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The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea,

soybean, etc. are important sources of nutrition and contribute to a significant amount of

biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However,

the production of legumes is constrained due to abiotic and biotic stresses. It is

therefore imperative to understand the molecular mechanisms of plant response to

different stresses and identify key candidate genes regulating tolerance which can

be deployed in breeding programs. The information obtained from transcriptomics

has facilitated the identification of candidate genes for the given trait of interest and

utilizing them in crop breeding programs to improve stress tolerance. However, the

mechanisms of stress tolerance are complex due to the influence of multi-genes

and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene

expression which in turn causes modifications in the composition of plant proteomes

and metabolomes. Therefore, functional genomics involving various proteomics and

metabolomics approaches have been obligatory for understanding plant stress

tolerance. These approaches have also been found useful to unravel different pathways

related to plant and seed development as well as symbiosis. Proteome and metabolome

profiling using high-throughput based systems have been extensively applied in the

model legume species, Medicago truncatula and Lotus japonicus, as well as in the

model crop legume, soybean, to examine stress signaling pathways, cellular and

developmental processes and nodule symbiosis. Moreover, the availability of protein

reference maps as well as proteomics and metabolomics databases greatly support

research and understanding of various biological processes in legumes. Protein-protein

interaction techniques, particularly the yeast two-hybrid system have been advantageous

for studying symbiosis and stress signaling in legumes. In this review, several studies

on proteomics and metabolomics in model and crop legumes have been discussed.

Additionally, applications of advanced proteomics and metabolomics approaches have

also been included in this review for future applications in legume research. The

integration of these “omics” approaches will greatly support the identification of accurate

biomarkers in legume smart breeding programs.

Keywords: abiotic and biotic stresses, developmental process, functional genomics, signaling pathways, stress

tolerance
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INTRODUCTION

The legume crops such as chickpea (Cicer arietinum), common
bean (Phaseolus vulgaris), cowpea (Vigna unguiculata), faba
bean (Vicia faba), lentil (Lens culinaris), lupin (Lupinus
luteus), mungbean (Vigna radiata), pea (Pisum sativum), peanut
(Arachis hypogaea), pigeonpea (Cajanus cajan), and soybean
(Glycine max) have greatly contributed in providing nutrition,
food security, and environmental sustainability (Graham and
Vance, 2003; Varshney et al., 2013a). However, a majority
of them are grown in marginal environments, subjected to
abiotic (e.g., drought, heat, cold, salinity, waterlogging, heavy
metal toxicities etc.) and biotic stresses (e.g., anthracnose,
bean rust, bacterial blight, Fusarium wilt etc.), thus limiting
their productivity (Dita et al., 2006; Varshney and Tuberosa,
2013; Rodziewicz et al., 2014). Moreover, these environmental
conditions severely affect rhizobia-legume symbiosis, which
contributes to ∼45% of nitrogen required for agriculture
(Karmakar et al., 2015). Therefore, for the development
of superior varieties with enhanced stress tolerance, it is
extremely important to understand stress response mechanisms
in legumes which include changes in gene expression, and
the consequent variations in the transcriptome, proteome and
metabolome.

The availability of high throughput and cost effective
next generation sequencing (NGS) platforms as well as
high throughput genotyping technologies, have facilitated the
generation of massive genomic data for model as well as crop
legumes. These platforms have been vital in producing the
genome sequence assemblies for the following legumes: adzuki
bean (Kang et al., 2015; Yang et al., 2015), chickpea (Varshney
et al., 2013b), common bean (Schmutz et al., 2014), Lotus
(Sato et al., 2008), Medicago (Young et al., 2011), mung bean
(Kang et al., 2014), pigeonpea (Varshney et al., 2012), and
soybean (Schmutz et al., 2010). Furthermore, whole genome-
resequencing data are also becoming readily available for mining
superior alleles (Varshney et al., 2009; Lam et al., 2010).
Similarly, transcriptomics/gene expression studies, using a range
of platforms, have been valuable for identifying candidate genes
associated with tolerance/resistance to different stresses as well
as several agronomic traits (Kudapa et al., 2013; Campbell et al.,
2014; Brasileiro et al., 2015).

Although QTLs/candidate genes/ alleles have been used in
breeding programmes, it has been observed that structural/
expression variation identified at the genetic level are not
always translated into the “predicted” phenotype. Additionally,
mechanisms involved in stress tolerance can be complicated,
e.g., the involvement of metabolites, multigenes and post-
translational modifications (PTM) which cannot be investigated
by genomics or transcriptomics approaches (Mazzucotelli
et al., 2008; Weckwerth, 2011a). In this context, proteomics
and metabolomics are promising approaches to enhance our
understanding of functional molecules on specific aspects of
multigene families and PTMs, instead of analyzing the genetic
code (DNA) or transcript (RNA) abundance which may not
correlate with their corresponding proteins (Weckwerth, 2011b;
Hossain et al., 2012).

Proteomics, defined as the high-throughput study of proteins,
has taken the lead in plant biological research and stress
responses, especially due to the increasing number of plant
genomes being sequenced and released (Pandey and Mann,
2000; Weckwerth, 2011b; Jorrín-Novo et al., 2015). In addition,
advancements in mass spectrometry (MS), quantitative methods
and bioinformatics approaches have allowed comprehensive
identification, quantitation, validation and characterization for a
wide range of proteins from specific organ/tissue/cells (Glinski
and Weckwerth, 2006). The information obtained through
these advanced approaches are valuable for deciphering protein
structure and complex mechanisms such as enzymatic and
regulatory functions of proteins coded by specific genes (Bachi
and Bonaldi, 2008; Wienkoop et al., 2010a; Nanjo et al., 2011;
Abdallah et al., 2012). Furthermore, proteomics approaches
provide valuable information such as protein levels associated
with stress tolerance, the modifications in proteomes under stress
that link transcriptomics and metabolomics analyses as well
as the role of expressed genes in the functionally translated
regions of the genome linked to traits of interest (Kosová et al.,
2011). Many proteomics based publications, especially related
to plant development and other biological phenomenon such
as symbiosis in legumes are available in the model legumes and
Arabidopsis thaliana, as well as in some crop plants such as rice
(Oryza sativa), wheat (Triticum aestivum), maize (Zea mays),
soybean, tomato (Solanum lycopersicum) and tobacco (Nicotiana
tabacum) (Jorrín-Novo et al., 2015).

In addition to proteomics, metabolomics is another important
approach of functional genomics in which the identification
and quantitation of metabolomes (collection of metabolites or
small molecules) within a cell, tissue or organism produced
through cellular metabolism, connects the cellular biochemical
activity with the phenotype (Weckwerth, 2003). Major plant
metabolomics approaches include metabolic fingerprinting,
metabolite profiling and targeted analysis (Fiehn et al., 2000;
Halket et al., 2005; Shulaev, 2006). Depending on the objective
of study, different metabolomics approaches or a combination
of approaches are applied. Furthermore, the use of MS,
bioinformatics tools and softwares, allows metabolites to be
measured quickly, simultaneously, in large numbers from a
small amount of sample, which are spatially localized within
the biological material (Bhalla et al., 2005; Patti et al., 2012).
Since metabolites are closer to the phenotype, they reflect gene
expressions and different regulatory processes more accurately
and metabolomics is a powerful tool to study plant molecular
phenotypes in response to stresses (Scherling et al., 2010;
Arbona et al., 2013; Doerfler et al., 2013). For example, under
abiotic stress conditions, the plant metabolism is affected due
to factors such as inhibition of metabolic enzymes, shortage
of substrate, extreme demand for specific compounds and
a combination of these factors. Thus, the plant undergoes
metabolic reprogramming to adapt to the predominant stress
conditions through the production of anti-stress components
such as compatible solutes, antioxidants and stress-responsive
proteins (Wienkoop et al., 2008a; Obata and Fernie, 2012;
Doerfler et al., 2014). In crop breeding programs, there
has been great interest in using metabolites as selection
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biomarkers, since metabolites integrate the complex interaction
between genotype and the environment (Fernie and Schauer,
2009).

With proteomics and metabolomics emerging as cutting edge
functional biology disciplines for understanding plant adaptation
mechanisms to stresses at cellular and developmental stages in
different plant systems, there has been great interest in applying
the knowledge to understand responses in different crop plants.
These approaches, integrated with information obtained from
genomics data, allow accurate identification of candidate genes
and pathways involved in important agronomic traits that can be
applied in crop breeding programs (Langridge and Fleury, 2011).

