-LD (JSON for Linking Data), served using the application/json MIME type.
The data consists of a single JSON object which includes JSON-LD context information (in
the @context field) and one or more fields which contain the actual data.

Jena Fuseki provides REST-style SPARQL Query option using the SPARQL protocol over
HTTP. By means of this option we can send SPARQL queries built in into the URL to be
sent to the Jena Fuseki Server, and get the answers back in JSON format.

The access and response time of the Classification Server is a crucial issue that we have
tested using Perl scripts. The response time even in case of large datasets (e.g. Getty
AAT) was acceptable (i.e. less than 1 second).

References

1. Digital Preservation Coalition: Introduction: Definitions and Concepts. Digital Preservation
Handbook. York, UK. (2008)

2. Day, Michael: The long-term preservation of Web content. Web archiving, Springer, pp.
177-199. (2006)

3. W3C Working Group: SKOS Simple Knowledge Organization System Primer, Note 18
August 2009 https://www.w3.org/TR/skos-primer/ (access time: May, 2016)

4. W3C Semantic Web: Introduction to SKOS, https://www.w3.0rg/2004/02/skos/intro
(access time: May, 2016)

5. Zeng, M. L., & Chan, L.M.: Semantic Interoperability. In Encyclopedia of Library and
Information Sciences 4th ed. p. 8. (2015)

6. Suominen, O., Ylikotila, H., Pessala, S., Lappalainen, M., Frosterus, M., Tuominen, J., Baker,
T., Caracciolo, C., Retterath, A.. Publishing SKOS vocabularies with Skosmos. Manuscript
submitted for review, (2015)

7. Osma Suominen. Publishing SKOS concept schemes with Skosmos. AIMS Webinar 6th
April 2016, Slide 25. (2016)

19

e-Infrastructures Austria

Sustainable data storage and the provision of data for use by third parties are the central roles of
science. e-Infrastructures Austria is a federally funded program for the coordinated expansion and
continued development of data repositories across Austria, and is made possible by a grant from
the Austrian Ministry of Science, Research and Commerce (BMWFW). This program enables the
safe archival and lasting availability of electronic publications, multimedia objects and other digital
data from the research and teaching fields. Concurrently, topics relating to research data
management and digital archiving workflows will be addressed.

The working area is organized in twelve Work-Package-Clusters:

Cluster A Monitoring of Document Repositories within the Partner Network
Patrick Danowski (IST Austria)

Cluster B Planning and Implementation of a ,National Survey" for Research Data
Christian Gumpenberger (University of Vienna)

Cluster C Designing a Knowledge Network: Development of a reference structure for the
construction of Repositories
Paolo Budroni (University of Vienna)

Cluster D Infrastructure
Raman Ganguly (Vienna University Computer Center)

Cluster E Legal and Ethical Issues
Seyavash Amini (Counsellor-at-law, University of Vienna)

Cluster F Open Access
Andreas Ferus (academy of fine arts vienna)

Cluster G Visual Data modeling
Martin Gasteiner (University of Vienna)

Cluster H Life Cycle Management
Andreas Rauber (Technical University Vienna)

Cluster I Metadata
Susanne Blumesberger (University of Vienna)

Cluster] Permanent backup of the data
Adelheid Mayer (University of Vienna)

Cluster K Data from scientific and artistic-scientific research processes
Bernhard Haslhofer (Austrian Institute of Technology)

Cluster L Cross-project issues (technical and non-technical)
Andreas Jeitler (University of Klagenfurt)

e-infrastructures
austria

University of Vienna Library and Archive Services, 1010 Vienna,
Universitatsring 1
T: +43-1-4277-15172, office@e-
infrastructures.at

20