In this article different proteomics and metabolomics
tools available and the use of these approaches in legumes
especially to understand stress response mechanism, cellular and
developmental processes and symbiosis, have been discussed.
The assemblage of information and resources available for these
aspects of legume proteomics and metabolomics will facilitate
our understanding and utilization of these resources for legume
crop improvement programs.

PROTEOMICS APPROACHES AND
CHALLENGES FOR LEGUME RESEARCH

Proteomics approaches have been implemented according to
the objective of the study and are based on certain criteria
such as (1) descriptive proteomics for classification of proteins,
(2) comparative proteomics for comparison of protein profiles
(genotypes, cells, organs, developmental stages, stress response,
etc., (3) PTMs that determine how proteins are modified,
(4) Protein-protein interactions (PPI) for identifying protein
complexes and interacting networks, (5) proteinomics for
studying protein structure and functional groups, and (6)
translational proteomics that involves transfer of methodology
and knowledge for crop improvement (Jorrín-Novo et al.,
2015). Data obtained through above mentioned approaches
together with bioinformatics, provide significant information on
biological processes and stress tolerance mechanisms that can be
applied in crop breeding programs (Salekdeh and Komatsu, 2007;
Nanjo et al., 2011; Hu et al., 2015).

Furthermore, the comprehensive analysis using differential
proteomics in complex systems has demanded development of
new technologies to study the cell proteome. Each approach
has advantages and disadvantages from both the conceptual
and the methodological perspectives. Several approaches are
being used to study proteomics in plants and these include
electrophoresis and/or chromatography combined with chemical
or metabolic labeling and MS. In the following section, we
have discussed the gel-based system which is significant for
differential expression profiling for studying legume stress
responses, and the advantages of the technologically more
advanced gel-free, quantitative systems. The application of these
approaches for protein profiling in model and crop legumes
for understanding stress responses have been addressed with
successful examples where proteomics approaches have been
utilized for the advancement of crop legumes research. In the

interest of channeling the usage of more advanced approaches
for legume crop improvement research, the application of more
advanced approaches applied in other plant systems, have also
been addressed.

Gel-Based System for Protein Differential
Expression Profiling
Gel-based systems have been widely applied for protein
differential expression analysis which involves the use of two-
dimensional gel electrophoresis (2D-GE) or two-dimensional
difference gel electrophoresis (2D-DIGE) for protein separation
coupled with MS applications for the identification and
quantitation of proteins (Kosová et al., 2011; Subramanian and
Smith, 2013). The 2D-GE method has an advantage of resolving
and visualizing thousands of spots corresponding to different
molecular forms of same proteins. However, it has low sensitivity
and is not suited for protein quantitation (Marouga et al., 2005;
Abdallah et al., 2012). It was found that the use of fluorescent dyes
in place of Coomassie can considerably increase the sensitivity
and compatibility for MS analyses (Vanderschuren et al., 2013).
These factors have led to the usage of a more refined gel
electrophoresis method, called the 2D-DIGE which is based on
pre-labeling of protein mixtures with fluorescence. Thus, 2D-
DIGE is a much more sensitive method, which allows protein
detection at sub-picomolar levels for highly precise quantitative
proteomic studies (Marouga et al., 2005). Few studies have been
reported in legumes, which employed 2D-DIGE for monitoring
early response to symbiosis and pathogenesis, such as in the root
proteome in Medicago (Schenkluhn et al., 2010) and parasitic
infections in pea (Castillejo et al., 2012). The advantages and
disadvantages of 2D-GE and 2D-DIGE have been reviewed
before (see Griffin and Aebersold, 2001; Marouga et al., 2005;
Abdallah et al., 2012).

For identification of proteins separated by 2D-GE, MS based
techniques were found to have high accuracy, resolution and
sensitivity but the sample preparation seemed to be laborious
(van Wijk, 2001; Subramanian and Smith, 2013). Earlier, the
usage of techniques such as matrix-assisted laser desorption
ionization time-of-flight (MALDI-TOF) MS and electrospray
ionization (ESI) MS with tandem MS (MS/MS) overcame the
slower and less sensitive methods (Griffin and Aebersold, 2001;
Griffin et al., 2001; van Wijk, 2001). In particular, the application
of tandemMS methods provided sequence information for more
peptides accurately for the identification of proteins and PTMs
(Pandey and Mann, 2000; Bachi and Bonaldi, 2008). The use of
MALDI ionization with two TOF analysers, (MALDI TOF/TOF)
and liquid chromatography tandem MS (LC-MS/MS) have been
fairly new technologies for protein identification that enhanced
the pipeline for de novo assembly. The availability of these
tools, together with the genome sequences of more plants and
accessibility of sequence databases, intensified the identification
of protein spots in different plants (see Jorrín-Novo et al., 2015).
The most commonly used pipeline for the identification of
proteins involves comparing the MS/MS spectra to the reference
databases (Romero-Rodríguez et al., 2014). Although SEQUEST,
MASCOT and X!Tandem are the widely used database search
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programs for protein identification, MassMatrix is also suited for
tandemMS data (Xu and Freitas, 2009; Senkler and Braun, 2012).

Gel-Free Proteomics Tools and
Approaches for Quantitation
Shot-gun proteomics is a gel-free “bottom-up” strategy, in
which complex peptide fractions produced after proteolytic
digestion of proteins are analyzed by LC-MS/MS. The protein
identification rates are enhanced using different peptide
or protein fractionation strategies (Abdallah et al., 2012).
This approach allows high throughput and comprehensive
investigation, by providing an overview of the organelle or cell-
type proteomes (Glinski and Weckwerth, 2006). For large-scale
proteomics, a multidimensional chromatography technique
called multidimensional protein identification technology
(MudPIT) has been used to separate complex protein samples
prior to MS analyses to increase the proteome coverage and
dynamic range (Washburn et al., 2001; Bachi and Bonaldi, 2008).

MS based protein quantitation strategies may include
untargeted quantitation, (database dependent or database
independent protein identification) or targeted absolute
quantitation, which are important for biomarker discovery and
protein stoichiometries in protein complexes (Wienkoop et al.,
2008b; Weckwerth, 2011b; Schmidt and Urlaub, 2012). Relative
quantitation is an unbiased, large-scale screening strategy, which
is useful to detect proteins involved in unknown regulatory
processes, protein modifications and mechanisms in systems
biology. MS-based methods for protein quantitation can be label
(stable-isotope in vivo or in vitro label) or non-label based (see
Bachi and Bonaldi, 2008; Abdallah et al., 2012). Label based
proteomics for relative quantitation consists of chemical labeling
and metabolic labeling. The iTRAQ (isobaric tags for relative
and absolute quantitation), is a chemical labeling approach and
has been applied to study salinity stress tolerance in the phloem
sap proteome of Cucumis sativus (Fan et al., 2015), leaf proteome
of Vitis vinifera to understand heat stress response (Liu et al.,
2014) and the root proteome of rice to investigate aluminum
stress response (Wang et al., 2014). The platforms available
for relative quantitation include Mass Accuracy Precursor
Alignment (MAPA), ProtMax, MASSWESTERN, and PROMEX
(Hoehenwarter et al., 2008; Weckwerth et al., 2014). Recently,
a rapid shot-gun LC-MS approach for relative quantitation
called full-scan (FS) selective peptide extraction (Selpex) was
successfully used for generating a reference library of targeted
peptides from leaf tissue of Medicago (Castillejo et al., 2014).

Selective reaction monitoring (SRM) or multiple reaction
monitoring (MRM), which involves the use of triple-quadrupole
(QQQ) MS is a quantitative, targeted and label-free approach,
that complements untargeted shotgun methods due to its reliable
quantitation of low abundance proteins in complex mixtures
(Lange et al., 2008; Wienkoop et al., 2010b; Schmidt and
Urlaub, 2012). This approach has been useful to measure a
predetermined set of proteins that could constitute cellular
networks or candidate biomarkers across samples consistent and
reproducibly (Wienkoop et al., 2010b; Picotti and Aebersold,
2012). In Medicago, the MRM approach was applied for the

absolute quantitation of sucrose synthase isoforms and N-
metabolism enzymes in symbiotic root nodules as well as in the
analysis of nodule metabolism under drought stress (Wienkoop
et al., 2008b; Larrainzar et al., 2009).

Protein Profiling in Legumes
Proteomic studies have been carried out predominantly in
Medicago to investigate stress tolerance, seed physiology,
plant growth, development and symbiosis which has immense
significance in agricultural research (Colditz and Braun, 2010;
Jorrín-Novo et al., 2015). A majority of studies have been carried
out to investigate abiotic stress responses, e.g., drought tolerance
in shoots, leaves and roots using gel-based as well as non-
gel based approaches (Table 1). For instance, 26 differentially
expressed proteins were identified using 2D-GE and ESI-LC-
MS/MS approaches from leaf samples subjected to drought
stress (Aranjuelo et al., 2011). The study revealed the regulation
process involved in the synthesis of amino acids pertaining to
osmoregulation. Using non-gel based LC-MS/MS approaches,
root nodule proteome and symbiotic nitrogen fixation was
studied under drought stress in Medicago (Larrainzar et al.,
2007, 2009). The former study (Larrainzar et al., 2007) not only
identified a large number of nodule proteins, but also grouped the
drought responsive proteins from plant and bacteroid which was
helpful in understanding the mechanism in which each symbiotic
member responded to drought stress. The later study (Larrainzar
et al., 2009) was important for the relative quantification of root
nodule proteins and absolute quantification of a key enzyme
in sucrose metabolism to understand the regulation of nitrogen
fixation under drought stress. In order to understand the roles
of diverse LEA proteins in developing seeds of Medicago,
differential profiling was effectively used to identify proteins that
may have a role in desiccation tolerance and seed longevity
(Chatelain et al., 2012). The study of arbuscular mycorrhizal
symbiosis in Medicago roots identified differential accumulation
of 96 membrane proteins which could have a role during
symbiosis when compared between the mycorrhizal and non-
mycorrhizal roots. The study has also identified proteins that
stimulated changes in membrane trafficking (Abdallah et al.,
2014).

In addition, there is a significant contribution of proteomics
for studying abiotic stress in soybean at subcellular, organ and
whole plant levels. The methodologies applied and the major
discoveries in these studies have been reviewed in a number
of articles (see Hossain et al., 2013; Hossain and Komatsu,
2014a,b). A few important examples of proteomics approaches
used for analyzing soybean abiotic stress are described here. For
instance, osmotic stress in the plasma membrane of soybean
seedling was studied using both gel-based and nanoLC MS/MS
approaches (Nouri and Komatsu, 2010). While the former
technique identified four up-regulated and eight down-regulated
protein spots, the latter approach, identified 11 up-regulated
and 75 down-regulated proteins, of which 7 were identified
in both the studies. In dissecting the mechanism of Cadmium
(Cd) uptake and distribution in soybean, 2D-GE and LC-MS/MS
approaches were employed on contrasting soybean cultivars to
identify 13 and 11 differentially expressed proteins, respectively.
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TABLE 1 | Key studies on protein differential expression analysis in response to various stress in some model and crop legumes.

Legume Cell/Tissue/

Organ

Stress Method Protein differential expression References

and identification

Differentially

expressed

proteins

Function

Medicago Shoots Salt, drought nanoESI-LC-MS/MS – Protein regulation, photosystem

(PS11)

Staudinger et al., 2012

Shoots Cadmium 2D-GE, MALDI-TOF-MS 17 Photosynthesis, chaperones Aloui et al., 2011

Leaves Drought 2D-GE, ESI-LC-MS/MS 26 Metabolism, energy, protein storage Aranjuelo et al., 2011

Nodules Drought LC-MS/MS 16 Nodule plant and bacteoid protein Larrainzar et al., 2007

Nodules Drought LC-MS/MS – Sucrose synthase, symbiotic

nitrogen fixation

Larrainzar et al., 2009

Chickpea Microsomal

fraction from

aerial tissue

Dehydration 2D-GE, MALDI-TOF-TOF 184 Photosynthesis, transport,

metabolism

Jaiswal et al., 2014

Leaves Cold 2D-GE with MALDI-TOF/TOF

and/or with LC-MS/MS

70 Defense, signal transduction,

storage

Heidarvand and

Maali-Amiri, 2013

ECM Dehydration 2D-GE, LC-ESI-MS/MS 81 Cellular function Bhushan et al., 2011

ECM Dehydration 2D-GE, ESI-Q-TOF-MS/MS 134 Cell wall modification, signal

transduction, metabolism, defense

Bhushan et al., 2007

ECM Dehydration 2D-GE, ESI-TOF-MS 147 Molecular chaperones, cell signaling Pandey et al., 2008

Common bean Leaves Drought 2D-DIGE, LC-MS/MS 130 Metabolism, photosynthesis, protein

synthesis, proteolysis, defense

Zadražnik et al., 2013

Green gram Roots Cadmium 2D-GE and MALDI-TOF MS 23 Nutrient metabolism Muneer et al., 2014

Peanut Mature seeds Water deficit LC MS/MS 93 Glycolysis, sucrose and starch, fatty

acid metabolism

Kottapalli et al., 2013

Leaves Water deficit 2D-GE, MALDI-TOF-MS,

Q-TOF-MS/MS

79 Photosynthesis, signal transduction,

energy, metabolism

Kottapalli et al., 2009

Pea Seeds Osmotic 2D-GE and MALDI-TOF-MS 230 Glycolysis, signal transduction,

detoxification

Brosowska-Arendt

et al., 2014

Roots Drought 2D-GE, MALDI-TOF/TOF

and LC-ESI-QTOF

18 Flavonoid and sulfur metabolism Irar et al., 2014

Roots Salinity 2D-GE, ESI-Q-TOF MS/MS 35 Defense, stress related Kav et al., 2004

Soybean Roots Cold,

osmotic

2D-GE,

LC/nanoESI-MS

59 Signal transduction, secondary

metabolism, defense, energy, protein

synthesis, development,

translocation,storage

Swigonska and

Weidner, 2013

Seedlings Flooding 2D-GE, nano-LC-MS/MS 168 Metabolism, transportation,

localization, Isoflavone reductase

Khatoon et al., 2012

Leaves Salinity 2D-GE,

MALDI-TOF-TOF-MS

91 Stress related, proteolysis, protein

biosynthesis, photosynthesis

Ma et al., 2012

Leaves,

hypocotyls and

roots

Drought 2D-GE, nanoLC-MS/MS 57 Stress related, defense Mohammadi et al.,

2012

Roots Flooding 2D-GE, MALDI-TOF- MS,

nanoLC

MS/MS

70 Transportation, localization, storage,

metabolism, cell wall modification,

programmed cell death

Salavati et al., 2012

Developing

seeds

High

temperature,

humidity

2D-GE, MALDI-TOF-MS 42 Signal transduction, protein

biosynthesis, photosynthesis, protein

folding, defense, metabolism,

regulation, secondary metabolite

biosynthesis

Wang et al., 2012a

Leaves Fungus 2D-GE,

MALDI-TOF-TOF-MS

41 Defense, carbohydrate metabolism,

energy

Wang et al., 2012b

(Continued)
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TABLE 1 | Continued

Legume Cell/Tissue/

Organ

Stress Method Protein differential expression References

and identification

Differentially

expressed

proteins

Function

Plasma

membrane

Osmotic 2D-GE, nano-LC-MS/MS 96 Transport Nouri and Komatsu,

2010

Endoplasmic

reticulum

Flooding 2D-GE and BN-PAGE,

nano-LC-MS/MS

∼50 Heat shock proteins, chaperonins Komatsu et al., 2011

Microsomal

proteins

Cadmium 2D-GE, nanoLC-MS/MS 13 and 11 Stress, protein biosynthesis Ahsan et al., 2010a

Leaves, stems

and roots

High

temperature

MALDI-TOF-MS,

nanoLC-MS/MS and protein

sequencing

54, 35, 61 Defense photosynthesis, secondary

metabolism, protein biosynthesis

Ahsan et al., 2010b

Roots Waterlogging 2D-GE, MALDI-TOF- MS,

ESI-MS/MS

24 Signal transduction, programmed

cell death, homeostasis and

metabolism

Alam et al., 2010

Hypocotyls,

roots

Salt 2D-GE

ESI-Q/TOF-MS/MS

>20 LEA protein, protease inhibitor Aghaei et al., 2009

Seedlings Aluminum 2D-GE, MALDI-TOF-MS 39 Defense, signal transduction, protein

folding, transport

Zhen et al., 2007

In this study, highly up-regulated proteins associated with lignin
biosynthesis indicated that xylem lignification may be preventing
the translocation of Cd (Ahsan et al., 2010a). For deciphering
the mechanism of heat tolerance in soybean seedlings, 2D-
GE, MALDI-TOF-MS, LC-MS/MS and protein sequencing were
applied in which 54, 35 and 61 proteins were differentially
expressed respectively in leaves, stems and roots, respectively
(Ahsan et al., 2010b). The study showed that heat shock proteins
(HSPs) and antioxidant defense related proteins were induced
and identified different proteins involved in tissue specific and
common defense mechanisms.

In other legume crops, there are reports of significant
discoveries beingmade for understanding abiotic stress responses
through protein profiling. In the case of chickpea, drought
is one of the most important abiotic stresses that severely
affect its productivity, for which efforts have been made to
dissect the genetic basis of tolerance (Thudi et al., 2014;
Varshney et al., 2014). Toward understanding proteomic
response to dehydration stress in chickpea, a few protein profiling
studies have been made available (Table 1). For instance, the
investigation of a dehydration-responsive microsomal proteome
with 2D-GE and MALDI-TOF/TOF identified 184 proteins that
showed significant differential expression (Jaiswal et al., 2014).
This study was significant in identifying a novel component
involved in dehydration signaling called CaSUN1. In a different
study, using 2D-GE with MALDI-TOF/TOF and LC-MS/MS,
proteomic changes were identified at early stage of cold stress
in chickpea leaves (Heidarvand and Maali-Amiri, 2013). The
analysis indicated that energy resources and primary metabolites
respond by recreating a new homeostasis in preparation for long-
term cold stress adaptation. In an earlier study, 81 dehydration
responsive proteins were identified from profiling analysis of the
chickpea organellar proteome in two contrasting genotypes, with

2D-GE and LC-ESI-MS/MS (Bhushan et al., 2011). The study
proposed that cell wall restructuring and the control of reactive
oxygen species were mainly responsible for better adaptability to
the stress.

A few studies have also been conducted in pea through
protein profiling for understanding abiotic stress response
and are being described here. For example, 2D-GE, MALDI-
TOF/TOF, and LC-ESI-QTOF was employed to dissect the
signaling pathway leading to inhibition of biological nitrogen
fixation under drought stress (Irar et al., 2014). The study
successfully identified 18 nodule proteins regulated by both pea
and rhizobium genomes under drought stress and unraveling
the SNF regulation machinery in nodules. In a different study,
changes in protein accumulation in germinating seeds under
different osmotic conditions were monitored with 2D-GE and
MALDI-TOF-MS (Brosowska-Arendt et al., 2014). This work
showed that under optimal conditions, proteins associated
to glycolysis, fatty acids synthesis and detoxification under
osmotic stress considerably decreased, while proteins involved in
signal transduction and protection were accumulated. Similarly,
investigation of salinity stress response in pea with 2D-GE and
ESI-Q-TOF MS/MS approach revealed significant differential
expression of 35 proteins, of which 10 pathogenesis-related (PR)
proteins was reported for the first time to be involved in salinity
stress response, possibly involving a new signal transduction
pathway (Kav et al., 2004).

Protein Reference Maps in Legumes
Protein reference maps have been developed for model and
crop legumes, which identify as many proteins as possible in a
particular tissue or cell cultures at a given point of time. This
provides useful insights into important plant processes, such
as stress tolerance, nutrient uptake and symbiotic association
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with rhizobia (Brechenmacher et al., 2009). These resources
will allow further studies for efficient proteomics applications
for the crop legumes, especially through the classification
and characterization of proteins related to development and
stress tolerance important for unambiguous candidate gene
identifications. Reference maps have been established in
Medicago for cell suspension cultures, roots, leaves, stems,
flowers and pods (Watson et al., 2003). A protein reference map
generated for cell suspension culture of Medicago consisted of
1367 proteins with 907 unique accessions, which could identify
a complete tricarboxylic acid cycle, a nearly complete glycolytic
pathway, a partial ubiquitin pathway, enzymes involved in
secondary metabolism through functional annotations (Lei
et al., 2005). Other specialized proteome maps generated
include Medicago mitochondria (Dubinin et al., 2011); cell wall
(Gokulakannan and Niehaus, 2010); embryonic cell cultures
generated from single protoplasts (Imin et al., 2004) and roots
(Mathesius et al., 2011).

Lotus proteome reference maps for nodules and roots consist
of 780 and 790 protein spots identified with 2D-GE, with 45%
of the corresponding unique gene accessions common in both
the tissues (Dam et al., 2014). The study showed that PTMs were
more prominent in nodules rather than in roots. In addition
to this, higher levels of proteins such as pathogen-related 10,
heat shock, and redox processes related were found in the
nodules prior to nitrogen fixation and nodulin related proteins
were prevalent in mature nitrogen fixing nodules. In Lotus
proteome reference maps were also generated for pod and seed
development (Nautrup-Pedersen et al., 2010). Similar reference
maps were also developed in crop legumes such as soybean
and peanut. In soybean, a comprehensive proteome reference
map was generated with 5702 proteins identified for a single
root hair cell (Brechenmacher et al., 2012). A previous reference
map in root hair cells identified 1492 proteins (Brechenmacher
et al., 2009). Other proteomemaps generated in soybean includes
root apex and differentiated root zone (Mathesius et al., 2011);
seed filling (Hajduch et al., 2005), leaf (Xu et al., 2006), and
response to pathogen invasion (Mithöfer et al., 2002). Similarly,
leaf proteome reference map was developed in peanut (Katam
et al., 2010). In chickpea, reference maps were generated for
understanding the complexity of plant nuclear proteins (Pandey
et al., 2006) and membrane proteins (Jaiswal et al., 2012). In the
case of pea, reference maps have been developed for vegetative
tissues (Schiltz et al., 2004) and mature seeds (Bourgeois et al.,
2009).

Proteome reference maps generated through gel-based
approaches consist of gel images in which selected “spots”
were linked with protein identity information with arrows
and numbers (Senkler and Braun, 2012). However, web-
based resources with interactive features of the reference maps
have also been made available. Examples of these resources
include the “Seed Proteome,” the “Rice proteome database,” and
the “Arabidopsis seed proteome.” Recently, for constructing
proteome reference map, a software tool called “GelMap” was
developed (Rode et al., 2011). This tool was used for generating
a 3D GelMap of Arabidopsis complex 1 in which its unique
proteins constituents has been defined (Peters et al., 2013).

Legume Databases for Proteomics
Analyses
Various databases have been developed that store a large
resource of plant proteins from the proteome reference maps of
legumes and other plants, such as the plant proteomics database
PROMEX (Hummel et al., 2007; Wienkoop et al., 2012). A
continuously growing database, PROMEX consists of 116,364
tryptic peptide product ion spectra entries of 48,218 different
peptide sequence entries from Lotus, Medicago, common bean
and soybean as well as other plants such as Arabidopsis, rice,
etc. The database could be searched for whole experiments with
an experimental ID, meta-information and single proteins and
their corresponding peptide reference spectra. Furthermore, new
LC-MS/MS analyses can be searched against this spectral library
(http://promex.pph.univie.ac.at/promex/). LegProt (http://
bioinfo.noble.org/manuscript-support/legumedb) is a legume
specific protein database consisting of amino acid sequences
translated from predicted gene models and 6-frame translations
of tentative consensus sequences expressed sequence tags (ESTs)
(Lei et al., 2011). The ProteomeXchange contains the dataset
of seed phosphoproteins from Lotus (PXD000053, http://
proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD
00053) and has been valuable for understanding the regulatory
mechanisms of seed germination in legumes (Ino et al., 2014).
This dataset contains a total of 721 phosphopeptides from 343
phosphoproteins in cotyledons and 931 phosphopeptides from
473 phosphoproteins in hypocotyls.

The Medicago PhosphoProtein Database (MPPD,
http://phospho.Medicago.wisc.edu), contains 3457 unique
phosphopeptides with 3404 non-redundant sites of
phosphorylation on 829 proteins. This database represents
the most comprehensive Medicago phosphorylation data, which
allows browsing of identified proteins, searching proteins of
interests, in addition to conducting BLAST searches of the
database using peptide sequences and phosphorylation motifs
as queries (Rose et al., 2012a). The Soybean Proteome Database
(SPD, http://proteome.dc.affrc.go.jp/Soybean/) consists of a
repository of functional analysis of abiotic stresses (flooding,
drought, and salt). In total, it consists of 23 reference maps of
soybean and proteins collected from several organs, tissues, and
organelles of soybean (Ohyanagi et al., 2012). Recently, another
database for storage, allergen, and anti-nutritional proteins from
cultivated soybean called Soybean Protein Database (SoyProDB;
http://bioinformatics.towson.edu/Soybean_Seed_Proteins_2D_
Gel_DB/Home.aspx) has also been developed (Tavakolan et al.,
2013). In the case of yellow lupin (Lupinus luteus L.), a seed-
protein catalog has been developed. In this study, 736 proteins
corresponding to 152 unique proteins have been deposited in the
WORLD-2DPAGE repository (http://world-2dpage.expasy.org/
repository/0066/; Ogura et al., 2014).

Post-Translational Modifications (PTMs) in
Legumes
PTMs are required for the functionality of proteins that
regulate processes and the subcellular localization that could
be analyzed using proteomics approaches (Pandey and Mann,
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2000; Seo and Lee, 2004; Downes and Vierstra, 2005). Although
mostly identified through MS approaches, PTM analyses are
not straightforward as protein identifications, the reason being
peptide analyses do not show the expected molecular mass
and therefore more protein samples are required (Pandey and
Mann, 2000). However, advancement in phosphoproteomics
procedures, e.g., the enrichment of phosphopeptides using
immobilized metal affinity chromatography (IMAC) or proteins
with aluminum hydroxide or titanium dioxide called metal
oxide affinity chromatography (MOAC) (Wolschin et al., 2005)
have improved the identification efficiency (Ndassa et al., 2006;
Chen et al., 2010; Hoehenwarter et al., 2013; Beckers et al.,
2014). Among the PTMs, phosphorylation is the major post-
translational regulatory processes in all eukaryotes followed
by ubiquitin and SUMO (Small Ubiquitin-like MOdifier)
conjugations (Mazzucotelli et al., 2008).

The root proteome of the Medicago genotype, Jemalong
A173457, revealed unique phosphopeptides that covers 3404
non-redundant sites of in vivo phosphorylation on 829 proteins
(Grimsrud et al., 2010). The large scale phosphoproteomic
study identified multiple sites of phosphorylation on a number
of crucial proteins in rhizobial symbiosis initiation such as
SICKLE, NUCLEOPORIN133 and INTERACTING PROTEIN
OF DM13. Further, the rapid Nod-factors (NF) induced
changes in the phosphorylation levels of 13,506 phosphosites
in 7739 proteins was recently measured for rhizobia-legume
symbiosis in Medicago which was found useful for quantifying
phosphorylation, specifically associated with NF-signaling (Rose
et al., 2012b).

In chickpea, a differential phosphoproteomic study in
response to dehydration stress identified 91 phosphoproteins
that are likely to be involved in cell defense, photosynthesis,
photorespiration, molecular chaperones and ion transport. The
study also identified multiple sites of phosphorylation in key
regulatory and functional proteins (Subba et al., 2013). Recently,
a nucleus-specific phosphoproteome map of 107 identified
phosphoproteins was constructed in chickpea, which identified
a collection of phosphoproteins involved in many cellular
functions such as protein folding, signaling, gene regulation,
DNA replication/repair/modification, metabolism, etc. (Kumar
et al., 2014). In an earlier study, the PTMs of αAI (α-
amylase inhibitor) were compared among transgenic pea and
chickpea expressing αAI from common bean, with the processed
form of the protein from several bean varieties. The αAI
proteins displayed microheterogeneity due to differences in
glycan addition frequency, variation in glycan processing and
differences in C-terminal exopeptidase activity (Campbell et al.,
2011). Thus, PTMs in common beans were also investigated on
three seed defensive proteins αAI-1, αAI-2, and arcelin-5 (Young
et al., 1999). The data showed that the proteolytic cleavage is
required for the activation of the proteins, which resulted in
the loss of the terminal Asn residue in αAI-1, and a minimum
of seven residues from the C-termini of all three proteins.
Additionally, a significant difference in the glycosylation patterns
of αAI-1 and αAI-2 has been reported, although the proteins
showed high sequence homology. Similarly in pea, the presence
of multiple trypsin inhibitors (TI) isoforms were attributed

to PTMs and particularly post-translational processing at the
C-terminus during the desiccation stage of seed development
resulted in the appearance of TI isoforms in pea (Domoney et al.,
1995).

Histone modifications and histone variants are known to be
vital for various biological processes. In this context, variants
of soybean histone, H3 and H4 and their PTMs were reported,
which revealed several distinct variants of soybean histone and
their modifications that were different from Arabidopsis (Wu
et al., 2009). The study thus, provides important biological
information toward understanding histone modifications and
their functional relevance in legumes.

This area of research possesses great promise for legume
improvement as it is supported by advanced proteomics
technologies, in particular, developments in the strategies for
detection and selective isolation of proteins with known function.
As discussed above functional properties of proteins are often
regulated by PTMs of proteins and the numerous techniques
developed can be applied to the global identification of PTMs and
their processing sites in legumes.

PPI Approaches and Application in
Legume Research
PPIs provide functional knowledge about proteins by analysing
the interacting partners and interactomics, which is the large-
scale study of PPI networks using high throughput methods. This
provides valuable insights for understanding cellular function,
metabolism and signaling mechanisms (Braun et al., 2013; Stasi
et al., 2015). Interactomes (maps of PPI) are constructed on
the basis of experimental data and computational prediction of
interactions (Stasi et al., 2015). Approaches used in PPI analyses
and mapping can be genetic, biochemical or proteomics-based.
The strategies involve direct interactions with binary methods
such as yeast two-hybrid (Y2H) or split ubiquitin, analyses
of protein complexes with co-immunoprecipitation or affinity
purification followed by MS (AP-MS), imaging and database
analyses (Pandey and Mann, 2000; Fukao, 2012; Braun et al.,
2013; Stasi et al., 2015). The identification of minor PPIs are also
essential for studying transient interactions and proteins of low-
abundance, which may be functionally relevant (Fukao, 2012). In
recent years, many proteins have been identified with advances
in MS technologies and large-scale proteomics, however, the
consequence of this is the increased number of false positive
protein identifications. Therefore, for the accurate appraisal of
PPI identification, the inclusion of independent experimental
validation is required (Fukao, 2012). Y2H system is sensitive in
detecting transient and unstable interactions, and is suitable for
PPI mapping and generating high-throughput data with a fine
resolution to understand cellular process at the systemic level.
However, it has limitations with incidences of false-positives and
false-negative interactions. The PPIs are usually validated with
techniques such as pull-down assays, co-immunoprecipitation,
in-situ hybridization (von Mering et al., 2002; Parrish et al., 2006;
Brückner et al., 2009).

Although limited PPI based studies have been undertaken in
legumes, the studies involving stress signaling networks, nodule
formation and symbiosis have provided valuable information
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in understanding these processes. The Y2H system has been
mostly used in model legumes to study symbiosis and nodulation
mechanisms and in the crop legumes mainly to study stress
responses (Table 2). For example in pea, using the Y2H system
and validation using in planta co-immunoprecipitation, the
PPI observed among the heterotrimeric G proteins and GPCR
protein were shown to be relevant in the salt and heat stress
signaling pathways (Misra et al., 2007). In another study,
the exposure to salt and cold simultaneously stimulated the
expression of genes encoding a protein kinase (PsCIPK) and
a calcineurin B-like protein (PsCBL) in pea (Mahajan et al.,
2006). Although immunofluorescence and confocal microscopy
showed that the PsCBL was localized in the cytosol and PsCIPK
in the outer membrane, Y2H analysis indicated that both the
protein products interacted and this was supported withWestern
blots. In chickpea, a few candidate interactors were identified
for the 1R-MYB for drought tolerance with the Y2H system
(Ramalingam et al., 2015).

Bimolecular fluorescence complementation (BiFC) uses the
yellow fluorescent protein (YFP), split into two-non-overlapping
N-terminal (YN) and C-terminal (YC) fragments, where each
fragment is cloned in-frame to the gene of interest, allowing

the expression of fusion proteins. PPI detected in planta
causes the detection of yellow fluorescence, which is not found
for non-interacting pairs or non-fused YN/YC (Bracha-Drori
et al., 2004). Although identification of PPI by screening a
cDNA library is usually performed in yeast, BiFC technology
was applied to screen an Arabidopsis cDNA library against a
bait protein in planta since subcellular compartmentation and
protein modifications differ between plant and yeast cells (Lee
et al., 2012).

A challenging area in crops research would be the
development of a proteome-wide PPI maps to understand
the complex biological pathways and cellular networks. A
high-throughput, Y2H system (HTP-YTH), suitable for mapping
PPIs was described by Fang et al. (2002) to screen PPI in
plants. This system involves a yeast gap-repair cloning and a
selectivity that reduces false positives and negative clones with
automation in laboratory procedures. This system has been used
to study the defense signal transduction pathway in rice, where
more than 100 genes were selected as “baits” for HTP-YTH
screening in which many known and novel PPIs were identified.
In Arabidopsis, the first binary PPI map for the interactome
network of plants was developed (Arabidopsis Interactome

TABLE 2 | PPI analyses in some model and crop legume using Y2H and validated with other approaches.

Legume Stress/Condition Interacting components Method of

confirmation

References

Lotus Nodule development LjNSP2 homodimers β-galactosidase assay Murakami et al., 2013

Symbiotic signaling SINA4 and SYMRK BiFC Den Herder et al., 2012

Nodule development CASTOR homodimer, POLLUX homodimer BiFC Charpentier et al., 2008

SIP1 and SymRK Pull down assay Zhu et al., 2008

Cell growth and

differentiation

LjRac and LjRacGAP1 Affinity chromatography Borg et al., 1999

Medicago Nodulation signaling RAM1 and NSP2 BiFC Gobbato et al., 2012

NSP1 and NSP2 BiFC Hirsch et al., 2009

DMI3 and IPD3 BiFC Messinese et al., 2007

Chickpea Salt CaCIPK6 and NtCBL3 - Tripathi et al., 2009

Cowpea Osmotic and heat VuDRIP and VuDREB2A Antibiotic and X-α-Gal Sadhukhan et al., 2014

Mungbean Osmotic stress VrUBC1 and AtVBP1 BiFC Chung et al., 2013

Pea Salt and heat Gα subunit with the Gβ subunit and

phospholipase C at the calcium-binding

domain

Co-immunoprecipitation Misra et al., 2007

Salt and cold PsCIPK and PsCBL β-galactosidase assay,

Far-western blotting

Mahajan et al., 2006

Soybean Cold SCOF-1 and SGBF-1 β-galactosidase assay Kim et al., 2001

ABA, drought, cold,

salt

GmMYB76 homodimers, GmMYB76 and

GmMYB177, GmZIP46 homodimer,

GmZIP46 and GmZIP62, GmZIP46 and

GmMYB76.

β-galactosidase assay Liao et al., 2008a

β-galactosidase assay Liao et al., 2008b

Salt and heat GmGBP1 with R2R3 domain of

GmGAMYB1 in

X-Gal assay Zhang et al., 2013
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Mapping Consortium, 2011). The construction of these maps
in legumes should facilitate system biology approaches and will
greatly benefit legume crop improvement programs.

METABOLOMICS APPROACHES IN
LEGUMES

Plants synthesize specialized metabolites that define the
biochemical phenotype of a cell or tissue and can be viewed as
the end products of gene expression (Sumner et al., 2003).
Quantitative and qualitative measurements of cellular
metabolites provide a broad view of the biochemical status
of an organism that could be used to monitor and assess gene
function (Fiehn et al., 2000). Furthermore, metabolomics
contributes significantly to the study of stress biology by
identifying different compounds such as by-products of stress
metabolism, stress signal transduction molecules, molecules that
are part of plant acclimation process etc. (Weckwerth, 2003;
Larrainzar et al., 2009). The identified metabolic compounds
could be further studied by direct measurement or correlating
with the changes in transcriptome and proteome expression and
confirmed by mutant analysis. In this section, recent applications
of metabolomics approaches in the area of legume development,
symbiosis and stress response are discussed.

Metabolomics is a rapidly developing technology and
at present metabolic fingerprinting and metabolite profiling
approaches are being used. For wide coverage of the vast
range of metabolites present, several analytical techniques
involving separation and detection are implemented (Scherling
et al., 2010; Doerfler et al., 2013, 2014). The separation
technique is selective for certain groups of metabolites which
includes gas chromatography (GC) for volatile and primary
metabolites such as sugars and amino acids (Weckwerth,
2011a), LC for mainly secondary metabolites (Scherling et al.,
2010; Weckwerth, 2011a), capillary electrophoresis (CE) for
ionic metabolites to be separated (Soga et al., 2003; Soga,
2007) and ultra-performance liquid chromatography (UPLC).
UPLC is a powerful technique which has high resolution,
sensitivity and throughput than conventional high performance
liquid chromatography (HPLC). The MS analysers have been
commonly used for metabolite profiling, particularly those
that provide accurate mass measurements such as FTICR_MS,
Orbitrap-MS or TOF-MS due to its fast scan times with improved
deconvolution, run times and high mass accuracy (Scherling
et al., 2010; Weckwerth, 2010, 2011a; Obata and Fernie, 2012;
Arbona et al., 2013; Doerfler et al., 2013, 2014). GC-MS has
been widely used in plant metabolomics research and electron
impact (EI) supports strong interfacing of GC with MS which
allows fragmentation patterns to be highly reproducible. Major
metabolomics approaches and their applications in legumes are
described below and are summarized in Table 3.

Metabolite Profiling
Metabolite profiling is the simultaneous measurement of all
or a set of metabolites in a given sample. Several analytical
techniques such as nuclear magnetic resonance (NMR), GC-
MS, LC-MS, capillary electrophoresis–MS (CE-MS) and Fourier

transform infrared (FT-IR) spectroscopy have been reported for
analysing the data from metabolite profiling (Sumner et al.,
2003; Weckwerth, 2003; Shulaev, 2006). The advantages and
disadvantages of each technique for metabolite profiling have
been discussed previously (Fiehn et al., 2000; Roessner et al.,
2000; Sumner et al., 2003; Weckwerth, 2003; Weckwerth et al.,
2004a,b; Shulaev, 2006). The use of metabolic profiling has
been limited in crop legumes but this approach has been
successfully demonstrated in model legumes. For example, in
Medicago, untargeted quantitative MS approach was used to
profile metabolites treated with rhizobial Nod factors to study
the metabolic changes between the symbionts (Zhang et al.,
2013). The study showed decrease in concentration of (9)-HODE
class of oxylipins upon Nod factor treatment in planta and
together with jasmonic acid inhibited Nod factor signaling. This
suggests an important role for the oxylipin pathway in Nod
factor signaling in symbiosis. In a different study, under early
salt and drought stress conditions, the involvement of certain
metabolites in nutritional priming through symbiotic interaction
of nodulated plants and N-fertilized Medicago has been reported
(Staudinger et al., 2012).

Similarly, to understand drought acclimation in model
and forage legumes, a comprehensive and progressive
reprogramming of metabolic pathways were suggested for
increased water stress in Lotus (Sanchez et al., 2012). Using
GC coupled to electron impact ionization (EI)-TOF-MS (GC-
EI-TOF-MS), this study reported gradual increase in most
of the soluble molecules profiled. In addition, comparative
metabolomics between the Lotus species showed the presence
of metabolites that were conserved and unique in response
to drought stress. Metabolite profiling using a combination
of ionomic and GC-MS was conducted for the shoots of
extremophile Lotus species, adapted to highly saline coastal
regions and was compared with that of cultivated glycophytic
grassland forage Lotus species, to understand salt tolerance
mechanisms. The extremophile Lotus species was identified
to have higher salt levels with a differential rearrangement of
shoot nutrient levels upon salt exposure (Sanchez et al., 2011).
In a similar study, the accumulation of alanine under anoxic
conditions was examined in Lotus, which is highly tolerant
to water logging (Rocha et al., 2010). High accumulation of
succinate, alanine and the direct co-substrates for alanine
synthesis, glutamate and gamma aminobutyric acid (GABA)
in the roots of Lotus during water logging was reported.
Whereas, majority of amino acids that are derived from
TCA cycle intermediate were found to be decreased, which
support earlier findings that the metabolic equilibriums are
expected to drive the metabolic flux from glycolysis, via alanine
synthesis and oxoglutarate to succinate, which prevents the
accumulation of pyruvate activating fermentation leading to
ATP production by succinyl- CoA ligase. In another study in
Lotus, GC-TOF-MS (primary metabolism) and LC-Fourier-
Transformation-MS (secondary metabolism) was applied to
study plant/plant competition responses in a large biodiversity
experiment (Scherling et al., 2010). Significant effects in Lotus
were not associated with primary metabolism (sugars, amino
acids, organic acids) but with the secondary metabolism. A
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TABLE 3 | Application of metabolomics approaches in stress, development and symbiotic processes in some legumes.

Legume Stress/Condition, Tissue Methods Metabolites References

Lotus Drought, shoots GC-EI-TOF-MS Serine, proline, arabitol Sanchez et al., 2012

Salt, shoots GC-MS Citric acid, malic acid Sanchez et al., 2011

Biodiversity and plant/plant

competition, leaves

GC-TOF-MS and LC-Orbitrap-MS Especially secondary metabolites,

Flavonoids

Scherling et al., 2010

Medicago Metabolic reprogramming, roots GC-MS, LC-MS Flavonoids, triterpenoid, starch hydrolysis

metabolites

Watson et al., 2015

Symbiosis, roots MSI(MALDI)-MS imaging Organic acids, amino acids, sugars. Ye et al., 2013

LC-ESI-TOF-MS Oxylipins Zhang et al., 2012

Flavonoid profiling, roots LC-MS Flavonoids Staszków et al., 2011

Arbuscular mycorhizal symbiosis,

roots

GC-MS, HPLC, LC-MS Amino acids, fatty acids, isoflavonoids Schliemann et al., 2008

Signaling pathway roots HPLC coupled to UV photodiode

array and ESI ion-trap

MS(HPLC-PDA-ESI-ITMS)

Phenylpropanoid, isoflavonoid Farag et al., 2007

Biotic, abiotic signaling pathway,

roots

GC-MS, LC-MS Primary metabolites, amino acids,

organic acids, carbohydrate, shikimic

acids, saponins

Broeckling et al., 2005

Microbial, roots Reversed-phase

HPLC-PDA-ESI-MS

(HPLC-PDA-ESI-MS)

Saponins Huhman and Sumner, 2002

Pea Drought, leaves NMR Amino acids Charlton et al., 2008

Soybean Aphid infection, leaves CE-TOF-MS Flavonoids, alkaloids, amino acids Sato et al., 2013

Defense, cotyledon LC-MS, NMR Prenylated-isoflavones Cheng et al., 2011

Flooding, roots, hypocotyls CE-MS Succinate, citrate, pyruvate Komatsu et al., 2011

Symbiosis, root hairs GC-MS, UPLC-QTOF-MS Isoflavonoids, fatty acids,carboxylic acids Brechenmacher et al., 2010

Metabolic profiling, leaves GC-MS Sugars, organic acids, fatty acids Benkeblia et al., 2007

GM and isogenic CE–TOF-MS Amino acids García-Villalba et al., 2008

Salt stress, seeds HPLC-UV-ESI-MS Isoflavonoids, saponins Wu et al., 2008

significant gradient of several putative flavonoids structures
showed a high correlation to increasing biodiversity in the
close environment of the individual plant (Scherling et al.,
2010).

As described above, plants show a variety of metabolic
responses against varied abiotic stresses. With the availability
of genomics platforms, scientists are now able to opt for
metabolomics for studying metabolites involving non-biased
approaches. However, it would be important to study if there
are any common metabolic responses associated with all the
abiotic stresses or if the responses are specific to the stress.
In this context, Komatsu et al. (2011) identified 81 metabolites
related to the mitochondria under flooding stress in roots and
hypocotyls of soybean using CE-MS which showed that the TCA-
cycle-related metabolites, glycolysis related metabolites, GABA,
pyruvate, NAD, NADH and amino acids increased, while ATP
decreased. This kind of accumulation/increase in GABA and
amino acids was also reported in Lotus unlike TCA cycle related
metabolites were found to be low in Lotus and high in soybean.
These studies support that integrative analysis is required on
the metabolite accumulation within the context of understanding
metabolic responses to stress.

Phosphorous is an essential component of energy metabolism,
signaling molecules, and structural macromolecules. Therefore,
studies have been conducted to understand the role of
phosphorus in stress response metabolite profiling of common
bean roots and nodules under P starvation (Hernández et al.,
2007). Increase in the levels of most of the amino acids and
several sugars was reported in P-stressed roots. It was suggested
that the accumulation of sugars may be partitioned preferentially
to P-stressed roots to support the expression of P stress-induced
genes. On the other hand reduced amounts of organic acids are
reported in P-starved roots that likely reflect exudation of these
metabolites from the roots into the rhizosphere (Hernández et al.,
2007). The metabolic response of P-starved nodules is in contrast
to that of P-starved roots in common bean. It was reported
that amino acids, N-containing metabolites and sugars were
decreased, while organic acids were accumulated in P-deficient
nodules (Hernández et al., 2009). Such contrasting response
may be due to the suppression of N supply from fixed N2

under environmental limitations such as P-starvation in nodules.
Recently, metabolite profiling study in chickpea revealed 49
primary metabolites in contrasting salt stress responsive cultivars
(Dias et al., 2015).
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One drawback with the metabolite profiling is that the
data obtained is not sufficient to determine the regulation
mechanisms of the pathways of interest. In order to overcome
this issue, integrated analysis of metabolomics data together
with that of proteomic and transcriptomic data need to
be performed. For example in Medicago, an integrated
metabolomics and transcriptomic approach was found useful
to study metabolic reprogramming of the border cells in roots
through cumulative and pathway specific datasets (Watson
et al., 2015). This integrative approach showed that there were
significant differences in the levels of phytohormone, supported
by variation in lipoxygenases and auxin responsive transcripts
in the border cells and root tips. Additionally, this approach
identified metabolic resources for growth and development
redirected to the border cells for the accumulation of specialized
metabolites that were defense and symbiosis related. Similarly,
Komatsu et al. (2011) used an integrative proteomic and
metabolomics approach which was useful in identifying the
expression and regulation of components linked to flooding
stress in soybean seedlings. Larrainzar et al. (2009) integrated
GC-TOF-MS metabolite profiling with untargeted and targeted
proteomics to reveal nodule metabolic responses under drought
stress and recovery by re-watering in Medicago. Metabolite
profiling was able to show a highly pronounced reprogramming
of metabolism during drought response and the ability of the
nodules to recover completely after re-watering.

Targeted and Untargeted Metabolite
Analysis
Metabolites are analyzed either using a targeted or untargeted
method (Patti et al., 2012). The targetedmethod is used to analyse
a specified set of metabolites which targets one or more pathways
of interest and involves the setup of selected reaction monitoring
methods of the standard compounds of the metabolite of interest,
followed by the extraction of metabolites from the sample
and analysis. The data obtained provides quantitation based
on standardized methods for the metabolites of interest. This
method has been widely used to follow the dynamics of a limited
number of metabolites known to be involved in a particular stress
and also for comparative metabolite profiling of a large number
of known metabolites. For example, in a single chromatographic
run, highly parallel targeted assays based on SRM can be used for
sensitive simultaneous analysis of over 100metabolites (see Bajad
and Shulaev, 2007). Alternatively, quantitative profiling may
provide in vivo enrichment of metabolites with stable isotopes
like C-13 and N-15. This can be possible only by growing plants
or plant cells in liquid media containing N-15-labeled inorganic
nitrogen sources or C-13-labeled carbon dioxide or glucose
(Hegeman et al., 2007; Huege et al., 2007). Metabolic labeling
combined with MS has been successfully used for quantitative
metabolic profiling in microorganisms (Mashego et al., 2004;
Lafaye et al., 2005; Wu et al., 2005).

On the other hand, the untargetedmetabolite profiling is often
used for global and broader applications, e.g., understanding
cellular metabolism. In this approach, metabolites are isolated
from samples followed by the LC-MS analysis. The data obtained
is processed using bioinformatics and values for peaks of

interest are searched against metabolite databases for possible
identity. These metabolite identities are confirmed using tandem
MS (MS/MS) data and retention time data compared with
standard components. Untargeted metabolite profiling in Lotus
demonstrated a major and reproducible change of the metabolic
phenotype in the course of salt acclimatization, which was most
evident for amino acid, sugars and organic acid metabolism
(Sanchez et al., 2008). Accumulation of amino acids and other
nitrogen-containing compounds is a remarkable biochemical
feature of almost all plant stress responses reported so far.
However, the main disadvantage of untargeted profiling is
that it is a semi-quantitative method and provides relative
concentration data based on the same “surrogate” internal
standard. These semi-quantitative data have to be further
validated using targeted quantitative assays.

Metabolic Fingerprinting
Metabolic fingerprinting is mainly used to identify
metabolic signatures, for example, finding patterns
associated with a particular stress response without precise
quantitation/identification of different metabolites in the given
sample. Features specific to a fingerprint can be identified using a
variety of pattern recognition and multivariate statistical analysis
(e.g., principal component analysis (PCA), self-organizing maps
(SOMs) and hierarchical clustering, discriminant function
analysis (DFA), ANOVA etc.) on the data (Sumner et al., 2003).
Different analytical techniques, including NMR spectroscopy
(Krishnan et al., 2005), MS (Goodacre et al., 2003), and FT-IR
(Johnson et al., 2003) may be used to perform metabolic finger
printing. Of these, MS is advantages over NMR spectroscopy
because of the low sensitivity of NMR, which makes it difficult
to detect low abundance cellular metabolites. On contrary, MS
has high resolving power compared to NMR, providing higher
sensitivity and lower detection limit but generates more complex
spectrum because of its results in the form of discriminant ions
which remains as a challenge for data validation. Moreover, a
larger subset of metabolites associated with the phenotype can be
identified using MS.

There have been few studies that reported the application
of these approaches in legumes. Metabolic finger printing
has been utilized to study drought in seven different model
and forage species of the Lotus genus. Analysis using PCA
of the metabolite features regardless metabolite identification
status yielded sample “fingerprints,” which classified primarily
according to the genotype. Infrared (IR) spectroscopy has
been used to obtain a snapshot of the sample metabolome
(typically low-molecular-weight compounds) at a given time.
This study identified metabolic compounds responsible for rapid
fermentation for the efficient conservation of forage proteins
(Johnson et al., 2004). In another study, NMR-based approach
has been used for metabolic fingerprinting of 21 grass and legume
cultivars. Applying PCA, variation between cultivars and the
magnitude of changes in the metabolic fingerprint between the
spring growth and the second regrowth was elucidated in the
study. Furthermore, variation in metabolic compounds such as
malic acid, choline, and glucose was reported due to seasonal
change (Bertram et al., 2010).
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Metabolomics Databases for Legumes
As with transcriptomics and proteomics data, metabolomics
approaches also generate huge datasets that require specialized
data mining and bioinformatics tools. It is imperative to integrate
functional genomics data to comprehensively study biological
components, using a systemic approach, e.g., through the
mathematical modeling of biological systems. Metabolomics
data handling, mining and analysis etc. have been improved
tremendously, due to advances in bioinformatics tools. In
this scenario, several databases have been developed for
plant metabolomics data analysis. For example, a metabolic
pathway reconstruction was used to generate a pathway
database for Medicago called MedicCyc (http://www.noble.
org/MedicCyc/) which features more than 250 pathways
with related genes, enzymes and metabolites (Urbanczyk-
Wochniak and Sumner, 2007). The database contains Medicago
specific pathways including isoflavonoid, lignin and triterpene
saponin biosynthesis which were added or modified based
on literature and in-house expertise. MedicCyc is designed to
visualize functional genomics datasets from Medicago within
the biological context of metabolic pathways and has been
believed that this is best achieved through the visualization
of data within the biological context of metabolic pathways
in legumes. The pathways were engineered to enable the
correlated visualization of integrated functional genomics data.
Another database, Soybean Knowledge Base (SoyKB) (http://
soykb.org) has been reported to be a comprehensive resource
for soybean translational genomics and contains integrative
information on soybean genomics, transcriptomics, proteomics
and metabolomics (Joshi et al., 2014). This is a web resource that
would not only be useful for soybean translational genomics,
but also for legume crop improvement programs. Also, a
database for plant metabolomics, PlantMetabolomics.org (PM)
(http://www.plantmetabolomics.org) was developed (Bais et al.,
2010). This database represents metabolomics data generated
from Arabidopsis through an integration of experiments
compiled from different platforms with visualization tools.
PlantMetabolomics has been widely used for exploring,
visualizing and downloading plant metabolomics data and
well-annotated metabolomics datasets which is useful for
establishing metabolomics as a functional genomics tool in
legumes.

Metabolomics for Crop Breeding
There is growing interest in using metabolites as selection
markers in crop breeding programs, because metabolite
biomarkers have been linked with strong environmentally-
controlled traits (Steinfath et al., 2010). Mapping and
metabolomics genome wide association studies (mGWAS) have
been conducted to develop “metabotypes” using metabotype
quantitative trait locus (mQTL) (association of genomic markers
and metabolic markers) which enabled the associations between
metabolic concentrations and genetic polymorphisms. Overall,
plant metabolomics has benefited from a rich array of pre-
existing methodological approaches and bioanalytical knowledge
for the characterization of the chemically diverse classes of
metabolites. However, speedy progress in the application of

these approaches in legumes will be quite useful for legume
improvement.

SUMMARY AND FUTURE OUTLOOK

The development in the area of proteomics and metabolomics
has enhanced the power of “omics” with the possibility
of studying at different levels of plant regulations, namely
transcriptome, proteome and the metabolome (Shulaev et al.,
2008). Plant growth, development and stress responses are
not straightforward to be able to understand by just looking
into one or two level(s), which has been done traditionally.
For instance, to understand the molecular basis of stress
physiology and biochemistry, the quantitative correlation of
different protein groups and classes of metabolites with stress
levels are required for the identification of candidate bio-markers
(Weckwerth, 2011b; Rodziewicz et al., 2014). Moreover, with
the recent developments in the technologies, availability of
legume genomics and protein databases, it would be possible
to have efficient and high throughput identification of stress
related proteins in crop legumes (Hiremath et al., 2011; Kosová
et al., 2011; Varshney et al., 2013a; Hossain and Komatsu,
2014a,b).

Legume crops are widely cultivated in the semi-arid tropics
where various abiotic and biotic stresses pose severe threats to
the productivity. The crops are subjected to not only one stress,
but also a combination of stresses at a given point of time
under natural field conditions. To sustain legume cultivation
under these environments, crop improvement programs requires
resourceful methods such as integrated “omics” approaches to
understand stress responses at the molecular level such as cellular
mechanisms, signaling pathways, biochemical processes. Such
studies have largely been initiated in model plants such as
Arabidopsis. For instance, transcriptomics and the metabolomics
data revealed a different pattern of defense response in
Arabidopsis subjected to a combination of drought and heat
stress. It was found that proline (Pro) was accumulated in
response to drought stress, but during the combination of
stresses, Pro was replaced by sucrose as osmoprotectants. Similar
studies needs to be undertaken in legume crops such as chickpea,
pigeonpea and peanut, which are of agronomic value especially
in the semi-arid tropics.

In this review, the available proteomics and metabolomics
resources for legume research and their applications for further
our understanding of the stress biology in model as well as
crop legumes have been provided (Figure 1). A large number
of protein reference maps for various tissues are already
available for model legume crops that will greatly support
comparative proteomics approaches. There is a great need to
generate proteome maps from crop legumes that would greatly
help in precise understanding of various cellular processes
and signaling pathways. These resources would improve the
functional annotations of the gene models in identifying novel
ORFs as in the case of Arabidopsis (Castellana et al., 2008)
and also validates the existing annotation (Agrawal et al.,
2012, 2013; Dash et al., 2015; Walley and Briggs, 2015).
Moreover, it is now possible to uncover the regulation of
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FIGURE 1 | Significant advances in proteomic and metabolomics for integrative “omics” approaches in legume crop research.

these processes by studying the post-translational modifications.
Further, huge amount of information on metabolomics data
related to stress responses in legumes have been generated which
includes a large number of metabolic pathways under stress
conditions. The integrative analyses of data through genomics,
transcriptomics, proteomics and metabolomics will be important
for a system biology approach and for efficient application in
legume crop improvement. At this point, it would be worthwhile
to caution that combining and integrating omics data together
is challenging, because of the difficulty in correlating the data
due to the differences in the time for quenching metabolism.
In addition, some errors can be introduced due to the nature
of the samples used and the lack of appropriate mathematical

models that would allow identification of various biochemical
and signaling pathways involved in stress response. Therefore,
there is a need to advance at all the fronts, i.e., sampling strategy,
data generation, data analysis, etc. in different disciplines so that
precise system biology approach can be deployed to understand
molecular basis of different traits related to plant biology as well
as breeding applications.
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